8,586 research outputs found

    The intrinsic value of HFO features as a biomarker of epileptic activity

    Full text link
    High frequency oscillations (HFOs) are a promising biomarker of epileptic brain tissue and activity. HFOs additionally serve as a prototypical example of challenges in the analysis of discrete events in high-temporal resolution, intracranial EEG data. Two primary challenges are 1) dimensionality reduction, and 2) assessing feasibility of classification. Dimensionality reduction assumes that the data lie on a manifold with dimension less than that of the feature space. However, previous HFO analyses have assumed a linear manifold, global across time, space (i.e. recording electrode/channel), and individual patients. Instead, we assess both a) whether linear methods are appropriate and b) the consistency of the manifold across time, space, and patients. We also estimate bounds on the Bayes classification error to quantify the distinction between two classes of HFOs (those occurring during seizures and those occurring due to other processes). This analysis provides the foundation for future clinical use of HFO features and buides the analysis for other discrete events, such as individual action potentials or multi-unit activity.Comment: 5 pages, 5 figure

    Dimension Estimation Using Random Connection Models

    Get PDF
    Information about intrinsic dimension is crucial to perform dimensionality reduction, compress information, design efficient algorithms, and do statistical adaptation. In this paper we propose an estimator for the intrinsic dimension of a data set. The estimator is based on binary neighbourhood information about the observations in the form of two adjacency matrices, and does not require any explicit distance information. The underlying graph is modelled according to a subset of a specific random connection model, sometimes referred to as the Poisson blob model. Computationally the estimator scales like n log n, and we specify its asymptotic distribution and rate of convergence. A simulation study on both real and simulated data shows that our approach compares favourably with some competing methods from the literature, including approaches that rely on distance information

    Design and Evaluation of a Probabilistic Music Projection Interface

    Get PDF
    We describe the design and evaluation of a probabilistic interface for music exploration and casual playlist generation. Predicted subjective features, such as mood and genre, inferred from low-level audio features create a 34- dimensional feature space. We use a nonlinear dimensionality reduction algorithm to create 2D music maps of tracks, and augment these with visualisations of probabilistic mappings of selected features and their uncertainty. We evaluated the system in a longitudinal trial in users’ homes over several weeks. Users said they had fun with the interface and liked the casual nature of the playlist generation. Users preferred to generate playlists from a local neighbourhood of the map, rather than from a trajectory, using neighbourhood selection more than three times more often than path selection. Probabilistic highlighting of subjective features led to more focused exploration in mouse activity logs, and 6 of 8 users said they preferred the probabilistic highlighting mode

    Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning

    Get PDF
    This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/ licenses/by/4.0

    Statistical estimation of the intrinsic dimensionality of data collections

    Get PDF
    A realization fi(·) from a class F(·) can be represented as a point in a metric space and the locus of all points belonging to F(·) lie on a surface in this space. The intrinsic dimensionality of F(·), defined as the least number of parameters needed to identify any fi(·) belonging to F(·), is equal to the topological dimensionality of this surface. Given a sample set of realizations fi(·) from F(·), a statistical method is presented for estimating the intrinsic dimensionality of F(·)
    • …
    corecore