2,939 research outputs found

    Assessing Performance, Role Sharing, and Control Mechanisms in Human-Human Physical Interaction for Object Manipulation

    Get PDF
    abstract: Object manipulation is a common sensorimotor task that humans perform to interact with the physical world. The first aim of this dissertation was to characterize and identify the role of feedback and feedforward mechanisms for force control in object manipulation by introducing a new feature based on force trajectories to quantify the interaction between feedback- and feedforward control. This feature was applied on two grasp contexts: grasping the object at either (1) predetermined or (2) self-selected grasp locations (“constrained” and “unconstrained”, respectively), where unconstrained grasping is thought to involve feedback-driven force corrections to a greater extent than constrained grasping. This proposition was confirmed by force feature analysis. The second aim of this dissertation was to quantify whether force control mechanisms differ between dominant and non-dominant hands. The force feature analysis demonstrated that manipulation by the dominant hand relies on feedforward control more than the non-dominant hand. The third aim was to quantify coordination mechanisms underlying physical interaction by dyads in object manipulation. The results revealed that only individuals with worse solo performance benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. This work showed that naturally emerging leader-follower roles, whereby the leader in dyadic manipulation exhibits significant greater force changes than the follower. Furthermore, brain activity measured through electroencephalography (EEG) could discriminate leader and follower roles as indicated power modulation in the alpha frequency band over centro-parietal areas. Lastly, this dissertation suggested that the relation between force and motion (arm impedance) could be an important means for communicating intended movement direction between biological agents.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    Design and Development of an Affordable Haptic Robot with Force-Feedback and Compliant Actuation to Improve Therapy for Patients with Severe Hemiparesis

    Get PDF
    The study describes the design and development of a single degree-of-freedom haptic robot, Haptic Theradrive, for post-stroke arm rehabilitation for in-home and clinical use. The robot overcomes many of the weaknesses of its predecessor, the TheraDrive system, that used a Logitech steering wheel as the haptic interface for rehabilitation. Although the original TheraDrive system showed success in a pilot study, its wheel was not able to withstand the rigors of use. A new haptic robot was developed that functions as a drop-in replacement for the Logitech wheel. The new robot can apply larger forces in interacting with the patient, thereby extending the functionality of the system to accommodate low-functioning patients. A new software suite offers appreciably more options for tailored and tuned rehabilitation therapies. In addition to describing the design of the hardware and software, the paper presents the results of simulation and experimental case studies examining the system\u27s performance and usability

    Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

    Get PDF
    abstract: The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.View the article as published at https://www.frontiersin.org/articles/10.3389/fnbot.2017.00071/ful

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation

    Full text link
    The lack of haptic feedback in Robot-assisted Minimally Invasive Surgery (RMIS) is a potential barrier to safe tissue handling during surgery. Bayesian modeling theory suggests that surgeons with experience in open or laparoscopic surgery can develop priors of tissue stiffness that translate to better force estimation abilities during RMIS compared to surgeons with no experience. To test if prior haptic experience leads to improved force estimation ability in teleoperation, 33 participants were assigned to one of three training conditions: manual manipulation, teleoperation with force feedback, or teleoperation without force feedback, and learned to tension a silicone sample to a set of force values. They were then asked to perform the tension task, and a previously unencountered palpation task, to a different set of force values under teleoperation without force feedback. Compared to the teleoperation groups, the manual group had higher force error in the tension task outside the range of forces they had trained on, but showed better speed-accuracy functions in the palpation task at low force levels. This suggests that the dynamics of the training modality affect force estimation ability during teleoperation, with the prior haptic experience accessible if formed under the same dynamics as the task.Comment: 12 pages, 8 figure
    • …
    corecore