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Abstract The class of generalized shearlet dilation groups has recently been de-
veloped to allow the unified treatment of various shearlet groups and associated
shearlet transforms that had previously been studied on a case-by-case basis. We
consider several aspects of these groups: First, their systematic construction from
associative algebras, secondly, their suitability for the characterization of wavefront
sets, and finally, the question of constructing embeddings into the symplectic group
in a way that intertwines the quasi-regular representation with the metaplectic one.
For all questions, it is possible to treat the full class of generalized shearlet groups
in a comprehensive and unified way, thus generalizing known results to an infin-
ity of new cases. Our presentation emphasizes the interplay between the algebraic
structure underlying the construction of the shearlet dilation groups, the geometric
properties of the dual action, and the analytic properties of the associated shearlet
transforms.

Giovanni S. Alberti
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1 Introduction

This chapter is concerned with several important aspects of modern signal analysis.
Usually, signals are modeled as elements of function spaces such as L2 or Sobolev
spaces. To analyze such a signal and to extract the information of interest from it,
the first step is always to decompose the signal into suitable building blocks. This is
performed by transformation, i.e., the signal is mapped into function spaces on an
underlying parameter set, and then the signal is processed and analyzed by studying
and modifying the resulting coefficients. By now, a whole zoo of suitable trans-
forms have been introduced and analyzed such as the Fourier transform, the Gabor
transform, or the wavelet transform, just to name a few. Some of them have already
been very succesful, e.g., the Fourier transform works excellently for signals that
are well-localized in the frequency domain, whereas wavelets are often the method
of choice for the analysis of piecewise smooth signals with well-localized singular-
ities such as edges in an image. Which transform to choose obviously depends on
the application, i.e., on the type of information one wants to detect from the sig-
nal. However, in recent years, it has turned out that a serious bottleneck still has
to be removed. Most of the classical transforms such as the wavelet transform per-
form suboptimally when it comes to the detection of directional information. The
reason is very simple: most of these transforms are essentially isotropic, whereas
directional information is of anisotropic nature. This observation triggered many in-
novative studies how to design new building blocks that are particularly tuned to
this problem, such as curvelets [4], contourlets [16], ridgelets [3] and many oth-
ers. In this chapter, we are in particular interested in one specific contribution to
this problem, i.e., the shearlet approach. Shearlets are new affine representation sys-
tems that are based on translations, shearings, and anisotropic dilations. We refer
to the monograph [37] for an overview. Among all the new approaches, the shear-
let transform stands out for the following reason: the continuous shearlet transform
can be derived from a square-integrable representation of a specific group, the full
shearlet group [9, 10, 13]. This property is not only of academic interest but has the
important consequence that the whole powerful machinery derived in the realm of
square-integrable group representations such as reproducing kernels, inversion for-
mulas etc. can directly be employed. This feature of the shearlet transform clearly
has strengthened the interest in the shearlet theory, and many important results con-
cerning the group-theoretical background have been derived so far. It is the aim
of this chapter to push forward, to clarify and to unify this theory with respect to
several important aspects. Our main objectives can be described as follows.

After the full shearlet group has been discovered, the question arose if other
suitable concepts of shearlet groups could be constructed. A first example was the
shearlet Toeplitz group [14], where the shearing part of the group has a Toeplitz
structure. As we will see later in Subsection 3.3 of this chapter, the full shearlet
group and the shearlet Toeplitz group are in a certain sense the “extreme” cases of
a general construction principle. In this view, the full shearlet group corresponds to
the nilpotency class n = 2, whereas the Toeplitz case corresponds to the nilpotency
class n = d, where d denotes the space dimension. Therefore, one would conjecture
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that there should be a lot of examples “in between”. Indeed, in [30], a positive
answer has been given, and a first classification of low-dimensional shearlet groups
has been derived. In this chapter, we further extend these results and present an
approach to the systematic construction of suitable shearlet groups. The starting
point is a general class of shearlet groups introduced in [30]. We say that a dilation
group H is a shearlet group if every h ∈ H can be written as h = ±ds,d ∈ D,s ∈ S
where D is a diagonal scaling subgroup and S denotes a connected, closed abelian
matrix group, the shearing subgroup. The key to understanding and constructing
shearing subgroups lies in the realization that their associated Lie algebras carry a
very useful associative structure. This associative structure also greatly facilitates
the task of identifying the diagonal scaling groups compatible with a given shearing
subgroup. Through the notion of Jordan-Hölder bases the problem of characterizing
all suitable scaling group generators translates to a rather simple linear system of
equations. It turns out that all examples known so far are special cases of this general
construction.

In recent studies, it has also been observed that shearlets provide a very powerful
tool in microlocal analysis [32], e.g., to determine the local regularity of a function.
In the one-dimensional case, pointwise smoothness can very efficiently be detected
by examining the decay of the continuous wavelet transform as the scale parame-
ter a tends to zero [34]. In the multivariate setting, pointwise smoothness does not
cover all the geometic information one might be interested in. E.g., if the function
under consideration exhibits singularities, one usually wants to know in which di-
rection the function is singular. This can be described by the so-called wavefront set
of a distribution. It has turned out that the continuous shearlet transform can be em-
ployed to detect this wavefront set, once again by studying its decay as the scaling
parameter tends to zero. This property has been first observed in [36], we also refer
to [32] for an overview. In [22], this concept has been generalized to much more
general classes of dilation groups. It has been shown that under natural assump-
tions, a wavefront set can again be detected by the decay of the voice transform.
Essentially, two fundamental conditions are needed, that are related with the dual
action of the dilation group H: the dual action must be microlocally admissible in
direction ξ and it must satisfy the V -cone approximation property at ξ , see Sec-
tion 4.1 for the precise definitions. If these properties hold for one point ξ0 in the
open dual orbit, a characterization of wavefront sets is possible. In this chapter, we
show that both properties are satisfied for our general construction of shearlet di-
lation groups, provided that the infinitesimal generator Y of the scaling subgroup
satisfies Y = diag(1,λ2, . . . ,λd),0 < λi < 1,2 ≤ i ≤ d. Consequently, characteriza-
tions of wavefront sets are possible for a huge subclass of our general construction.
It is worth mentioning that anisotropic dilations are necessary for the detection of
wavefront sets, in particular the classical (isotropic) continuous wavelet transform
would not do the job.

A third important issue we will be concerned with in this chapter is the relations
of our general shearlet groups to other classical groups, in particular to the symplec-
tic groups Sp(d,R). The symplectic groups are one of the most important classical
groups, because they play a prominent role in classical mechanics. We therefore
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investigate to which extent our shearlet dilation groups can be embedded into sym-
plectic groups, in a way that intertwines the quasi-regular representation with the
metaplectic representation. For the full shearlet groups and the shearlet Toeplitz
groups, these issues have been studied in [6], see also [35]. Their connected com-
ponents can indeed be embedded into the symplectic groups, which yields group
isomorphisms of the positive parts of shearlet groups with the so–called TDS(d)
subgroups that have already been studied in [15]. In this chapter, we generalize
this result to dilation groups of the form G = Rd rtimesH, where H is a subgroup
of T (d,R)+ = {h ∈ GL(d,R) : h1,1 > 0 and hi, j = 0 for every i > j}. We show that
for any such group there exists a group embedding φ : G→ Sp(d,R), and that its
quasi-regular representation is unitarily equivalent to µ ◦ φ , where µ denotes the
metaplectic representation of Sp(d,R). Since the positive part of any shearlet group
falls into this general category, the desired embeddings for shearlet groups follow
from this result. Let us also mention the following very interesting fact: for the full
shearlet dilation groups, such embeddings are never possible. Indeed, in [6] it has
been shown that already for the two-dimensional full shearlet group there does not
exist an injective continuous homomorphism into Sp(2,R) or into any of its cover-
ings.

Let us also mention a nice by-product of our construction. In recent studies
[8, 10, 11, 13], an interesting relation of the shearlet approach to the coorbit the-
ory derived by Feichtinger and Gröchenig [17, 18, 19, 20] has been established.
Based on a square integrable group representation, coorbit space theory gives rise
to canonical associated smoothness spaces, where smoothness is measured by the
decay of the underlying voice transform. In [8, 10, 11, 13], it has been shown that
all the conditions needed in the coorbit setting can be satisfied for the full shearlet
and the shearlet Toeplitz groups. In [27], the coorbit approach has been extended to
much more general classes of dilation groups, and it turns out that the analysis from
[27] also carries over to the construction presented in this chapter, so that we obtain
many new examples of coorbit spaces. In particular, we refer to [30] for explicit
criteria for compactly supported functions that can serve as atoms in the coorbit
scheme.

This chapter is organized as follows. In Sections 2 and 3, we present our con-
struction of generalized shearlet dilation groups. After discussing the basic nota-
tions and definitions in the Subsections 2.1 and 2.2, in Subsection 2.3 we start with
the systematic investigation of the Lie algebras of shearing subgroups. One of the
main results is Lemma 6 which provides a complete description of a shearing sub-
group in terms of the canonical basis of its Lie algebra. This fact can be used to
derive linear systems whose nonzero solutions determine the anisotropic scaling
subgroups that are compatible with S (Lemma 9). These relationships are then used
in Section 3 to derive a systematic construction principle. The canonical basis can
be directly computed from the structure constants of a Jordan-Hölder basis (Lemma
13). The power of this approach is demonstrated by several examples. In Section 4,
we study the suitability of shearlet dilation groups for the characterization of wave-
front sets. Here the main result is Theorem 28 which shows that shearlet groups with
anisotropic dilations and suitable infinitesimal generators for the scaling subgroups
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do the job. The proof is performed by verifying the basic conditions from [22]. The
last section is concerned with the embeddings of shearing dilation groups into sym-
plectic groups. The main result of this section is Theorem 33 which shows that the
huge class of semidirect products of the form G = Rd oH, where H is a subgroup
of T (d,R)+ can be embedded into Sp(d,R).

2 Generalities on shearlet dilation groups

2.1 Basic notations and definitions

This chapter is concerned with the construction and analysis of large classes of gen-
eralized shearlet transforms. These transforms are constructed by fixing a suitable
matrix group, the so-called shearlet dilation group. By construction, these groups
have a naturally associated isometric continuous wavelet transform, which will be
the generalized shearlet transform. In this subsection, we summarize the necessary
notation related to general continuous wavelet transforms in higher dimensions. We
let GL(d,R) denote the group of invertible d×d-matrices. We use Id to denote the
d× d identity matrix. The Lie algebra of GL(d,R) is denoted by gl(d,R), which
is the space of all d×d matrices, endowed with the Lie bracket [X ,Y ] = XY −Y X .
Given h ∈ gl(d,R) its (operator) norm is denoted by

‖h‖= sup
|x|≤1
|hx|.

We let exp : gl(d,R)→ GL(d,R) denote the exponential map, defined by

exp(X) =
∞

∑
k=0

Xk

k!

known to converge absolutely for every matrix X . Given a closed subgroup
H < GL(d,R), the associated Lie algebra of H is denoted by h, and it is defined
as tangent space of H at Id , or, equivalently, as the set of all matrices X with
exp(RX) ⊂ H. It is a Lie subalgebra of gl(d,R), i.e., it is closed under taking Lie
brackets.

A matrix group of particular importance for the following is the group T (d,R) of
upper triangular matrices with ones on the diagonal. Elements of T (d,R) are called
unipotent. Its Lie algebra is the subspace t(d,R)⊂ gl(d,R) of all strictly upper tri-
angular matrices. It is well-known that exp : t(d,R)→ T (d,R) is a homeomorphism
[33]. In particular, whenever s⊂ t(d,R) is a Lie subalgebra, the exponential image
exp(s) is a closed, simply connected and connected matrix group with Lie algebra
given by s. Conversely, any connected Lie subgroup S of T (d,R) is closed, simply
connected and S = exp(s) where s ⊂ t(d,R) is the corresponding Lie algebra, see
Theorem 3.6.2 of [39].
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For the definition of generalized wavelet transforms, we fix a closed matrix
group H < GL(d,R), the so-called dilation group, and let G = Rd o H. This is
the group of affine mappings generated by H and all translations. Elements of
G are denoted by pairs (x,h) ∈ Rd ×H, and the product of two group elements
is given by (x,h)(y,g) = (x + hy,hg). The left Haar measure of G is given by
dµG(x,h) = |det(h)|−1dxdh, where dx and dh are the Lebesgue measure and the
(left) Haar measure of Rd and H, respectively.

The group G acts unitarily on L2(Rd) by the quasi-regular representation defined
by

[π(x,h) f ](y) = |det(h)|−1/2 f
(
h−1(y− x)

)
. (1)

We assume that H is chosen irreducibly admissible, i.e. such that π is an (irre-
ducible) square-integrable representation. Recall that a representation is irreducible
if the only invariant closed subspaces of the representation space are the trivial
ones. Square-integrability of the representation means that there exists at least one
nonzero admissible vector ψ ∈ L2(Rd) such that the matrix coefficient

(x,h) 7→ 〈ψ,π(x,h)ψ〉

is in L2(G), which is the L2-space associated to the left Haar measure dµG. In this
case the associated wavelet transform

Wψ : L2(Rd) 3 f 7→ ((x,h) 7→ 〈 f ,π(x,h)ψ〉) ∈ L2(G) (2)

is a scalar multiple of an isometry, which gives rise to the wavelet inversion formula

f =
1

cψ

∫
G

Wψ f (x,h)π(x,h)ψ dµG(x,h) , (3)

where the integral is in the weak sense.
We note that the definition of Wψ f also makes sense for tempered distributions

f , as soon as the wavelet ψ is chosen as a Schwartz function and the L2-scalar
product is properly extended to a sesquilinear map S ′×S → C. Analogs of the
wavelet inversion formula are not readily available in this general setting, but it will
be seen below that the transform has its uses, for example in the characterization of
wavefront sets.

Most relevant properties of the wavelet transform are in some way or another
connected to the dual action, i.e., the (right) linear action Rd ×H 3 (ξ ,h) 7→ hT ξ .
For example, H is irreducibly admissible if and only if the dual action has a single
open orbit O = {hT ξ0 : h ∈ H} ⊂ Rd of full measure (for some ξ0 ∈ O), such that
in addition the stabilizer group Hξ0

= {h ∈ H : hT ξ0 = ξ0} is compact [28]. This
condition does of course not depend on the precise choice of ξ0 ∈ O . The dual
action will also be of central importance to this chapter.
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2.2 Shearlet dilation groups

The original shearlet dilation group was introduced in [9, 10], as

H =

{
±
(

a b
0 a1/2

)
: a > 0,b ∈ R

}
.

The rationale behind this choice was that the anisotropic scaling, as prescribed by
the exponents 1,1/2 on the diagonal, combines with the shearing (controlled by the
parameter b) to provide a system of generalized wavelets that are able to swiftly
adapt to edges of all orientations (except one). A mathematically rigourous formu-
lation of this property is the result, due to Kutyniok and Labate, that the continuous
shearlet transform characterizes the wavefront set [36]. Approximation-theoretic
properties of a different, more global kind were the subject of the chapter [10]
describing the so-called coorbit spaces defined in terms of weighted integrability
conditions on the wavelet coefficients.

The original shearlet dilation group has since been generalized to higher dimen-
sions. Here, the initial construction was introduced in [13], and further studied, e.g.,
in [11, 5]. It is a matrix group in dimension d ≥ 3 defined by

S =

±


a s1 . . . sd−1
aλ2

. . .
aλd

 : a > 0, s1, . . . ,sd−1 ∈ R

 . (4)

Here λ2, . . . ,λd are positive exponents, often chosen as λ2 = . . . = λd = 1/2. It
should, however, be noted that they can be chosen essentially arbitrarily (even neg-
ative), without affecting the wavelet inversion formula. Coorbit space theory is ap-
plicable to all these groups as well [11, 27]. Furthermore, it was recently shown that
the associated shearlet transform also characterizes the wavefront set [22], as long
as the exponents λ2, . . . ,λd are strictly between zero and one.

A second, fundamentally different class of shearlet groups are the Toeplitz shear-
let groups introduced in [14] and further studied in [8]. These groups are given by

H =


±



a s1 s2 . . . . . . . . . sd−1
a s1 s2 . . . . . . sd−2

. . . . . . . . .
...

. . . . . . . . .
...

. . . . . . s2
. . . s1

a


: a > 0, s1, . . . ,sd−1 ∈ R


. (5)
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Coorbit space theory can be applied to these groups as well [8, 27]. By [22, Lemma
4.10], the fact that H contains nontrivial multiples of the identity implies that H
does not characterize the wavefront set. However, it will be shown below that by
properly adjusting the diagonal entries, it is possible to construct a closely related
group H ′ that does lend itself to the characterization of the wavefront set.

A closer inspection of the two higher-dimensional families of shearlet group re-
veals several common traits: fix one of the above-listed groups H. Then each h ∈ H
factors as

h =±diag(a,aλ2 , . . . ,aλd ) ·u

where the first factor denotes the diagonal matrix with the same diagonal entries
as h, and the second factor u is unipotent. In fact, this factorization is necessarily
unique. Furthermore, denoting by D the set of all diagonal matrices occurring in
such factorizations, and by S the set of all unipotent ones that arise, it is easy to see
that D (and consequently S) are closed subgroups of H. Finally, one readily verifies
that the groups S that occur in the examples are in fact commutative. We will now
use these properties to define a general class of shearlet dilation groups, that we will
study in this chapter:

Definition 1. Let H < GL(d,R) denote an irreducibly admissible dilation group. H
is called generalized shearlet dilation group, if there exist two closed subgroups
S,D < H with the following properties:

(i) S is a connected abelian Lie subgroup of T (d,R);
(ii) D = {exp(rY ) : r ∈ R} is a one-parameter group, where Y is a diagonal ma-

trix;
(iii) Every h ∈ H can be written uniquely as h =±ds, with d ∈ D and s ∈ S.

S is called the shearing subgroup of H, and D is called the diagonal complement or
scaling subgroup of H.

Remark 2. As noted in Subsection 2.1, S is closed, simply connected and the expo-
nential map is a diffeomorphism from its Lie algebra s onto S.

Remark 3. The class of shearlet dilation groups was initially defined in [30], and for
some of the following results and observations, more detailed proofs can be found
in that paper. In particular, it was shown there that coorbit space theory applies to
all generalized shearlet dilation groups. In fact, it is possible to construct wavelet
frames with compactly supported atoms, with frame expansions that, depending on
the provenance of the signal, converge in a variety of coorbit space norms simulta-
neously.

As will be seen below, shearlet dilation groups can be constructed systematically.
The natural order in finding the constituent subgroups S,D is to first pick a candidate
for S, and then determine the infinitesimal generators of the one-parameter group D
that are compatible with S. The details of this programme are given in the next
subsections.
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2.3 Shearlet dilation groups and their Lie algebras

It is the aim of this subsection to give an overview of the most important struc-
tural properties of shearlet dilation groups. The following proposition gives a first
characterization of these groups, see [30, Proposition 4.3].

Proposition 4. Let S denote a connected abelian subgroup of T (d,R). Then the
following are equivalent:

(i) S is the shearing subgroup of a generalized shearlet dilation group;
(ii) There is ξ ∈ Rd such that S acts freely on ST ξ via the dual action, and in

addition, dim(S) = d−1;
(iii) The matrix group A= {rs : s∈ S,r∈R×} is an abelian irreducibly admissible

dilation group. It is also a shearlet dilation group.

The fundamental observation made in [26, Remark 9] is that if A is abelian and
admissible, as in part (iii) of the above proposition, then its Lie algebra a is in fact
an associative subalgebra containing the identity element, hence it is closed under
matrix multiplication. This associative structure is in many ways decisive. To begin
with, one has the relations

a= span(A) , A = a×

i.e., A consists precisely of the multiplicatively invertible elements of the associative
algebra a. We will see in Subsection 3.1 below that this connection to associative
algebras can be used for the systematic –even exhaustive– construction of shearing
subgroups.

There is however a second ingredient, that is more directly related to the prop-
erties of the dual action. It is described in the following lemma, see [30, Corollary
4.7]. We use e1, . . . ,ed for the canonical basis of Rd .

Lemma 5. Let S denote a connected abelian subgroup of T (d,R) of dimension d−
1, with Lie algebra s. Then the following are equivalent:

(i) S is a shearing subgroup;
(ii) There exists a unique basis X2, . . . ,Xd of s with XT

i e1 = ei, for all i = 2, . . . ,d.

We call the basis from part (ii) the canonical basis of s.

The canonical basis plays a special role for the description of shearing subgroups.
As a first indication of its usefulness, we note that all off-diagonal entries of the
elements of shearing groups depend linearly on the entries in the first row.

Lemma 6. Let S denote a shearing subgroup with Lie algebra s, and canonical
basis X2, . . . ,Xd of s. Then the following holds:

(a) S = {Id +X : X ∈ s}.
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(b) Let h ∈ S be written as

h =



1 h1,2 . . . . . . . . . h1,d
0 1 h2,3 . . . . . . h2,d

0 0
. . .

. . .
...

...

0 0 0
. . .

. . .
...

0 0 0 0 1 hd−1,d
0 0 0 0 0 1


.

Then

h = Id +
d

∑
i=2

h1,iXi .

Proof. For part (a), denote the right-hand side by S1. Since s is an associative sub-
algebra consisting of nilpotent matrices, S1 consists of invertible matrices, and it is
closed under multiplication. Furthermore, the inverse of any element of S1 can be
computed by a Neumann series that breaks off after at most d terms:

(Id +X)−1 = Id +
d−1

∑
k=2

(−1)k−1Xk ,

and the result is again in S1. Hence S1 is a matrix group. It is obviously closed and
connected, with tangent space of S1 at the identity matrix given by s. It follows that
S1 is a Lie subgroup of T (d,R) and, hence, it is simply connected. Thus S and S1 are
closed, connected, and simply connected subgroups sharing the same Lie algebra,
hence they are equal. Now part (b) directly follows from (a) and the properties of
the canonical basis.

We now turn to the question of characterizing the scaling subgroups D that are
compatible with a given shearing subgroup S. It is convenient to describe D in terms
of its Lie algebra as well. Since D is one-dimensional, we have D = exp(RY ), with a
diagonal matrix Y = diag(λ1,λ2, . . . ,λd). We then have the following criterion [30,
Proposition 4.5]:

Proposition 7. Let S < GL(d,R) denote a shearing subgroup. Let Y denote a
nonzero diagonal matrix, and let D := exp(RY ) the associated one-parameter group
with infinitesimal generator Y . Then the following are equivalent:

(i) H = DS∪ (−DS) is a shearlet dilation group;
(ii) For all X ∈ s we have [X ,Y ] = XY −Y X ∈ s, and in addition the first diagonal

entry of Y is nonzero.

Remark 8. The above proposition states that H = SoR×, so that H is solvable group
with two connected components, and each of them is simply connected.

Since Y and rY , for nonzero r ∈ R, determine the same one-parameter subgroup,
part (ii) of the proposition allows to fix λ1 = 1. Note that part (ii) is trivially ful-
filled by isotropic scaling, which corresponds to taking 1 = λ1 = λ2 = . . . = λd . In



Recent Progress in Shearlet Theory 11

what follows, we will be particularly interested in anisotropic solutions; our interest
in these groups is mainly prompted by the crucial role of anisotropic scaling for
wavefront set characterization.

It turns out that the relation [Y,s] ⊂ s translates to a fairly transparent system
of linear equations. Once again, the canonical basis X2, . . . ,Xd of s proves to be
particularly useful: As the following lemma shows, the adjoint action s3 X 7→ [Y,X ]
maps s into itself if and only if the Xi are eigenvectors of that map. The lemma uses
the notation Ei, j for the matrix having entry one at row i and column j, and zeros
everywhere else.

Lemma 9. Let s denote the Lie algebra of a shearing subgroup, and let X2, . . . ,Xd
denote the canonical basis of s, given by

Xi = E1,i +
d

∑
j=2

d

∑
k= j+1

di, j,kE j,k (6)

with suitable coefficients di, j,k. Let Y = diag(1,λ2, . . . ,λd) be given. Then [Y,s]⊂ s
if and only if

for all i = 2, . . . ,d : λi = 1+µi ,

and the vector (µ2, . . . ,µd) is a solution of the system of linear equations given by

for all (i, j,k) ∈ {2, . . . ,d}3 with di, j,k 6= 0 : µi +µ j = µk . (7)

In particular, (µ2, . . . ,µd) 7→ (1,1+µ2, . . . ,1+µd) sets up a bijection between the
nonzero solutions of (7) on the one hand and the anisotropic scaling subgroups D
compatible with S on the other.

Remark 10. Note that (6) shows that di, j,k = (Xi) jk.

Proof. We first note that the E j,k are eigenvectors under the adjoint action of any
diagonal matrix:

[Y,E j,k] = (λ j−λk)E j,k . (8)

As a consequence, given any matrix X , the support of the matrix [Y,X ] (i.e., the set
of indices of its nonzero entries) is contained in the support of X .

Note that Y normalizes s if and only if [Y,Xi] ∈ s for i = 2, . . . ,d. Now the calcu-
lation

[Y,Xi] = [Y,E1,i]+ ∑
( j,k)

di, j,k[Y,E j,k] = (1−λi)E1,i + ∑
( j,k)

di, j,k(λ j−λk)E j,k (9)

shows that the only (potentially) nonzero entry in the first row of [Y,Xi] occurs at
the ith column, hence [Y,Xi] is in s if and only if it is a scalar multiple of Xi. In view
of (9) and the linear independence of the E j,k, this holds precisely when

for all (i, j,k) ∈ {2, . . . ,d}3 with di, j,k 6= 0 : 1−λi = λ j−λk . (10)

Rewriting this system for µi = λi−1, for i = 2, . . . ,d, yields (7).
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Finally, let us return to properties of the associated shearlet transforms. In view
of the central role of the dual action, it is important to compute the associated open
dual orbit. Here we have the following, see [30, Proposition 4.5]:

Proposition 11. Let S be a shearing subgroup, and D any diagonal complement of
S. Then H = DS∪−DS acts freely on the unique open dual orbit given by O =
R××Rd−1.

Note that the dual orbit is the same for all shearing groups. Somewhat surpris-
ingly, the same can be said of the admissibility condition [30, Theorem 4.12]:

Theorem 12. Let H < GL(Rd) denote a generalized shearlet dilation group. Then
ψ ∈ L2(Rd) is admissible iff ∫

Rd

|ψ̂(ξ )|2

|ξ1|d
dξ < ∞ .

3 A construction method for shearlet dilation groups

3.1 Constructing shearing subgroups

In this subsection we want to describe a general method for the systematic construc-
tion of shearing subgroups. Recall that given a shearing subgroup S with Lie algebra
s, taking the Lie algebra a=RId⊕s and its associated closed matrix group A results
in an abelian irreducibly admissible matrix group. Following [26], this entails that
a is an associative matrix algebra. Furthermore, note that s consists of strictly upper
triangular matrices, which entails that any product of d elements of s vanishes.

These features of a can be described in general algebraic terms. Given a finite-
dimensional, associative commutative algebra A , we call an element a ∈A nilpo-
tent if there exists n ∈ N such that an = 0. The set of all nilpotent elements in A is
called the nilradical of A , denoted by N . We call A nilpotent if every element of
A is nilpotent. N is an ideal in A , i.e., given a ∈N and an arbitrary b ∈A , one
has (ab)n = anbn = 0 for sufficiently large n, i.e. ab is again in the nilradical. We call
the algebra A irreducible (over R) if it has a unit element 1A satisfying 1A b = b
for all b ∈A , and such that A =R ·1A ⊕N holds. Note that N determines A in
this case, and we will freely switch between A and N in the following.

Now the above considerations show that a is an irreducible associative commu-
tative algebra. In the remainder of this subsection, we will be concerned with a
converse to this statement, i.e., with the construction of shearing subgroups from
an abstractly given irreducible associative algebra. Assume that A is an irreducible
commutative associative algebra of dimension d, and denote its nilradical by N .
We let

n(A ) = min{k ∈ N : ak = 0, ∀a ∈N } ,

which is called the nilpotency class of A . Letting
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N k = {a1 . . .ak : ai ∈N },

for k ≥ 1, and N 0 = N , one can prove that

n(A ) = min{k ∈ N : N k = {0}} ≤ d .

By definition of the nilpotency class, we obtain that N n(A )−1 6= {0}, and for all
a ∈N n(A )−1 and b ∈N , it follows that ab = 0.

Hence, choosing a nonzero ad ∈N n(A )−1, we find that Id := R ·ad is an ideal
in N ; in fact, we get N Id = {0}. Applying the same reasoning to the algebra
N /Id (and choosing any representative modulo Id) produces a second element
ad−1 with the property that Id−1 = span(ad−1,ad) fulfills N Id−1 ⊂ Id . Further
repetitions of this argument finally yield a basis a2, . . . ,ad of N , that we supplement
by a1 = 1A to obtain a basis of A with the property

N Ik ⊂Ik+1 for 1≤ k < d , (11)

and I2 = N . We call a basis a2, . . . ,ad of N satisfying condition (11) a Jordan-
Hölder basis of N .

The existence of a Jordan-Hölder basis can be also proved by referring to a gen-
eral result about nilpotent representations of nilpotent algebras, see Theorem 3.5.3
of [39]. Indeed, regard N as nilpotent algebra and A as a vector space. It is easy
to check that the (regular) representation ρ of the Lie algebra N acting on A as
ρ(a)b = ab is nilpotent, so that there exists a basis {a1, . . . ,ad} of A such that for
each a ∈N , the endomorphism ρ(a) is represented by a strictly upper triangular
matrix Ψ(a) ∈ gl(d,R) according to the canonical isomorphism

ρ(a)a j =
d

∑
k=1

Ψ(a) j,k ak j = 1, . . . ,d .

Since ρ(a)1A = a, it is always possible to choose a1 = 1A and, by construction, for
all a ∈N and for i = 1, . . . ,d−1

ρ(a)span{ai, . . . ,ad} ⊂ span{ai+1, . . . ,ad} ρ(a)ad = 0 .

These bases provide accesss to an explicit construction of an associated shearing
subgroup, explained in detail in the next lemma. Recall the notation Ei, j for the
matrix possessing entry one in row i, column j, and zeros elsewhere. Note that
the map Ψ : A → gl(d,R) in the following lemma coincides with the identically
denoted map that we just introduced.

Lemma 13. Let A denote an irreducible commutative associative algebra of di-
mension d with nilradical N possessing the Jordan-Hölder basis

a2, . . . ,ad ∈A .

Let a1 = 1A , and let ψ : Rd →A denote the induced linear isomorphism
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ψ((x1, . . . ,xd)
T ) =

d

∑
i=1

xiai .

Let Ψ : A → gl(d,R) denote the associated linear map satisfying for all ã∈A and
for all x ∈ Rd:

ψ
−1(ã ·ψ(x)) =Ψ(ã) · x .

(a) The set
S = {Id +Ψ(a)T : a ∈N }

is a shearing subgroup, with associated Lie algebra given by

s= {Ψ(a)T : a ∈N } .

(b) Defining Xi =Ψ(ai)
T , for i = 1, . . . ,d, we get that X1 is the identity matrix,

and X2, . . . ,Xd is the canonical basis of s in the sense of Lemma 5.
(c) Let (di, j,k)1≤i, j,k≤d denote the structure constants associated to the basis, de-

fined by the equations

for all 1≤ i, j ≤ d : aia j =
d

∑
k=1

di, j,kak . (12)

Then

Xi =

 di,1,1 di,1,2 . . . di,1,d
...

...
...

...
di,d,1 di,d,2 . . . di,d,d

 . (13)

(d) We note the following nontrivial properties of the di, j,k, valid for all 1 ≤
i, j,k ≤ d:

di, j,k = d j,i,k , d1, j,k = δ j,k , di, j,k = 0 whenever k ≤max(i, j) .

In particular, we get for 2≤ j ≤ d

Xi = E1,i +
d

∑
j=2

d

∑
k= j+1

di, j,kE j,k . (14)

Proof. We start with part (c). Since multiplication with a1 = 1A is the identity op-
erator, the statement about X1 is clear. Let 1≤ i, j ≤ d. By definition of ψ , we have
ψ(e j) = a j, and hence by definition of Ψ

Ψ(ai)e j = ψ
−1(ai ·ψ(e j)) = ψ

−1(aia j)

= ψ
−1

(
d

∑
k=1

di, j,kak

)
=

d

∑
k=1

di, j,kek .
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Hence the jth column of Ψ(ai) is the vector (di, j,1, . . . ,di, j,d)
T , and its transpose is

the jth row of Ψ(ai)
T . This shows (13).

Now, with (c) established, the equation

a1a j = a j

for i = 2, . . . ,d, yields that d1, j,k = δ j,k, which also takes care of part (b). Fur-
thermore, the fact that aia j = a jai ensures that di, j,k = d j,i,k. Finally, recall that
A Ii ⊂ Ii+1 by (11), which entails aia j ∈ Ii+1, and thus di, j,k = 0 whenever
k ≤ i. Since di, j,k = d j,i,k, we then obtain more generally that k ≤ max(i, j) entails
di, j,k = 0. Now equation (14) is clear, and (d) is shown.

In order to prove (a), we first note that Ψ is a homomorphism of associative alge-
bras, hence s=Ψ(N )T is a commutative associative matrix algebra. In particular,
it is also an abelian Lie-subalgebra. Furthermore, the relation di, j,k = 0 whenever
k ≤ max(i, j) ensures that the basis X2, . . . ,Xd consists of strictly upper triangular
matrices. In addition, d1, j,k = δ j,k entails that X2, . . . ,Xd is indeed a canonical basis,
and thus Lemma 5 gives that the associated Lie group is a shearing subgroup. Now
part (a) of Lemma 6 yields (a) of the current lemma, and (b) is also shown.

Remark 14. It is natural to ask whether the construction of shearing subgroups S
from irreducible commutative associative algebras A , as described in Lemma 13, is
exhaustive. The answer is yes. To see this, consider the Lie algebra s of a shearing
subgroup S. Let X2, . . . ,Xd be the canonical basis of s. Since X j is strictly upper
triangular, and the first row of Xi equals eT

i , it follows that the first i entries of the
first row of XiX j vanish. This product is again in the span of the Xk, hence

XiX j = ∑
k>i

di, j,kXk ,

with suitable coefficients di, j,k. But the fact that the sum on the right-hand side starts
with k= i+1 shows that the basis X2, . . . ,Xd is a Jordan-Hölder basis of the nilpotent
associative matrix algebra s. If one now applies the procedure from Lemma 13 (with
ai = Xi), direct calculation allows to verify that Ψ(X)T = X for all X ∈ s. Hence
every shearing subgroup arises from the construction in Lemma 13.

In particular, the observations concerning the structure constants di, j,k made in
part (d) of Lemma 13 also apply to the di, j,k in Lemma 9.

Remark 15. A further benefit of the above construction of shearing groups via as-
sociative algebras is that it settles the question of conjugacy as a byproduct. By
Theorem 13 in [26] and the remarks prior to that result, one sees that two shearing
subgroups S1 and S2 are conjugate iff their Lie algebras are isomorphic as associa-
tive algebras.

In particular, following the observation made in [26, Theorem 15], in dimension
d ≥ 7 there exist uncountably many nonconjugate shearing subgroups.
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3.2 An inductive approach to shearlet dilation groups

For possible use in inductive proof strategies, we note a further consequence of the
block structure:

Proposition 16. Let H = ±DS < Gl(d,R) denote a shearlet dilation group, with
d ≥ 3, and let

H1 =

{
h′ ∈ GL(d−1,R) : ∃h ∈ H,z ∈ Rd−1,s ∈ R\{0} with h =

(
h′ z
0 s

) }
.

Then H1 is a shearlet dilation group as well.
Conversely, the elements of H can be described in terms of H1 as follows: There

exists a map y : H1→ Rd−1 such that we can write each h ∈ H uniquely as

h(h1,r) =



r
y1(h1)

h1 y2(h1)
...

yd−2(h1)
0 . . . . . . 0 yd−1(h1)


,

with h1 ∈ H1,r ∈ R.

3.3 Examples

As a result of the previous subsections, we obtain the following general procedure
for the systematic construction of shearlet dilation groups:

1. Fix a nilpotent associative algebra N .
2. Pick a Jordan-Hölder basis a2, . . . ,ad of N , and compute the canonical basis

X2, . . . ,Xd of the Lie algebra s of the associated shearing subgroup. Note that
this amounts to determining the structure constants (di, j,k)1≤i, j,k≤d . The shearing
subgroup is then determined as S = Id + s.

3. In order to determine the diagonal scaling groups that are compatible with S, set
up and solve the linear system (7) induced by the nonvanishing di, j,k.

We will now go through this procedure for several examples or classes of exam-
ples.

Example 17. We start out with the simplest case of a nilpotent algebra N of dimen-
sion d−1, namely that of nilpotency class 2. Here one has ab = 0 for any a,b ∈N ,
and it is clear that for two such algebras, any linear isomorphism is an algebra iso-
morphism as well. Picking any basis a2, . . . ,an of N , we obtain Xi = E1,i. In par-
ticular, the linear system (7) is trivial. Hence any one-parameter diagonal group can
be used as scaling subgroup. We thus recover the groups described in (4).
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Example 18. Another extreme class of nilpotent algebras of dimension d is that
of nilpotency class d. Here there exists b ∈ N with bd−1 6= 0. This implies that
b, . . . ,bd−1 are linearly independent, and then it is easily seen that ai = bi−1, for
i = 2, . . . ,d, defines a Jordan-Hölder basis of N . In this example, the defining rela-
tions read

aia j = ai+ j−1, 2≤ i, j, i+ j−1≤ d, (15)

and the resulting canonical Lie algebra basis is then determined as

X2 =



0 1
0 1

. . . . . .
. . . . . .

0 1
0


, X3 =



0 0 1
0 0 1

. . . . . . . . .
0 0 1

0 0
0


, . . . ,

Xd =



0 . . . . . . . . . 0 1
0
...

0
...
...
0


.

Thus we see that the resulting shearing subgroup is that of the Toeplitz shearlet
group from (5). The linear system (7) becomes

µi +µ j = µi+ j−1, for 2≤ i, j, i+ j−1≤ d.

It is easy to see that all solutions of this system are given by

µ j = ( j−1)δ , j = 2, . . . ,d

with δ an arbitrary real parameter. Thus the scaling subgroups compatible with the
Toeplitz dilation group are precisely given by

exp(Rdiag(1,1+δ , . . . ,1+(d−1)δ )) ,

with δ ∈ R arbitrary.

Remark 19. For d = 3, the two above listed cases are all possible examples of shear-
ing subgroups, and not even just up to conjugacy. In particular, we find that all
shearing subgroups in dimension 3 are compatible with anisotropic dilations.

We now turn to the shearing subgroups in dimension 4, with focus on the groups
not covered by (4) and (5).
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Example 20. Since the nilpotency classes n = 2,4 are already covered by the pre-
vious examples, the remaining 4-dimensional cases of irreducible algebras A all
have nilpotency class 3. It is shown in [26] that A ∼=R[Y1,Y2]/(Y 3

1 ,Y
2
2 −αY 2

1 ,Y1Y2),
with α ∈ {−1,0,1}. Here, R[Y1,Y2] denotes the algebra of polynomials with real
coefficients and indeterminates Y1,Y2, and J = (Y 3

1 ,Y
2
2 −αY 2

1 ,Y1Y2) denotes the
ideal generated by the three polynomials. Then the nilradical N is generated by
Y1 +J ,Y2 +J . We choose the basis a2 = Y1 +J , a3 = Y2 +J , a4 = Y 2

1 +J ,
and obtain as the only nonzero relations

a2
2 = a4 , a2

3 = αa4 .

This allows to conclude that a2,a3,a4 is indeed a Jordan-Hölder basis. Following
Lemma 13 (c), we can read off the canonical basis of the associated shearing sub-
group as

X2 =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , X3 =


0 0 1 0
0 0 0 0
0 0 0 α

0 0 0 0

 , X4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

We next determine the compatible scaling subgroups. In the case α 6= 0, we obtain
the system of equations

2µ2 = µ4, 2µ3 = µ4.

Thus the infinitesimal generators of scaling subgroups are of the form Y = diag(1,1+
δ ,1+δ ,1+2δ ), with δ ∈ R arbitrary.

In the case α = 0, we only get one equation, namely

2µ2 = µ4,

showing that here the compatible infinitesimal generators are of the form Y =
diag(1,1+δ1,1+δ2,1+2δ1), with δ1,δ2 ∈ R arbitrary.

Finally, we give an example of a shearing subgroup which is only compatible
with isotropic scaling. It is based on the same algebra as Example 18 (with d =
4), and as a result the associated shearing subgroups are conjugate. Recall that the
groups in Example 18 are compatible with anisotropic scaling. This illustrates an
important, somewhat subtle point: While the precise choice of Jordan-Hölder basis
in the procedure described in Lemma 13 is immaterial if one is just interested in
guaranteeing the shearing subgroup property, it may have a crucial influence on the
availability of compatible anisotropic scaling subgroups.

Example 21. Let A =R[X ]/(X4). We use the Jordan-Hölder algebra a2 = X +X2+
(X4), a3 = X2+(X4), a4 = X3+(X4). This leads to the following nonzero relations

a2
2 = a3 +2a4, a2a3 = a4,

which gives rise to the basis
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X2 =


0 1 0 0
0 0 1 2
0 0 0 1
0 0 0 0

 , X3 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , X4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

Now the nonzero entries in the matrix X2 imply that the linear system (7) contains
the equations

2µ2 = µ3, 2µ2 = µ4, µ2 +µ3 = µ4.

The first two equations imply µ3 = 2µ2 = µ4, and then the third equation yields
µ2 = 0. Hence this shearing subgroup is only compatible with isotropic scaling.

4 Anisotropic scaling and wavefront set characterizations

In this section we investigate the suitability of the various groups for microlocal
analysis. The idea is to verify the criteria derived in [22] that allow to establish
the suitability of a dilation group for the characterization of the wavefront set via
wavelet coefficient decay. As it will be seen, this property only depends on the scal-
ing subgroup.

4.1 Criteria for wavefront set characterization

Throughout this subsection H is an irreducibly admissible matrix group, i.e. its dual
action has a single open orbit O ⊂ Rd , with associated compact fixed groups. We
use V b O to denote that the closure of V inside O is compact.

Given R> 0 and x∈Rd , we let BR(x) and BR (x) denote the open/closed ball with
radius R and center x, respectively. We let Sd−1 ⊂ Rd denote the unit sphere. By a
neighborhood of ξ ∈ Sd−1, we will always mean a relatively open set W ⊂ Sd−1

with ξ ∈W . Given R > 0 and an open set W ⊂ Sd−1, we let

C(W ) :=
{

rξ
′ : ξ

′ ∈W,r > 0
}
=

{
ξ ∈ Rd \{0} :

ξ

|ξ |
∈W

}
,

C(W,R) :=C(W )\BR(0).

Both sets are clearly open subsets of Rd \{0} and thus of Rd .
Given a tempered distribution u, we call (x,ξ ) ∈ Rd × Sd−1 a regular directed

point of u if there exists ϕ ∈ C∞
c (Rd), identically one in a neighborhood of x, as

well as a ξ -neighborhood W ⊂ Sd−1 such that for all N ∈ N there exists a constant
CN > 0 with

for all ξ
′ ∈C (W ) :

∣∣ϕ̂u(ξ ′)
∣∣≤CN(1+ |ξ ′|)−N . (16)
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We next formally define the sets Ki and Ko which will allow to associate group
elements to directions.

Definition 22. Let /0 6=W ⊂ Sd−1 be open with W ⊂O (which implies C (W )⊂O).
Furthermore, let /0 6=V b O and R > 0. We define

Ki(W,V,R) :=
{

h ∈ H : h−TV ⊂C(W,R)
}

as well as
Ko(W,V,R) :=

{
h ∈ H : h−TV ∩C(W,R) 6= /0

}
.

If the parameters are provided by the context, we will simply write Ki and Ko. Here,
the subscripts i/o stand for “inner/outer”.

We now define what we mean by dilation groups characterizing the wavefront
set. We first extend the continuous wavelet transform to the space of tempered dis-
tributions. I.e., we use Wψ u, for a Schwartz wavelet ψ and a tempered distribution
u.

Definition 23. The dilation group H characterizes the wavefront set if there exists a
nonempty open subset V b O with the following property: For all 0 6= ψ ∈S (Rd)
with supp(ψ̂) ⊂ V , for every u ∈ S ′(Rd) and all (x,ξ ) ∈ Rd × (O ∩ Sd−1), the
following statements are equivalent:

(a) (x,ξ ) is a regular directed point of u.
(b) There exists a neighborhood U of x, some R > 0 and a ξ -neighborhood W ⊂

Sd−1 such that for all N ∈ N there exists a constant CN > 0 such that for all
y ∈U , and for all h ∈ Ko(W,V,R) the following estimate holds:

|Wψ u(y,h)| ≤CN‖h‖N .

Note that the definition excludes a set of directions ξ from the analysis of the
wavefront set, namely the directions not contained in O ∩ Sd−1. These directions
always constitute a set of measure zero. Recall from Proposition 11 that in the case
of shearlet dilation groups, this exceptional set is given by ({0}×Rd−1)∩Sd−1.

We next recall the sufficient conditions for dilation groups that characterize the
wavefront set, as established in [22]. The first one is related to the problem that one
would like to interpret the norm as a scale parameter.

Definition 24. Let ξ ∈ O ∩ Sd−1 and /0 6= V b O . The dual action is called V -
microlocally admissible in direction ξ if there exists a ξ -neighborhood W0 ⊂
Sd−1∩O and some R0 > 0 such that the following hold:

1. There exist α1 > 0 and C > 0 such that

‖h−1‖ ≤C · ‖h‖−α1

holds for all h ∈ Ko(W0,V,R0).
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2. There exists α2 > 0 such that∫
Ko(W0,V,R0)

‖h‖α2 dh < ∞.

The dual action is called microlocally admissible in direction ξ if it is V -microlocally
admissible in direction ξ for some /0 6=V b O .

The second important condition is contained in the following definition. It can be
understood as formalizing the ability of the associated wavelet systems to be able to
make increasingly fine distinctions between different directions, as the scales go to
zero.

Definition 25. Let ξ ∈ O ∩ Sd−1 and /0 6= V b O . The dual action has the V -cone
approximation property at ξ if for all ξ -neighborhoods W ⊂ Sd−1 and all R > 0
there are R′ > 0 and a ξ -neighborhood W ′ ⊂ Sd−1 such that

Ko(W ′,V,R′)⊂ Ki(W,V,R).

We now have the following [22, Corollary 4.9]:

Theorem 26. Assume that the dual action is V -microlocally admissible at some ξ0 ∈
O and has the V -cone approximation property at ξ0, for some nonempty open subset
V ⊂ O . Then H characterizes the wavefront set.

Remark 27. The property of characterizing the wavefront set is linked to anisotropic
scaling, in the following sense: If H characterizes the wavefront set, then

H ∩R+ · Id = {Id} ,

by [22, Lemma 4.10]. Hence if H is a shearlet dilation group characterizing the
wavefront set, its shearing subgroup must admit at least one anisotropic compatible
scaling subgroup. This excludes the shearing group constructed in Example 21.

Theorem 26 therefore implies that every group failing the anisotropy criterion
H ∩R+ · Id = {Id} must necessarily fail either the microlocal admissibility or the
cone approximation property. It is in fact the latter that breaks down, as noted in
[22, Lemma 4.4].

These considerations highlight the importance of understanding when a given
shearing groups admits anisotropic scaling.

4.2 Characterization of the wavefront set for shearlet dilation
groups

We can now state a very general theorem concerning the ability of shearlet groups
to characterize the wavefront set. Note that there are no conditions on the shearing
subgroups.
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Theorem 28. Assume that H is a shearlet dilation group. Let Y = diag(1,λ2, . . . ,λd)
denote the infinitesimal generator of the scaling subgroup. If 0 < λi < 1 holds, for
all 2≤ i≤ d, then H characterizes the wavefront set.

Remark 29. We can now quickly go through the examples of shearing subgroups in
Subsection 3.3 and show that for most cases, there exists a compatible anisotropic
scaling subgroup that allows to characterize the wavefront set. Writing λi = 1+µi as
in Lemma 5, the condition from Theorem 28 translates to−1< µi < 0, for 2≤ i≤ d.
Apart from the group in Example 21, which was specifically constructed to not allow
any anisotropic scaling, all other shearing groups can be combined with a compat-
ible scaling group in such a way that the resulting shearlet transform fulfills the
conditions of Theorem 28, and therefore characterizes the wavefront set. Note that
this was previously known only for the original shearlet group [36, 22]. In particu-
lar, we may combine the Toeplitz shearing subgroup with the scaling subgroup with
exponents (1,1− δ , . . . ,1− (d− 1)δ ), and choosing δ ∈ (0,1/(d− 1)) guarantees
that the Toeplitz shearlet transform characterizes the wavefront set.

The proof of the Theorem amounts to verifying the cone approximation property
and microlocal admissibility of the dual action, and this will be carried out in the fol-
lowing two propositions. For the remainder of this section, we fix a shearlet dilation
group H with infinitesimal generator diag(1,λ2, . . . ,λd) of the scaling subgroup. We
let λmax = maxi≥2 λi, and λmin = mini≥2 λi.

Proposition 30. If λmax < 1, there exists an open subset /0 6= V b O such that
the dual action of H on the orbit O has the V -cone approximation property at
(1,0, . . . ,0)T ∈ Sd−1∩O .

Proof. We will employ the structural properties of shearing subgroups derived in
Section 2.2. We let S and D denote the shearing and scaling subgroups of H, re-
spectively. The infinitesimal generator of D is a diagonal matrix with the entries
1,λ2, . . . ,λd . We let X2, . . . ,Xd denote the canonical basis of s, consisting of strictly
upper triangular matrices Xi. By Lemma 6, each h ∈ S is uniquely described by

h = h(t,1) = Id +
d

∑
i=2

tiXi ,

where t = (t2, . . . , td)T denotes the vector of first row entries of h(t,1). For H, we
thus obtain the global chart

h(t,a)=

(
Id +

d

∑
i=2

tiXi

)
sgn(a)diag(|a|, |a|λ2 , . . . , |a|λd )∈GL(d,R), (t,a)∈Rd−1×R× .

For the purpose of the following computations, it is possible and beneficial to
slightly modify this construction and replace h(t,1) by its inverse. Thus, every h∈H
can be written (uniquely) as h = ±h(t,1)−1h(0,a) with t ∈ Rd−1 and a ∈ (0,+∞).
The dual action is then given by
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(h−1)T =±(h(0,a)−1h(t,1))T =±

(
Id +

d

∑
i=2

tiXT
i

)
h(0,a−1), (17)

where by construction

Id +
d

∑
i=2

tiXT
i =

(
1 0T

t Id−1 +A(t)T

)
, (18)

with A(t) being a (d−1)× (d−1) strictly lower-triangular matrix satisfying

‖A(t)‖ ≤C|t| (19)

with a constant C depending only on H.
We now parametrise the open orbit O by the global chart provided by affine

coordinates
Ω : R××Rd−1→ O Ω(τ,v) = τ(1,vT )T ,

and Sd−1∩O by the corresponding diffeomorphism to its image

ω : Rd−1→ Sd−1∩O, ω(v) =
(1,vT )T√

1+ |v|2
.

Given ε > 0, we set

Wε = {v ∈ Rd−1 : |v|< ε}= Bε(0),

since {Wε : ε > 0} is a neighbourhood basis of the origin in Rd−1 and {ω(Wε) : ε >
0} is a neighbourhood basis of ξ0 = (1,0, . . . ,0) ∈ Sd−1∩O .

Furthermore, for fixed 0 < τ1 < τ2 and ε0 > 0 the set

V = Ω((τ1,τ2)×Wε0 )

is an open subset with V b O .
Given h ∈ H, as in (17), and ξ ∈ V , then ξ = Ω(τ,v) with τ1 < τ < τ2 and

v ∈Wε0 , and we get

(h−1)T
ξ =±τ

(
1 0T

t Id−1 +A(t)T

)(
a−1

v′

)
=±a−1

τ

(
1

t +(Id−1 +A(t)T )v′′

)
where v′,v′′ ∈ Rd−1 have components given by v′i = a−λivi and v′′i = a1−λivi for all
i = 2, . . . ,d. Hence

(h−1)T (V ) = Ω
(
(±a−1

τ1,±a−1
τ2)× (t +(Id−1 +A(t)T )W a

ε0
)
)

where W a
ε0
= {v′′ ∈ Rd−1 : v′′i = a1−λivi, |v|< ε0}.

Fix now R > 0 and a neighborhood W ⊂ Sd−1∩O of ξ0. Without loss of gener-
ality we can assume that W = ω(Wε) for some ε > 0. Furthermore, since
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(R,+∞)×Wε ⊂Ω
−1(C(ω(Wε),R))⊂ (

R√
1+ ε2

,+∞)×Wε ⊂ (
R
2
,+∞)×Wε ,

where the last inclusion on the right holds if ε ≤ 1, then the V -cone approximation
property holds true if there exist R′ > 0 and 0 < ε ′ ≤ 1 such that for all h ∈ H
satisfying

(h−1)T (V )∩Ω

(
(

R′

2
,+∞)×Wε ′

)
6= /0, (20a)

it holds that
(h−1)T (V )⊂Ω ((R,+∞)×Wε ) . (20b)

Take R′ > 0 and 0 < ε ′ <
√

3, which we will fix later on as functions of R and ε ,
and h ∈ H as in (17). If h =−(h(0,a)−1h(t,1))T then(

(
R′

2
,+∞)×Wε ′

)
∩
(
(−a−1

τ2,−a−1
τ1)× (t +(Id−1 +A(t)T )W a

ε0
)
)
= /0,

so that (20a) implies that h =+(h(0,a)−1h(t,1))T and(
(

R′

2
,+∞)×Wε ′

)
∩
(
(a−1

τ1,a−1
τ2)× (t +(Id−1 +A(t)T )W a

ε0
)
)
6= /0.

Hence
R′ < 2a−1

τ2, Wε ′ ∩
(
t +(Idd−1+A(t)T )W a

ε0

)
6= /0.

If we choose R′ > 2τ2, the first inequality gives

a <
2τ2

R′
< 1, (21)

and, since a < 1, setting λmax = max{λ2, . . . ,λd}, clearly

W a
ε0
⊂W

ε0a1−λmax . (22)

By the above inclusion, since Wε ′ ∩
(
t +(Id−1 +A(t)T )W a

ε0

)
6= /0, then there exists

ξ ∈W
ε0a1−λmax such that |t +ξ +A(t)T ξ | < ε ′. Hence, triangle inequality, (19) and

(21) give

|t|< ε
′+(1+‖A(t)T‖)|ξ | ≤ ε

′+(1+C|t|)a1−λmaxε0

≤ ε
′+(

2τ2

R′
)1−λmax(1+C|t|)ε0 ≤ 2ε

′+
1
2
|t|,

where the last inequality holds true provided that

R′ > 2τ2 max{1,(ε0

ε ′
)

1
1−λmax ,(2Cε0)

1
1−λmax }. (23)

Hence, if (20a) holds true with R′ satisfying (23), then
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a <
2τ2

R′
< 1 (24a)

|t|< 4ε
′ (24b)

(
2τ2

R′
)1−λmax ε0 < min{ε ′, 1

2C
}. (24c)

The condition (20b) is equivalent to

(a−1
τ1,a−1

τ2)× (t + Id−1 +A(t)T )W a
ε0
)⊂ (R,+∞)×Wε ,

which is ensured by a−1τ1 >R and, recalling (22), by t+(Id−1+A(t)T )W
ε0a1−λmax ⊂

Wε .
By (24a) the first condition is satisfied if τ1/R > 2τ2

R′ . Taking into account (23), it
is sufficient to assume that

R′ > 2τ2 max{1,(ε0

ε ′
)

1
1−λmax ,(2Cε0)

1
1−λmax ,

R
τ1
}. (25)

To ensure that t +(Id−1 +A(t)T )W
ε0a1−λmax ⊂Wε , note that, for all ξ ∈W

ε0a1−λmax ,
conditions (19), (24a), and (24b) give

|t +(Id−1 +A(t)T )ξ | ≤ |t|+(1+C|t|)|ξ | ≤ |t|+(1+C|t|)a1−λmax ε0

< 4ε
′+(1+C4ε

′)(
2τ2

R′
)1−λmaxε0

≤ 4ε
′+ ε

′+2ε
′ = 7ε

′,

where the last inequality follows from (24c). Hence, with the choice ε ′=min{1,ε/7}
and R′ satisfying (25) for all ξ ∈W

ε0a1−λmax ,

|t +(Id−1 +A(t)T )ξ |< ε,

so that (20b) holds true for all h ∈ H satisfying (20a).

Remark 31. The proof does not make use of the fact that the shearlet group S is
abelian. The proof is based only on the following two properties of S

a) a global smooth chart t 7→ s(t) from Rd−1 onto S;
b) for all t ∈ Rd the dual action of s(t) is of the form

(s(t)−1)T =

(
1 0T

t B(t)

)
where ‖B(t)‖ ≤C1 +C2|t| for a suitable choice of C1 and C2.

With the cone approximation property already established, the remaining condi-
tion is quite easy to check.
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Proposition 32. If 0 < λmin ≤ λmax < 1, there exists an open subset /0 6=V bO such
that the dual action of H on the orbit O is V -microlocally admissible in direction
(1,0, . . . ,0) ∈ Sd−1∩O .

Proof. We retain the notations from the previous proof, as well as the open set

V = Ω((τ1,τ2)×Wε0 ) ,

with τ1 < 1 < τ2. Since we assume λmax < 1, the cone approximation property
holds, and then condition (2) of Definition 24 follows from condition (1) by [22,
Lemma 4.7]. In addition, the cone approximation property allows to replace Ko in
that condition by the smaller set Ki. In short, it remains to prove the existence of
α > 0 and C′′ > 0 such that

‖h−1‖ ≤C′′‖h‖−α

holds for all h ∈ Ki(ω(Wε),V,R), for suitable ε,R > 0. In the following com-
putations, we let ε = 1 and R > 2. Now assume that h = ±h(t,1)−1h(0,a) ∈
Ki(ω(Wε),V,R), which means that h−TV ⊂C(ω(Wε),R). This implies in particular
that

h−T


1
0
...
0

 = ±h(t,1)T h(0,a)−1


1
0
...
0

=±h(t,1)T


a−1

0
...
0


= ±a−1

(
1
t

)
∈C(ω(Wε),R) .

This implies that the sign is in fact positive. Furthermore, we have |t| ≤ ε = 1, and
then

2a−1 ≥

∣∣∣∣∣∣∣∣∣h
−T


1
0
...
0


∣∣∣∣∣∣∣∣∣> R > 2 ,

which implies a < 1. By using the fact ‖h(t,1)‖ ≤C(1+ |t|) ≤ 2C ≤
√

2(1+(1+
C)|t|)≤

√
2(2+C), where C was the constant from (19), we can now estimate

‖h−1‖= ‖h(0,a)−1h(t,1)‖ ≤ ‖h(0,a)−1‖‖h(t,1)‖ ≤
√

2(2+C)a−1,

where we used a < 1 and λmax ≤ 1 to estimate the norm of h(0,a)−1. In addition,

‖h‖= ‖h(t,1)−1h(0,a)‖ ≤ ‖h(t,1)−1‖‖h(0,a)‖ ≤C′aλmin .

Here we used that the set {h(t,1) : |t| ≤ 1} ⊂ H is compact to uniformly estimate
the norm of the inverses by a suitable C′, and a < 1 to estimate the norm of h(0,a).
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But these estimates combined yield

‖h−1‖ ≤
√

2(2+C)a−1 ≤
√

2(2+C)(C′)1/λmin‖h‖−1/λmin .

Since we assume that λmin > 0, the proof is finished.

5 Embeddings into the symplectic group

From the analytical point of view, we saw that shearlet dilation groups are a use-
ful tool for the characterization of the wavefront set of distributions. On the other
hand, from the algebraic and geometrical points of view, these groups and the asso-
ciated generalized wavelet representation exhibit an interesting link with the sym-
plectic group and the metaplectic representation. More precisely, in this section we
show that the positive part DS of any shearlet dilation group DS∪ (−DS) may be
imbedded into the symplectic group. Note that the full group DS∪ (−DS) cannot be
expected to be imbedded into Sp(d,R) [6, Theorem 3.5]. Moreover, we prove that
the wavelet representation is unitarily equivalent to the metaplectic representation,
provided that they are restricted to a suitable subspace of L2(Rd). In fact, a much
more general class of groups is allowed, see Theorem 33.

The relevance of the symplectic group and of the metaplectic representation in
this context has already been shown in several works [15, 1, 2, 6]. In particular, the
argument given here generalizes [6].

Let T (d,R)+ denote the subgroup of GL(d,R) consisting of the upper triangular
matrices with positive entry in position (1,1), namely

T (d,R)+ = {h ∈ GL(d,R) : h1,1 > 0 and hi, j = 0 for every i > j}.

We consider the following subspace of L2(Rd):

H = { f ∈ L2(Rd) : supp f̂ ⊆ΘL}, where ΘL = {ξ ∈ Rd : ξ1 ≤ 0}.

The main result of this section reads as follows.

Theorem 33. Take H < T (d,R)+. The group G = Rd oH may be embedded into
the symplectic group, namely there exists a group embedding φ : G→ Sp(d,R).
Moreover, the restriction to H of the quasi-regular representation π defined in
(1) is unitarily equivalent to µ ◦ φ restricted to H , where µ is the metaplectic
representation of Sp(d,R).

The rest of this section is devoted to the proof of this theorem. The embedding φ ,
the subgroup φ(G), as well as the intertwining operator between the quasi-regular
representation and the metaplectic representation will be explicitly constructed.

First, we construct the subgroup φ(G) < Sp(d,R) and the map φ . The vectorial
part of G =Rd oH will correspond to the subspace of the d-dimensional symmetric
matrices given by
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Σ := {σb :=


b1 b2/2 · · · bd/2

b2/2
... 0

bd/2

 : b ∈ Rd}.

We shall need the following preliminary result concerning the map

ρ : T (d,R)+→ GL(d,R), h 7→
√

h1,1 h−T . (26)

Lemma 34. The map ρ is a group homomorphism and for all b ∈ Rd and h ∈
T (d,R)+ there holds

ρ(h)−T
σbρ(h)−1 = σhb. (27)

Proof. The first part is trivial, since the matrices in H are upper triangular with
h1,1 > 0. The second part can be proven as follows. Fix b ∈ Rd and h ∈ T (d,R)+.
The assertion is equivalent to

hσb hT = h1,1σhb.

Write for i = 2, . . . ,d

h =


h1
h2
...

hd

 , h1 = [h1,1 h′1], hi = [0 h′i], b′ =

b2
...

bd

 .

We have

hσb =


h1,1 h′1
0 h′2
...

...
0 h′d


(

b1 b′T/2
b′/2 0

)
=


h1,1b1 +h′1b′/2 h1,1b′T/2

h′2b′/2 0
...

...
h′db′/2 0

 ,

whence

hσb hT =


h1,1b1 +h′1b′/2 h1,1b′T/2

h′2b′/2 0
...

...
h′db′/2 0


(

h1,1 0 · · · 0
h′T1 h′T2 · · · h′Td

)

=


h1,1(h1,1b1 +h′1b′/2)+h1,1b′T h′T1 /2 h1,1b′T h′T2 /2 · · · h1,1b′T h′Td /2

h1,1h′2b′/2
... 0

h1,1h′db′/2

 .

Therefore, since b′T h′Ti = h′ib
′ for every i and h′ib

′ = hib for i≥ 2, we obtain
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hσb hT = h1,1


h1,1b1 +h′1b′ h′2b′/2 · · · h′db′/2

h′2b′/2
... 0

h′db′/2

= h1,1


h1b1 h2b/2 · · · hdb/2

h2b/2
... 0

hdb/2

 ,

whence hσb hT = h1,1σhb, as desired.

We use the notation

g(σ ,h) =
(

h
σh h−T

)
∈ Sp(d,R), σ ∈ Sym(d,R),h ∈ GL(d,R).

The product law is

g(σ1,h1)g(σ2,h2) = g(σ1 + h−T
1 σ2h−1

1 ,h1h2). (28)

In the following result we show that G = Rd oH is isomorphic to the subgroup of
Sp(d,R) given by Σ oρ(H) := g(Σ ,ρ(H)). This proves the first part of Theorem 33.

Proposition 35. Take H < T (d,R)+. Then the map

φ : Rd oH→ g(Σ ,ρ(H))< Sp(d,R), (b,h) 7→ g(σb,ρ(h))

is a group isomorphism.

It is worth mentioning that Lemma 2.3 in [6] immediately follows from this result.

Proof. Recall that the product in Rd oH is defined by

(b1,h1)(b2,h2) = (b1 +h1b2,h1h2), bi ∈ Rd ,hi ∈ H.

By definition of φ and using (28) there holds

φ(b1,h1)φ(b2,h2) = g(σb1 ,ρ(h1))g(σb2 ,ρ(h2))

= g(σb1 + ρ(h1)
−T

σb2ρ(h1)
−1,ρ(h1)ρ(h2)).

Therefore, Lemma 34 gives

φ(b1,h1)φ(b2,h2) = g(σb1 +σh1b2 ,ρ(h1h2))

= g(σb1+h1b2 ,ρ(h1h2))

= φ((b1,h1)(b2,h2)),

as desired. Note that the fact that g(Σ ,ρ(H)) is a subgroup follows a posteriori.

Intertwining the quasi-regular representation π , given in (1), with the Fourier trans-
form F : H → L2(ΘL) we obtain the representation π̂(b,h) := Fπ(b,h)F−1 on
L2(ΘL) given by

π̂(b,h) f̂ (ξ ) = |deth |1/2e−2πi〈b,ξ 〉 f̂ (hT
ξ ), f̂ ∈ L2(ΘL).
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The metaplectic representation restricted to Σ oρ(H) takes the form

µ(φ(b,h)) f̂ (ξ ) = |detρ(h) |−1/2eπi〈σbξ ,ξ 〉 f̂ (ρ(h)−1
ξ ), f̂ ∈ L2(ΘL). (29)

We now show that π̂ and µ are unitarily equivalent, which concludes the proof of
Theorem 33. The intertwining operator is given by

Ψ : L2(ΘL)→ L2(ΘL), Ψ f̂ (ξ ) = |detJQ−1(ξ )|1/2 f̂ (Q−1(ξ )),

where Q : ΘL→ΘL is defined by Q(ξ ) =− 1
2 ξ1ξ .

Proposition 36. Let φ be the group isomorphism given by Proposition 35. For every
(b,h) ∈ Rd oH there holds

Ψ µ(φ(b,h))Ψ−1 = Fπ(b,h)F−1 = π̂(b,h).

Proof. We start by giving a few identities without proof [6]:

|detJQ(ξ )|= 21−d |ξ1|d , (30)

|detJQ−1(ξ )|= 2
d
2−1|ξ1|−

d
2 , (31)

〈σbξ ,ξ 〉=−2〈b,Q(ξ )〉, (32)

Q−1(ξ ) =
√

2ξ/
√
−ξ1. (33)

By (32) and (27) there holds

−2〈b,Q(hT
ξ )〉= 〈σb hT

ξ ,hT
ξ 〉= 〈hσb hT

ξ ,ξ 〉= h1,1〈σhbξ ,ξ 〉.

Therefore, using again (32) we obtain

−2〈b,Q(hT
ξ )〉=−2h1,1〈hb,Q(ξ )〉=−2〈b,h1,1 hT Q(ξ )〉,

whence
Q(hT

ξ ) = h1,1 hT Q(ξ ). (34)

By using the definition of Ψ , (29), (32), (26) and once again the definition of Ψ , we
can now compute for f̂ ∈ L2(ΘL), b ∈ Rd and h ∈ H

Ψ µ(φ(b,h))Ψ−1 f̂ (ξ ) = |detJQ−1(ξ )|1/2(µ(φ(b,h))Ψ−1 f̂ )(Q−1(ξ ))

= |detJQ−1(ξ )|1/2|detρ(h)|−1/2eπi〈σbQ−1(ξ ),Q−1(ξ )〉
Ψ
−1 f̂ (ρ(h)−1Q−1(ξ ))

= |detJQ−1(ξ )|1/2|detρ(h)|−1/2e−2πi〈b,ξ 〉
Ψ
−1 f̂ (ρ(h)−1Q−1(ξ )) (35)

= |detJQ−1(ξ )|1/2h
− d

4
1,1 |deth|1/2e−2πi〈b,ξ 〉

Ψ
−1 f̂ (h

− 1
2

1,1 hT Q−1(ξ ))

= |detJQ−1(ξ )|1/2h
− d

4
1,1 |deth|1/2e−2πi〈b,ξ 〉

·|detJQ(h
− 1

2
1,1 hT Q−1(ξ ))|1/2 f̂ (Q(h

− 1
2

1,1 hT Q−1(ξ ))).
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Now note that by (34) and by the fact that Q is quadratic there holds

Q(h
− 1

2
1,1 hT Q−1(ξ )) = h1,1 hT Q(h

− 1
2

1,1 Q−1(ξ )) = hT Q(Q−1(ξ )) = hT
ξ . (36)

Moreover we have

|detJQ(h
− 1

2
1,1 hT Q−1(ξ ))| = 21−d |(h−

1
2

1,1 hT Q−1(ξ ))1|d

= 21−dh
− d

2
1,1 |(hT Q−1(ξ ))1|d

= 21−dh
− d

2
1,1 hd

1,1|Q−1(ξ )1|d

= 21−dh
d
2
1,12

d
2 |ξ1|

d
2 ,

where the first equality follows from (30), the third one from the fact that hT is lower
triangular and the forth one from (33). Therefore by (31)

|detJQ−1(ξ )|1/2|detJQ(h
− 1

2
1,1 hT Q−1(ξ ))|1/2 = 2

d
4−

1
2 |ξ1|−

d
4 2

1
2−

d
2 h

d
4
1,12

d
4 |ξ1|

d
4 = h

d
4
1,1.

(37)
Finally, inserting (36) and (37) into (35) we obtain

Ψ µ(φ(b,h))Ψ−1 f̂ (ξ ) = |deth|1/2e−2πi〈b,ξ 〉 f̂ (hT
ξ ) = π̂(b,h) f̂ (ξ ),

as desired.
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l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Is-
tituto Nazionale di Alta Matematica (INdAM). H. Führ acknowledges support from
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Führ to Genova, and they thank the Università di Genova for its hospitality.
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20. Feichtinger, H.G., Gröchenig, K.: Non-orthogonal wavelet and Gabor expansions and group
representations. In: Ruskai, M.B., et al. (eds.) Wavelets and Their Applications, pp.353-376.
Jones and Bartlett, Boston (1992)

21. Feichtinger, H.G., Sun, W., Zhou, X.: Two Banach spaces of atoms for stable wavelet frame
expansions. J. Approx. Theory 146(1), 28–70 (2007)
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