19,438 research outputs found

    A new nonlinear time-domain op-amp macromodel using threshold functions and digitally controlled network elements

    Get PDF
    A general-purpose nonlinear macromodel for the time-domain simulation of integrated circuit operational amplifiers (op amps), either bipolar or MOS, is presented. Three main differences exist between the macromodel and those previously reported in the literature for the time domain. First, all the op-amp nonlinearities are simulated using threshold elements and digital components, thus making them well suited for a mixed electrical/logical simulator. Secondly, the macromodel exhibits a superior performance in those cases where the op amp is driven by a large signal. Finally, the macromodel is advantageous in terms of CPU time. Several examples are included illustrating all of these advantages. The main application of this macromodel is for the accurate simulation of the analog part of a combined analog/digital integrated circui

    Iterative nonlinear model predictive control of a PH reactor. A comparative analysis

    Get PDF
    IFAC WORLD CONGRESS (16) (16.2005.PRAGA, REPÚBLICA CHECA)This paper describes the control of a batch pH reactor by a nonlinear predictive controller that improves performance by using data of past batches. The control strategy combines the feedback features of a nonlinear predictive controller with the learning capabilities of run-to-run control. The inclusion of real-time data collected during the on-going batch run in addition to those from the past runs make the control strategy capable not only of eliminating repeated errors but also of responding to new disturbances that occur during the run. The paper uses these ideas to devise an integrated controller that increases the capabilities of Nonlinear Model Predictive Control (NMPC) with batch-wise learning. This controller tries to improve existing strategies by the use of a nonlinear controller devised along the last-run trajectory as well as by the inclusion of filters. A comparison with a similar controller based upon a linear model is performed. Simulation results are presented in order to illustrate performance improvements that can be achieved by the new method over the conventional iterative controllers. Although the controller is designed for discrete-time systems, it can be applied to stable continuous plants after discretization

    A note on general parallel QMF banks

    Get PDF
    Two issues concerning alias-free, parallel, quadrature mirror filter (QMF) banks are addressed in this correspondence. First, a property concerning alias-free analysis/synthesis systems is established; second, a scheme is proposed, by which a synthesis bank can be modified in order to take care of aliasing errors caused by linear channel-distortion in a simple manner. Applications of the stated results are outlined

    Detection of second-order nonlinear optical magnetization by mapping normalized Stokes parameters

    Get PDF
    A measurable magnetic (nonlocal) contribution to the second harmonic generation (SHG) of nonmagnetic materials is an intriguing issue related to chiral materials, such as biomolecules. Here we report the detection of an intensity-dependent optically induced magnetization of a chiral bacteriorhodopsin film under femtosecond pulse excitation (830 nm) and far from the material's resonance. The analysis of the pump intensity-dependent noncollinear SHG signal, by means of the polarization map of normalized Stokes parameters, allows one to improve the detection of the nonlinear optical magnetization M (2 omega) contribution to the SHG signal. (c) 2013 Optical Society of Americ

    Real-time Loss Estimation for Instrumented Buildings

    Get PDF
    Motivation. A growing number of buildings have been instrumented to measure and record earthquake motions and to transmit these records to seismic-network data centers to be archived and disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to install, and capable of sensing and transmitting other environmental parameters in addition to acceleration. Finally, recently developed performance-based earthquake engineering methodologies employ structural-response information to estimate probabilistic repair costs, repair durations, and other metrics of seismic performance. The opportunity presents itself therefore to combine these developments into the capability to estimate automatically in near-real-time the probabilistic seismic performance of an instrumented building, shortly after the cessation of strong motion. We refer to this opportunity as (near-) real-time loss estimation (RTLE). Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic performance is to be measured in terms of probabilistic repair cost, precise location of likely physical damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian state-estimation algorithm called a particle filter to estimate the probabilistic structural response of the system, in terms of member forces and deformations. The structural response estimate is then used as input to component fragility functions to estimate the probabilistic damage state of structural and nonstructural components. The probabilistic damage state can be used to direct structural engineers to likely locations of physical damage, even if they are concealed behind architectural finishes. The damage state is used with construction cost-estimation principles to estimate probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356 performance-level descriptions to estimate probabilistic safety and operability levels. CUREE demonstration building. The procedure for estimating damage locations, repair costs, and post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile reinforced-concrete moment-frame building located in Van Nuys, California. The building is instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake. The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that, while hindcasting of the overall system performance level was excellent, prediction of detailed damage locations was poor, implying that either actual conditions differed substantially from those shown on the structural drawings, or inappropriate fragility functions were employed, or both. We also found that Bayesian updating of the structural model using observed structural response above the base of the building adds little information to the performance prediction. The reason is probably that Real-Time Loss Estimation for Instrumented Buildings ii structural uncertainties have only secondary effect on performance uncertainty, compared with the uncertainty in assembly damageability as quantified by their fragility functions. The implication is that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple simulations of structural response), and that real-time loss estimation does not benefit significantly from installing measuring instruments other than those at the base of the building. Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall repair cost was excellent, prediction of detailed damage locations was poor, again implying either that as-built conditions differ substantially from those shown on structural drawings, or that inappropriate fragility functions were used, or both. We find that the parameters of the detailed particle filter needed significant tuning, which would be impractical in actual application. Work is needed to prescribe values of these parameters in general. Opportunities for implementation and further research. Because much of the cost of applying this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural model, the readiest application would be to instrumented buildings whose structural models are already available, and to apply the methodology to important facilities. It would be useful to study under what conditions RTLE would be economically justified. Two other interesting possibilities for further study are (1) to update performance using readily observable damage; and (2) to quantify the value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50% failure probability and finds that the connect is undamaged, is it necessary to examine one with 10% failure probability

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    On the Design of Voltage-Controlled Sinusoidal Oscillators Using OTA's

    Get PDF
    A unified systematic approach to the design of voltage-controlled oscillators using only operational transconductance amplifiers (OTA's) and capacitors is discussed in this paper. Two classical oscillator models, i.e., quadrature and bandpass-based, are employed to generate several oscillator structures. They are very appropriate for silicon monolithic implementations. The resulting oscillation frequencies are proportional to the transconductance of the OTA and this makes the reported structures well-suited for building voltage controlled oscillators (VCO's). Amplitude stabilization circuits using both automatic gain control (AGC) mechanisms and limitation schemes are presented which are compatible with the transconductance amplifier capacitor oscillator (TACO). Experimental results from bipolar breadboard and CMOS IC prototypes are included showing good potential of OTA-based oscillators for high frequency VCO operation.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a ME87-000
    • 

    corecore