21 research outputs found

    The homological reduction method for computing cocyclic Hadamard matrices

    Get PDF
    An alternate method for constructing (Hadamard) cocyclic matrices over a finite group GG is described. Provided that a homological model View the MathML sourceB̄(Z[G])ϕ:⇌HFhG for GG is known, the homological reduction method automatically generates a full basis for 2-cocycles over GG (including 2-coboundaries). From these data, either an exhaustive or a heuristic search for Hadamard cocyclic matrices is then developed. The knowledge of an explicit basis for 2-cocycles which includes 2-coboundaries is a key point for the designing of the heuristic search. It is worth noting that some Hadamard cocyclic matrices have been obtained over groups GG for which the exhaustive searching techniques are not feasible. From the computational-cost point of view, even in the case that the calculation of such a homological model is also included, comparison with other methods in the literature shows that the homological reduction method drastically reduces the required computing time of the operations involved, so that even exhaustive searches succeeded at orders for which previous calculations could not be completed. With aid of an implementation of the method in Mathematica, some examples are discussed, including the case of very well-known groups (finite abelian groups, dihedral groups) for clarity

    On an inequivalence criterion for cocyclic Hadamard matrices

    Get PDF
    Given two Hadamard matrices of the same order, it can be quite difficult to decide whether or not they are equivalent. There are some criteria to determine Hadamard inequivalence. Among them, one of the most commonly used is the 4-profile criterion. In this paper, a reformulation of this criterion in the cocyclic framework is given. The improvements obtained in the computation of the 4-profile of a cocyclic Hadamard matrix are indicated.Ministerio de Ciencia e Innovación MTM2008-06578Junta de Andalucía FQM–296Junta de Andalucía P07-FQM-0298

    A genetic algorithm for cocyclic hadamard matrices

    Get PDF
    A genetic algorithm for finding cocyclic Hadamard matrices is described. Though we focus on the case of dihedral groups, the algorithm may be easily extended to cover any group. Some executions and examples are also included, with aid of Mathematica 4.0

    The cohomological reduction method for computing n-dimensional cocyclic matrices

    Full text link
    Provided that a cohomological model for GG is known, we describe a method for constructing a basis for nn-cocycles over GG, from which the whole set of nn-dimensional nn-cocyclic matrices over GG may be straightforwardly calculated. Focusing in the case n=2n=2 (which is of special interest, e.g. for looking for cocyclic Hadamard matrices), this method provides a basis for 2-cocycles in such a way that representative 22-cocycles are calculated all at once, so that there is no need to distinguish between inflation and transgression 2-cocycles (as it has traditionally been the case until now). When n>2n>2, this method provides an uniform way of looking for higher dimensional nn-cocyclic Hadamard matrices for the first time. We illustrate the method with some examples, for n=2,3n=2,3. In particular, we give some examples of improper 3-dimensional 33-cocyclic Hadamard matrices.Comment: 17 pages, 0 figure

    Calculating cocyclic hadamard matrices in Mathematica: exhaustive and heuristic searches

    Get PDF
    We describe a notebook in Mathematica which, taking as input data a homological model for a finite group G of order |G| = 4t, performs an exhaustive search for constructing the whole set of cocyclic Hadamard matrices over G. Since such an exhaustive search is not practical for orders 4t ≥28, the program also provides an alternate method, in which an heuristic search (in terms of a genetic algorithm) is performed. We include some executions and example

    On higher dimensional cocyclic Hadamard matrices

    Get PDF
    Provided that a cohomological model for G is known, we describe a method for constructing a basis for n-cocycles over G, from which the whole set of n-dimensional n-cocyclic matrices over G may be straightforwardly calculated. Focusing in the case n=2 (which is of special interest, e.g. for looking for cocyclic Hadamard matrices), this method provides a basis for 2-cocycles in such a way that representative 2-cocycles are calculated all at once, so that there is no need to distinguish between inflation and transgression 2-cocycles (as it has traditionally been the case until now). When n>2, this method provides an uniform way of looking for higher dimensional n-cocyclic Hadamard matrices for the first time. We illustrate the method with some examples, for n=2,3. In particular, we give some examples of improper 3-dimensional 3-cocyclic Hadamard matrices

    Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach

    Get PDF
    An n by n skew-symmetric type (−1, 1)-matrix K = [ki,j ] has 1’s on the main diagonal and ±1’s elsewhere with ki,j = −kj,i. The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n 0 mod 4 (skew- Hadamard matrices), but for n 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (−1, 1)-matrices of skew type. Some explicit calculations have been done up to t = 11. To our knowledge, the upper bounds on the maximal determinant in orders 18 and 22 have been improved.Junta de Andalucía FQM-01

    On permanents of Sylvester Hadamard matrices

    Full text link
    It is well-known that the evaluation of the permanent of an arbitrary (1,1)(-1,1)-matrix is a formidable problem. Ryser's formula is one of the fastest known general algorithms for computing permanents. In this paper, Ryser's formula has been rewritten for the special case of Sylvester Hadamard matrices by using their cocyclic construction. The rewritten formula presents an important reduction in the number of sets of rr distinct rows of the matrix to be considered. However, the algorithm needs a preprocessing part which remains time-consuming in general
    corecore