9,956 research outputs found

    The role of urban built heritage in qualify and quantify resilience. Specific issues in Mediterranean city

    Get PDF
    The Mediterranean city represents a significant example of urban organism, based on masonry construction and characterized by typological processes of growth. The material consistency and the temporal continuity of built heritage in Mediterranean city make relevant its interpretation and analysis according to the resilient approach. The declination of this approach in many disciplines generated a substantial diversity among the definitions of resilience (Francis and Bekera, 2014). Consequently, frameworks, adopted for a quantitative or qualitative assessment, underline the lack of standardization and rigor in defining resilience measurements. A review of resilience literature and actual applications in urban context permit to understand that there are different operators working on the field: on the one hand there are international organizations, on the other hand there are academics. The review of both the two ambits of investigation intends to clarify specific properties and convergence points in order to trace an evolution of conceptual framework and to identify general features of urban resilience. This process is fundamental in focusing the main aims of the research program: the definition of the role of urban built heritage, given by the close correlation between masonry constructive technique, typologies and morphologies, its material value in urban system, and its relevance in Mediterranean city in constitution of urban resilience (UNISDR, 2012a). Despite an increasing number of academic studies concerning the role of built environment in defining and improving cities resilience, their major attention is still focused on street patterns and lifelines infrastructures. The paper concludes how the role of built heritage remains insufficiently explored and a correct definition of urban structure is still missing inside the domain of infrastructural resilience

    How to Think About Resilient Infrastructure Systems

    Get PDF
    abstract: Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems? This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure. Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    A systematic review of integrated frameworks for resilience and sustainability assessments for critical infrastructures

    Get PDF
    There is a growing tendency to assess resilience and sustainability of critical infrastructures (CI), given the significant increment in high-impact natural hazard events affecting socio-economic welfare. Historically, these assessments have been conducted separately due to the independent evolution of each concept. However, recent contributions tend to integrate them. This paper provides a state-of-the-art review of integrated assessments for resilience and sustainability in CI, examining concepts, indicators, frameworks, and methodologies. Additionally, a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was performed to gain further insights into the prospects of integrated assessments. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, eligibility criteria were established, leading to the selection of twelve studies. These works were compared based on five dimensions (economic, environmental, social, technical, and governance) to highlight the differences in the indicators used. While all studies considered the social, environmental, and economic dimensions, some did not further analyze sufficient indicators to evaluate environmental and social effects, with governance often neglected. This study emphasizes the relevance of establishing common metrics for a convergent frame for the resilience and sustainability assessment. The findings presented suggest that integrated assessments lead to a more strategic use of resources toward more resilient CIPortuguese Foundation for Science and Technology (FCT) through grant number PD/ 2020.07208.BD, and by FEDER funds through the Competitivity Factors Oper-ational Programme—COMPETE and by national funds through FCT (Foundation for Science and Technology) within the scope of the project POCI-01-0247- FEDER-039555. It was also partly financed by FCT / MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB / 04029/ 2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/ 0112/202

    Current Efforts Concerning ICT Security of the Power Grid

    Get PDF
    GRID is a Coordination Action funded under the Trust and Security objective of the IST Programme of the 6th Framework to achieve consensus at the European level on the key issues involved by power systems vulnerabilities, in view of the challenges driven by the transformation of the European power infrastructure and ICT integration. GRID wants to assess the needs of the EU power sector on these issues, so as to establish a Roadmap for collaborative research in this area. The present report provides a survey on current efforts somewhat related to the objectives of GRID. Similar to GRID, a number of European and US endeavours have attempted in recent years to draw a Road Map so as to coordinate efforts concerning energy transport/distribution research and CIP.JRC.G.6-Sensors, radar technologies and cybersecurit

    Why Information Matters: A Foundation for Resilience

    Get PDF
    Embracing Change: The Critical Role of Information, a research project by the Internews' Center for Innovation & Learning, supported by the Rockefeller Foundation, combines Internews' longstanding effort to highlight the important role ofinformation with Rockefeller's groundbreaking work on resilience. The project focuses on three major aspects:- Building knowledge around the role of information in empowering communities to understand and adapt to different types of change: slow onset, long-term, and rapid onset / disruptive;- Identifying strategies and techniques for strengthening information ecosystems to support behavioral adaptation to disruptive change; and- Disseminating knowledge and principles to individuals, communities, the private sector, policymakers, and other partners so that they can incorporate healthy information ecosystems as a core element of their social resilience strategies

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review
    corecore