41,647 research outputs found

    Detection of minority variants within bovine respiratory syncytial virus populations using oligonucleotide-based microarrays

    Get PDF
    Microarray technology, originally developed for highly parallel examination of gene expression is regarded as a potential tool in prognosis and diagnosis. With respect to a discrimination analysis, difference as small as one nucleotide base can be distinguished using oligonucleotide-basedmicroarrays. However, this degree of specificity is dependent on several parameters, including the size of the oligoprobes and the sequence context of the probes (e.g. local melting temperature), hybridization conditions and to some extent the chemistry of the glass slides onto which the probes are deposited. Using bovine respiratory syncytial virus (BRSV) as a model study, an oligonucleotide-based microarray approach was developed to measure the relative abundance of a particular single nucleotide variant within mixed BRSV populations. Using this technology, we show that it is possible to discriminate at a rate of 1%, minority variants in a BRSV population

    X-ray absorption spectroscopy study of diluted magnetic semiconductors: Zn1-xMxSe (M = Mn, Fe, Co) and Zn1-xMnxY (Y = Se, Te)

    Full text link
    We have investigated 3d electronic states of doped transition metals in II-VI diluted magnetic semiconductors, Zn1-xMxSe (M = Mn, Fe, Co) and Zn1-xMnxY (Y = Se, Te), using the transition-metal L2,3-edge X-ray absorption spectroscopy (XAS) measurements. In order to explain the XAS spectra, we employed a tetragonal cluster model calculation, which includes not only the full ionic multiplet structure but also configuration interaction (CI). The results show that CI is essential to describe the experimental spectra adequately, indicating the strong hybridization between the transition metal 3d and the ligand p orbitals. In the study of Zn1-xMnxY (Y = Se, Te), we also found considerable spectral change in the Mn L2,3-edge XAS spectra for different ligands, confirming the importance of the hybridization effects in these materials.Comment: This paper consists of 22 pages including 4 figures. This paper is submitted to Physical Review

    Dirty two-band superconductivity with interband pairing order

    Get PDF
    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature TcT_c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. The Fermi-Dirac statistics of electrons allows a spin-triplet s-wave pairing order as well as a spin-singlet s-wave order parameter due to the two-band degree of freedom. In a spin-singlet superconductor, TcT_c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, TcT_c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.Comment: 7 pages, 2 figures embedde

    Green function theory of dirty two-band superconductivity

    Get PDF
    We study the effects of random nonmagnetic impurities on the superconducting transition temperature TcT_c in a two-band superconductor, where we assume the equal-time spin-singlet s-wave pair potential in each conduction band and the hybridization between the two bands as well as the band asymmetry. In the clean limit, the phase of hybridization determines the stability of two states: called s++s_{++} and s+s_{+-}. The interband impurity scatterings decrease TcT_c of the two states exactly in the same manner when the Hamiltonian preserves time-reversal symmetry. We find that a superconductor with larger hybridization shows more moderate suppression of TcT_c. This effect can be explained by the presence of odd-frequency Cooper pairs which are generated by the band hybridization in the clean limit and are broken by impurities.Comment: 11 pages, 2 figure
    corecore