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a b s t r a c t

An alternate method for constructing (Hadamard) cocyclic matri-
ces over a finite group G is described. Provided that a homologi-

cal model φ:B̄(Z[G])
F


H
hG for G is known, the homological reduction

method automatically generates a full basis for 2-cocycles over G
(including 2-coboundaries). From these data, either an exhaustive
or a heuristic search for Hadamard cocyclic matrices is then de-
veloped. The knowledge of an explicit basis for 2-cocycles which
includes 2-coboundaries is a key point for the designing of the
heuristic search. It is worth noting that some Hadamard cocyclic
matrices have been obtained over groups G for which the exhaus-
tive searching techniques are not feasible. From the computational-
cost point of view, even in the case that the calculation of such a
homological model is also included, comparison with other meth-
ods in the literature shows that the homological reduction method
drastically reduces the required computing time of the operations
involved, so that even exhaustive searches succeeded at orders for
which previous calculations could not be completed. With aid of
an implementation of the method in Mathematica, some exam-
ples are discussed, including the case of very well-known groups
(finite abelian groups, dihedral groups) for clarity.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since the cocyclic Hadamard conjecture was stated (Horadam and de Launey, 1995), interest in
calculating cocyclic Hadamard matrices over finite groups G has increased considerably. Taking into
account that only 2 × 2 Hadamard matrices exist whose sizes are not multiple of 4, we may assume
in the sequel that |G| = 4t .
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Basically, two methods have been proposed in order to compute the whole set of cocyclic
Hadamardmatrices over a groupG. In both cases, once a set of generators for representative 2-cocycles
is determined, it suffices to add a basis for 2-coboundaries of G, so that a whole basis for 2-cocycles is
finally achieved.
The first method constitutes the foundational work on the subject Horadam and de Launey (1993,

1995), and is applied over abelian groups. Attending to the Universal Coefficient Theorem, a basis for
representative 2-cocycles may be obtained from the relation

H2(G,Z2) ∼= Ext(G/[G,G],Z2)⊕ Hom(H2(G),Z2).
Generators coming from the first factor are uniquely determined (up to the internal ordering in
G) as the Kronecker product of back negacyclic matrices, accordingly to the primary invariant
decomposition of the abelianization G/[G,G] of G, so that each 2t factor on G/[G,G] contributes a
2t × 2t back negacyclic matrix. Generators coming from the factor Hom(H2(G),Z2)may be computed
as soon as a basis of 2-cycles in H2(G) is described. Unfortunately, in general, this is a difficult task.
The method in Flannery (1996) applies over groups G for which the word problem is solvable, and

uses the inflation and transgression maps. The inflation map generates the representative 2-cocycles
of Ext(G/[G,G],Z2), once again in terms of back negacyclic matrices. However, the whole description
of H2(G;Z2) depends on the choice of a Schur complement of the image of inflation, which is no
longer canonical and could reveal itself as a computationally hard task. The case of dihedral groups
and central extensions is described in Flannery (1996, 1997) and Flannery and O’Brien (2000).
We describe here, a third approximation to this question, whichwe term the homological reduction

method. It is the crystallization of a previous work of the authors in Álvarez et al. (2001). Origins of the
method may be located in Grabmeier and Lambe (2000), which includes the construction of a basis
for cocyclic matrices over p-groups from a cohomological model for these groups.
Provided a homological model hG for G is known (that is, a differential graded module of finite type

which shares the homology groups with G), we explicitly describe an algorithm for constructing a
basis for 2-cocycles over G in a straightforward manner. In fact, the goodness of this approximation
is supported by the efficiency in which both H1(G) ' G/[G,G] and H2(G) are computed from the
homological model hG.
From such a basis, a search for Hadamard cocyclic matrices may be developed at once. At this

point, it is remarkable that an exhaustive search is feasible only for low orders (limited up to
|G| ≤ 28, attending to the computing capability of today more common processors, as it has been
experimentally checked), since the search space often grows exponentially depending on the order of
the group (e.g. see the examples described in Section 3). In case of higher orders, heuristic searches
such as Álvarez et al. (2006a) are a better choice. The knowledge of an explicit basis for 2-cocycles
which includes 2-coboundaries is a key point for the designing of such an heuristic search.
From the computational-cost point of view, even in the case that the calculation of such a

homological model is also included, comparison with other methods in the literature shows that
the homological reduction method drastically reduces the required computing time of the operations
involved, so that even exhaustive searches succeeded at orders for which previous calculations could
not be completed (see Table 1 in page 20 for details).
We organize the paper as follows. In Section 2 we describe the homological reduction method

itself, that is, how to construct a full basis for 2-cocycles over G from a homological model hG of G.
Section 3 is devoted to showing several examples, including the well-known cases of dihedral groups
D4t and abelian groups Zt × Z22 for clarity. From these data, we construct Table 1, which completes
that in Horadam (1996) about the total number of cocyclic Hadamard matrices over these groups for
small orders. All the calculations have beenmadewith aid of packages inMathematica (Álvarez et al.,
2006b,c,d,e,f).

2. Describing the homological reduction method

Consider a multiplicative group G = {g1 = 1, g2, . . . , g4t}, not necessarily abelian. A cocyclic
matrix Mf on G consists in a binary matrix Mf = (f (gi, gj)) coming from a 2-cocycle f , that is, a map
f : G× G→ {1,−1} such that

f (gi, gj)f (gigj, gk) = f (gj, gk)f (gi, gjgk), ∀ gi, gj, gk ∈ G.
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We note Z(G) the group of 2-cocycles, with regards to the pointwise (also termed Hadamard)
product. Let B(G) be the group of 2-coboundaries, which consist in the functions

∂α(gi, gj) = α(gi)α(gj)α(gigj)−1, gi, gj ∈ G,

for set maps α : G→ {1,−1}.
It is a well-known fact that Z(G)/B(G) ∼= H2(G;Z2). This way, the Universal Coefficient Theorem

provides at once a first chance for computing cocyclic matrices,

Z(G)/B(G) ∼= H2(G;Z2) ∼= Ext (H1(G),Z2)⊕ Hom (H2(G),Z2)

where H1(G) ∼= G/[G,G].
This way, a basis for 2-cocycles is performed by joining three different bases: a basis for 2-

coboundaries, a basis for representative symmetric 2-cocycles coming from inflation (i.e. from the
Ext (H1(G),Z2) factor), and a basis for 2-cocycles coming from transgression (i.e. the Hom (H2(G),Z2)
factor). Such a basis consists, then, in a set B = {∂1, . . . , ∂b, β1, . . . , βs, γ1, . . . , γr}, for some 2-
coboundaries ∂i, inflation 2-cocycles βj and transgression cocycles γk.
As pointed out in Horadam and de Launey (1995), we may reduce to the case of normalized 2-

cocycles f (such that f (1, 1) = 1), as well as the related normalized cocyclic matrices Mf . The term
‘‘normalized’’ means that the first row (and column) in Mf is formed all by 1. From now on, cocycle
will mean normalized 2-cocycle.
A basis for 2-coboundaries may be obtained by Linear Algebra. More concretely, denote ∂i the 2-

coboundary associated with the characteristic map of the element gi, δi : G→ Z,

δi(gj) =
{
−1, if i = j
1, otherwise.

Take the matricesM∂i related to ∂i as vectors of length 16t
2. Moreover, consider the 4t × 16t2 matrix

C whose rows are the vectors M∂i . Then a row reduction on C leads to a basis for 2-coboundaries. It
suffices to keep trace of those coboundaries ∂i whose transformed rows inM∂i after the row reduction
are not zero.

Lemma 1. The morphisms ∂j above define a basis for 2-coboundaries.

Thehomological reductionmethod intends that the calculation ofH1(G) andH2(G) is as economical
as possible.
Roughly speaking, the idea consists of determining a homological model hG for G, and then project

the (co)homological information from hG to G.

The term homological model refers to a contraction φ:B̄(Z[G])
F


H
hG from the reduced bar construction

of the groupG (i.e. the reduced complex associatedwith the standard bar resolution (Mac Lane, 1995))
to a differential graded module of finite type hG, so that

H∗(G) = H∗(B̄(Z[G])) ∼= H∗(hG)

and the homology of hGmay be effectively computed by means of Veblen’s algorithm (Veblen, 1931)
(involving the Smith’s normal forms of the matrices representing the differential operator).
Concerning to the inflation and transgression generators, the use of a homological model will often

simplify the calculation of G/[G,G] ∼= H1(G) ∼= H1(hG) and H2(G) ∼= H2(hG). More concretely, the
simplification depends on the decrease of the number of generators at each degree, as it will be clear
from the description of Veblen’s algorithm below.
However, we need to lift the (co)homological information from hG to B̄(Z[G]) in order to explicitly

generate a full set of representative 2-cocycles in G. The projection morphism

F : B̄(Z[G]) −→ hG

helps in this task.
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From Horadam and de Launey (1995), we know that there are as many generators coming from
inflation as factors Z2tj in the primary decomposition ⊕

n
i=1 Z

p
ti
i
of G/[G,G]. All of them are 2tj × 2tj

back negacyclic matrices of the type

BN2tj =


1 1 · · · 1 1
1 1 · · · 1 −

...
...

...
...

1 1 · · · − −

1 − · · · − −


for a suitable ordering of the elements in G. We use here ‘‘−’’ instead of ‘‘−1’’ for short.
The problem is that the initial ordering G = {1, g2, . . . , g4t} will differ in general from the above

one. The difficulty lies in how to link such two orderings.
Let d : hG→ hG be the differential on hG andB1 = {u1, . . . ,um} andB2 = {e1, . . . , en} be some

basis of hG on dimensions 1 and 2, respectively.
We compute G/[G,G] as H1(hG), which consists only of torsion part, as G is a finite group. So

Veblen’s algorithm reduces to compute the Smith’s normal form D2 ofM2(d),

M2(d) =

d(e1)...
d(en)


n×m

D2 =


b1

. . . 0
bl

0 0


n×m

so that we get the torsion-invariant decomposition G/[G,G] ∼= H1(G) ∼= H1(hG) ∼= Zb1 ⊕ · · · ⊕ Zbl ,
1 ≤ b1|b2| · · · |bl, which is by no means a primary decomposition of G/[G,G].
Moreover, some (not uniquely determined) change basis matrices P and Q exist such that

B2
M2(d)
−→ B1

P↑ #
↓ Q

B̄2
D2
−→ B̄1

D2 = P ·M2(d) · Q

Now we proceed according to the following steps:

(1) We select the columns j of D2 with an even entry at the diagonal position, precisely the ones
corresponding to those Zbj in H1(hG)which contribute a factor Z2t to the primary decomposition
of G/[G,G]. There will be as many inflation generators as columns of this kind.

(2) Choose one of these columns, say the j-th for instance. Furthermore, assume that bj = 2tjqj, for
qj odd. The symmetric matrix Mj = (βj(g, h)) which corresponds to the generator βj of this j-th

column is constructed by lifting the map wj : Z2tj × Z2tj → {1,−1}, wj(k, l) = (−1)
b
k+l
2tj
c

, from
Z2tj × Z2tj to the whole G × G. For g, h ∈ G we define βj(g, h) = wj([g]j, [h]j), where [g]j is the
j-th coordinate of the coset of g in G/[G,G] regarding to the basis ofH1(hG) canonically associated
to B̄1. Explicitly, βj(g, h) is determined from F : B̄1(Z[G])→ hG, since [g]j is the j-th coordinate
of F(g)with regards to B̄1; that is, the j-th coordinate of the vector F(g) · Q modulo 2tj .

Graphically,

B̄1(Z[G])
F
−→ B1

↓ Q

B̄1

Proposition 2. The morphisms βj above define a basis for 2-cocycles coming from inflation.

We proceed in an analogous way in order to construct the generators coming from transgression.
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Let B3 = {v1, . . . , vs} be a basis for hG at dimension 3. Since G is a finite group, again H2(G) ∼=
H2(hG) consists only of torsion part, so that Veblen’s algorithm reduces to compute the Smith’s normal
form D3 ofM3(d),

M3(d) =

d(v1)...
d(vs)


s×n

D3 =


b1

. . . 0
bl

0 0


s×n

where H2(G) ∼= H2(hG) ∼= Zb1 ⊕ · · · ⊕ Zbl , and 1 ≤ b1|b2| · · · |bl.
Furthermore, some change basis matrices P and Q exist such that

B3
M3(d)
−→ B2

P↑ #
↓ Q

B̄3
D3
−→ B̄2

D3 = P ·M3(d) · Q

Now we proceed according to the following steps:
(1) We select those columns j of D3 with an even entry bj at the diagonal position: since
Hom (Zn,Z2) ∼= Zgcd(n,2) we are only interested in factors Zbj with bj even. There will be as many
generators coming from transgression as columns of this kind.

(2) Set one of these columns, say the j-th for instance. The cocyclic matrix Mj = (γj(g, h)) which
corresponds to the generator γj of this j-th column is constructed by projecting the elements
(g, h) ∈ G × G onto B̄2 by means of the composition of F and Q . For g, h ∈ G we define
γj(g, h) = F([g, h]) · Q mod 2.

Graphically,

B̄2(Z[G])
F
−→ B2

↓ Q

B̄2

Proposition 3. The morphisms γj above define a basis for 2-cocycles coming from transgression.
The homological reductionmethod provides then the following algorithm for computing thewhole

set of Hadamard cocyclic matrices over G.
Algorithm 1 (Homological Reduction Method). Input: groupwith homological model {G, hG, F ,H, φ}

Output: Some (eventually the full set of) cocyclic Hadamard matrices over G.
P1 Construct a basis for 2-coboundaries (Lemma 1)
P2 Construct a basis for inflation 2-cocycles (Proposition 2)
P3 Construct a basis for transgression 2-cocycles (Proposition 3)
P4 Construct a basisB for 2-cocycles over G
P5 Develop fromB an exhaustive or heuristic search for Hadamard cocyclic
matrices, depending on the size of |G|.

Knowledge of such a basisB for 2-cocycles, which includes 2-coboundaries, is a key point for the
designing of the genetic algorithm in Álvarez et al. (2006a) searching for Hadamard cocyclic matrices
overG. The individuals of this genetic algorithm consist of binary tuples, which are to be understood as
the coordinates of a 2-cocycle with regards to the basisB. The interested reader is referred to Álvarez
et al. (2006a) for details.
Wewant to emphasize that such a heuristic search is only possible since a basis for 2-coboundaries

is explicitly used. It seems that othermethods in the literature ignore the issue of finding a basis for 2-
coboundaries. In the opinion of the authors, a deeper analysis on theway inwhich 2-coboundaries and
representative 2-cocycles have to be combined in order to get a Hadamard cocyclic matrix becomes
of capital interest (see Álvarez et al. (2008) for instance).

3. Examples

All the executions and examples of this section have been worked out with aid of theMathematica
4.0 notebooks (Álvarez et al., 2006d,e) described in Álvarez et al. (2006c, submitted for publication)
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(for constructing homological models) and Álvarez et al. (2006b) (in order to form up basis for 2-
cocycles from which the search for Hadamard cocyclic matrices is then developed), running on a
Pentium IV 2.400 MHz DIMM DDR266 512 MB.
In the sequel, the elements of a productA×B are ordered as the rows of amatrix indexed in |A|×|B|.

For instance, if |A| = r and |B| = c , the ordering is

〈a1b1, a1b2, . . . , a1bc, a2b1, a2b2, . . . , a2bc, . . . , arb1, . . . , arbc〉.

The elements in the group are labeled from 1 to |G|, according to this ordering.
Let consider the families of groups below (assume Zk = {0, 1, . . . , k− 1}with additive law).

(1) Gt1 = Z4t .
(2) Gt2 = Z2t × Z2.
(3) Gt3 = Zt × Z4. Note that G23 ' G

2
2, and G

t
3 ' G

t
1 for odd t .

(4) Gt4 = Zt × Z22 = Zt × (Z2 × Z2). Note that Gt4 ' G
t
2 for odd t .

(5) Gt5 = D4t = Z2 χ×Z2t , χ : Z2 × Z2t → Z2t such that χ(1, x) = −x and χ(0, x) = x. Note that
G15 ' G

1
2 is abelian, but G

t
5 is not abelian, for t > 1.

(6) Gt6 = Z2t×fZ2, for f : Z2 × Z2 → Z2t being the 2-cocycle

f (gi, gj) =
{
d
t
2e + 1 if gi = gj = 1
0 otherwise.

Note that Gt6 is abelian, since f is symmetric. Furthermore, G
t
6 ' G

t
2 for even d

t
2
e + 1 (that is, for

t ≡ 1, 2 (mod 4)), since f is a 2-coboundary in these circumstances (i.e. the extension is trivial).

In fact, f = ∂α , for α : Z2 → Z2t such that α(0) = 0, α(1) = b
t
4
c + 1. The extension is not trivial

for t ≡ 0, 3 mod 4.
(7) Gt7 = (Zt×fZ2)× χZ2, for f : Z2 × Z2 → Zt being the 2-cocycle

f (gi, gj) =
{
d
t
2e + 1 if gi = gj = 1
0 otherwise

and χ being the dihedral action χ(a, b) =
{
−b if a = 1
b if a = 0.

Note that Zt×fZ2 is abelian (since f is symmetric), but Gt7 is not for t 6= 2 (because of the
dihedral action). Furthermore,Gt7 ' G

t
5 for odd t , since f is a 2-coboundary in these circumstances:

f = ∂α , for α : Z2 → Zt such that α(0) = 0, α(1) =
t2 + 3
4

mod t . Analogously, the

extension is also trivial for t ≡ 2 mod 4, since f = ∂α , for α(0) = 0, α(1) = b
t
4
c + 1, so

that Gt7 ' (Zt × Z2)× χZ2. In particular, G27 ≡ G
2
4.

We may assume that t > 1, since there are only two abelian groups of order 4, which are Z2 × Z2
(this is the case of G1i , for i = 2, 4, 5, 6, 7) and Z4 (the case of G1i , for i = 1, 3). There are six Hadamard
cocyclic matrices over Z2 × Z2 and two Hadamard cocyclic matrices over Z4. So we are interested in
describing cocyclic Hadamard matrices for t > 1.
In this section, we will first use the homological reduction method for calculating the basis for 2-

cocycles for these families of groups Gti . For brevity, we will only characterize the homological models
(hGtk, F , d) for G

t
k, in terms of some basis Bi for hGtk on degree 1 ≤ i ≤ 3, differential operators

dj : Bj+1 → Bj and projections Fj : B̄j(Z[Gtk])→ Bj for 1 ≤ j ≤ 2. Notice that B̄1(Z[G]) = 〈[g] : g ∈ G〉
and B̄2(Z[G]) = 〈[g, h] : g, h ∈ G〉.
From these data, a basis for representative 2-cocycles may be formed in a straightforwardmanner.

Afterwards, we will develop an exhaustive search for 2 ≤ t ≤ 5 and a heuristic search for 2 ≤ t ≤ 8
(notice that the cocyclic Hadamard matrices listed here are new, different from those of Álvarez et al.
(2006b)).
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Note that the matrices P and Q involved in the calculation of the Smith Normal Form, D, for A (so
that D = P · A · Q ) are not uniquely determined, in general. In the sequel we will use the matrices
coming from the SmithNormalForm package programmed by the authors in Álvarez et al. (2006f).
Due to space restrictions, we will include here only the cases of Gt4, G

t
5 (for comparison with

other calculations available in the literature) and Gt7 (as far as we know, these calculations are new.
Furthermore, this family of groups seems to provide a large amount of Hadamard cocyclic matrices).
The remaining calculations are available at the followingweb address, http://ma1.eii.us.es/miembros/
armario/cvarmario.htm.
Finally, we show in Table 1 the number of all cocyclic Hadamard matrices over Gti for 1 ≤ i ≤ 7,

2 ≤ t ≤ 5. This table corrects and completes that in Horadam (1996).

3.1. Construction basis for 2-cocycles

In the sequel, we use the following notation. We define the set map λn : Z → Z2, so that
λn(j) = λnj = 1 if j ≥ n and 0 otherwise. The back negacyclic matrix of order j is denoted by BNj,
as before. The square matrix of order n formed up all of 1s is denoted by 1n. The Kronecker product

of matrices is denoted by ⊗, so that A ⊗ B is the block matrix

a11B . . . a1nB
...

...
an1B . . . annB

. The Hadamard
(pointwise) product of matrices is simply denoted as A ·B. Finally, the notation [x]m refers to x mod m.

3.1.1. Basis for Gt4 = Zt × Z22 = Zt × (Z2 × Z2)
B1 = {u1, u2, u3},B2 = {e1, . . . , e6},B3 = {v1, . . . , v10},
d2(e1) = t · u1, d2(e4) = 2 · u2, d2(e6) = 2 · u3, d3(v2) = te2, d3(v3) = te3,
d3(v4) = −2e2, d3(v6) = −2e3, d3(v8) = 2e5, d3(v9) = −2e5,
F [(g, h, i)] = g · u1 + h · u2 + i · u3,
F [(g, h, i)|(a, b, c)] = λtg+a · e1 + gb · e2 + gc · e3 + λ

2
h+b · e4 + hc · e5 + λ

2
i+c · e6.

From these data, the matrices Di and Qi may be described, in terms of the the coset of t modulo 2:

t D2 Q2 D3 Q3

[t]2 = 0


2 0 0
0 2 0
0 0 t
0 0 0
0 0 0
0 0 0

 t = 2
I3

t 6= 2(0 0 1
1 0 0
0 1 0

)


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1



[t]2 = 1


1 0 0
0 2 0
0 0 2t
0 0 0
0 0 0
0 0 0


 1 0 −2
−b

t
2c 0 t
0 1 0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1



http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
http://ma1.eii.us.es/miembros/armario/cvarmario.htm
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This way, a basis for 2-cocycles is given byBt4, for t = 2
rq, q odd:

t Bt4 = 〈∂2, . . . , ∂4t−2, β1, β2, γ1〉 for odd t
Bt4 = 〈∂2, . . . , ∂4t−3, β1, β2, β3, γ1, γ2, γ3〉 for even t

2 〈∂2, . . . , ∂5, BN2 ⊗ 14, 12 ⊗ BN2 ⊗ 12, 14 ⊗ BN2, K2, K3, 12 ⊗ K1〉
[t]2 = 1 〈∂2, . . . , ∂4t−2, 12t ⊗ BN2, 1t ⊗ BN2 ⊗ 12, 1t ⊗ K1〉
[t]2 = 0 〈∂2, . . . , ∂4t−3, 1t ⊗ BN2 ⊗ 12, 12t ⊗ BN2, 1q ⊗ BN2r ⊗ 14, 1 t

2
⊗ K2, 1 t

2
⊗ K3, 1t ⊗ K1〉

The matrices K1, K2, K3 are given by

K1 K2 K3


1 1 1 1
1 1 1 1
1 −1 1 −1
1 −1 1 −1





1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 − − 1 1 − −

1 1 − − 1 1 − −

1 1 − − 1 1 − −

1 1 − − 1 1 − −





1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −

1 − 1 − 1 − 1 −

1 − 1 − 1 − 1 −

1 − 1 − 1 − 1 −



3.1.2. Basis for Gt5 = D4t = Z2 χ×Z2t
B1 = {u1, u2},B2 = {e1, e2, e3},B3 = {v1, v2, v3, v4},
d2(e1) = 2 · u1, d2(e2) = (2− 2t) · u2, d2(e3) = 2t · u2,
d3(v2) = 2t · e2 + (2t − 2) · e3, d3(v3) = −2t · e2 − (2t − 2) · e3,
F [(g, h)] = g · u1 + [(−1)gh]2t · u2,
F [(g, h)|(a, b)] = ag · e1 + [−a(−1)gh]2t · e2 + λ2t[(−1)ab]2t+[(−1)g+ah]2t · e3

+aλ1h([(−1)
g+ah]2t − 1) · e3.

From these data, it may be checked that

D2 Q2 D3 Q3(2 0
0 2
0 0

)
I2

2 0 0
0 0 0
0 0 0
0 0 0

 t = 2(0 0 1
0 1 0
1 −2 0

) t > 2( 0 0 1
1 1− t 0
−1 t 0

)

This way, a basis for 2-cocycles is given byBt5

t Bt5 = 〈∂2, . . . , ∂4t−2, β1, β2, γ 〉
2 〈∂2, . . . , ∂6, BN2 ⊗ 12t , 12t ⊗ BN2, K1〉
t > 2 〈∂2, . . . , ∂4t−2, BN2 ⊗ 12t , 12t ⊗ BN2, K2〉

The matrices K1 and K2 are given by

K1 K2

1 1 1 1 1 1 1 1
1 1 1 − 1 − − −

1 1 − − − 1 1 −

1 − − − 1 − 1 1
1 1 1 1 1 1 1 1
1 − − − 1 − 1 1
1 1 − − − 1 1 −

1 1 1 − 1 − − −





1 · · · 1
−

BN2t
... BN2t−1
−

1
FN2t − FN2t−1

...
− 1 · · · 1


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Here FNk denotes the forward negacyclic matrix of size k× k,

FNk =


1 · · · · · · 1
1 − · · · −

...
. . .

. . .
...

1 · · · 1 −


k×k

.

3.1.3. Basis for Gt7 = (Zt×fZ2)× χZ2
B1 = {u1, u2, u3},B2 = {e1, . . . , e6},B3 = {v1, . . . , v10},
d2(e1) = t · u1, d2(e3) = (2− t) · u1, d2(e4) = (b t2c − 1) · u1 + 2 · u2,
d2(e5) = (1− b t2c) · u1, d2(e6) = 2 · u3,
d3(v2) = t · e2, d3(v3) = (t − 2) · e1 + t · e3, d3(v4) = −2 · e2, d3(v5) = (t − 2) · e2,
d3(v6) = (2− t) · e1 − t · e3, d3(v7) = (b t2c − 1) · e2,
d3(v8) = (b t2c − 1) · e1 + (b

t
2c − 1) · e2 + (b

t
2c − 1) · e3 + 2 · e5,

d3(v9) = (1− b t2c) · e1 + (1− b
t
2c) · e3 − 2 · e5,

F [(j, g, h)] = j · u1 + g · u2 + h · u3,
F [(j, g, h)|(a, b, c)] = (λt

[(−1)h(a+hf (b,b))]t+[j+f (g,b)]t
− λt

[−f (g,b)]t+[j+f (g,b)]t ) · e1
+ h(a− 1)λ2a · e1 + λ

t
[(−1)hhf (b,b)]t+[(−1)ha]t

· e1 + [(−1)h(a+ hf (b, b))]tg · e2
+ ah · e3 + λ2h+b · e4 + bh · e5 + λ

2
h+c · e6.

From these data, the matrices Di and Qi may be described, in terms of the the coset of t modulo 4:

t D2 Q2 D3 Q3

2



2 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


1 0 0
0 1 0
0 0 1





2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1



3



1 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


1 0 0
0 1 0
0 0 1





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





1 0 0 0 −3 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1



4, 5



1 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


1 −2 0
0 1 0
0 0 1





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 1 −1 0 −t 0
1 0 0 0 0 0
0 0 1 0 t − 2 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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t D2 Q2 D3 Q3

6



2 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


1 −1 00 1 0
0 0 1





2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 1 −1 0 −3 0
1 0 0 0 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



7



1 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


1 0 −60 0 1
0 1 0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 1 −5 0 7 0
1 0 0 0 0 0
0 0 3 0 −5 0
0 0 0 1 0 0
0 0 1 0 −2 0
0 0 0 0 0 1



[t]4 = 0, 1



1 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


 1 0 −2
1− b t4 c 0 b

t
2 c − 1

0 1 0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 1 0 −t 0
1 0 0 0 0 0
0 1 −1 0 t − 2 0
0 0 0 1 0 0
0 1− b t4 c 0 0 b t2 c − 1 0
0 0 0 0 0 1



t D2 Q2 D3 Q3

[t]4 = 2


2 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


0 0 1
1 0 −b t4 c
0 1 0





2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 −1 0 t

2 0
1 0 0 0 0 0
0 0 1 0 −2b t4 c 0
0 0 0 1 0 0
0 1 0 0 −b t4 c 0
0 0 0 0 0 1



[t]4 = 3


1 0 0
0 2 0
0 0 2
0 0 0
0 0 0
0 0 0


 1 0 −2
d
t
4 e 0 −b

t
2 c

0 1 0





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 1 0 −t 0
1 0 0 0 0 0
0 1 −1 0 t − 2 0
0 0 0 1 0 0
0 −1− 3b t4 c 1 0 2b t4 c 0
0 0 0 0 0 1


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This way, a basis for 2-cocycles is given byBt7

t Bt7 = 〈∂2, . . . , ∂4t−3, β1, . . . , β3, γ1, . . . , γ3〉 for [t]4 = 2
Bt7 = 〈∂2, . . . , ∂4t−2, β1, β2, γ1〉 for [t]4 = 0, 1, 3

2 〈∂2, . . . , ∂5, BN2 ⊗ 14, 12 ⊗ BN2 ⊗ 12, 14 ⊗ BN2, K T1 , K
T
2 , 12 ⊗ K

T
3 〉

3 〈∂2, . . . , ∂10, 13 ⊗ BN2 ⊗ 12, 16 ⊗ BN2, 13 ⊗ K3〉
4, 5 〈∂2, . . . , ∂4t−2, 1t ⊗ BN2 ⊗ 12, 12t ⊗ BN2, K t4〉
6 〈∂2, . . . , ∂21, 13 ⊗ BN2 ⊗ 14, 13 ⊗ H1, 112 ⊗ BN2, 13 ⊗ K1, (13 ⊗ K2) · K 64 , K

t
4〉

7 〈∂2, . . . , ∂26, 114 ⊗ BN2, 17 ⊗ BN2 ⊗ 12, (17 ⊗ K3) · K 74 〉
[t]4 = 0, 1 〈∂2, . . . , ∂4t−2, 12t ⊗ BN2, 1t ⊗ BN2 ⊗ 12, K t4〉
[t]8 = 2 〈∂2, . . . , ∂4t−3, 1t ⊗ BN2 ⊗ 12, 12t ⊗ BN2, 1 t

2
⊗ BN2 ⊗ 14, 1 t

2
⊗ K1, 1t ⊗ K3, K t4〉

[t]8 = 6 〈∂2, . . . , ∂4t−3, 1t ⊗ BN2 ⊗ 12, 12t ⊗ BN2, 1 t
2
⊗ H1, 1 t

2
⊗ K1, 1t ⊗ K3, K t4〉

[t]4 = 3 〈∂2, . . . , ∂4t−2, 12t ⊗ BN2, 1t ⊗ BN2 ⊗ 12, (1t ⊗ K3) · K t4〉

The matrices K1, K2, K3 and H1 are given by

K1 K2 K3 H1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 1 1 − − − −
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 1 1 − − − −





1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 1 1 1 1 1 1
1 1 1 1 − − − −




1 1 1 1
1 1 − −
1 1 1 1
1 1 − −





1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 − − − − 1 1
1 1 − − − − 1 1
1 1 − − − − 1 1
1 1 − − − − 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1



The matrix K t4 consists in a ‘‘reflected’’ matrix
(
∪

∩

)
, which may be described row by row in terms

of blocks of length 4:

• Rows 4k+ 1, for 0 ≤ k ≤ t
2 − 1, consists in

(
︷︸︸︷
1111 t−k. . .

︷︸︸︷
1111

︷ ︸︸ ︷
−−−− k. . .

︷ ︸︸ ︷
−−−−)

• Rows 4k+ 2, for 0 ≤ k ≤ t
2 − 1, consists in

(
︷︸︸︷
1111 k+1. . .

︷︸︸︷
1111

︷ ︸︸ ︷
−− 11

t
2−1. . .

︷ ︸︸ ︷
−− 11

︷ ︸︸ ︷
−−−−

t
2−k. . .

︷ ︸︸ ︷
−−−−)

• Rows 4k+ 3, for 0 ≤ k ≤ t
2 − 1, consists in

(
︷ ︸︸ ︷
11−−

t
2−k−1. . .

︷ ︸︸ ︷
11−−

︷︸︸︷
1111

t
2+1. . .

︷︸︸︷
1111

︷ ︸︸ ︷
−− 11 k. . .

︷ ︸︸ ︷
−− 11)

• Rows 4k+ 4, for 0 ≤ k ≤ t
2 − 1, consists in

(
︷︸︸︷
1111 k+1. . .

︷︸︸︷
1111

︷ ︸︸ ︷
−−−− t−k−1. . .

︷ ︸︸ ︷
−−−−)

3.2. Exhaustive search

Next, we include a table with the number of cocyclic Hadamard matrices that we have found in
each case, for 1 ≤ t ≤ 5, as well as the required computing time.
The black entries correspond to new results, as far as we know (the case of G55 = D4·5 is included,

since the computation of Flannery in Horadam (1996), 2380, differs from ours, 2200).
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Table 1
t Z4t Z2 × Z2t Z4 × Zt Z22 × Zt D4t Z2t×f Z2 (Zt×f Z2)×χZ2 Time
1 2 6 2 6 6 6 6 0′′
2 0 16 16 168 32 16 168 0.28′′
3 0 24 0 24 72 0 72 12.25′′
4 0 96 192 1984 768 0 768 7′20′′
5 0 120 0 120 2200 120 2200 3h29′10′′

3.3. Heuristic search

The search space for cocyclic Hadamard matrices over the families Gti above grows exponentially
with t (according to the dimensions of the basis Bti for 2-cocycles), so that an exhaustive search is
only possible in low orders (up to t = 5). Each of the matrices Mf is represented as a binary tuple
(x1, . . . , xr+s+d), which corresponds to the coordinates of the related 2-cocycle f with regards to the
basisBti = {∂r |βs|γd} for 2-cocycles over G

t
i described in the subsection above. So that precisely those

cocycles corresponding to non zero entries xi come into play in practise,

f = ∂x1i1 · · · · ∂
xr
ir · β

xr+1
j1
· · · · · β

xr+s
js · γ

xr+s+1
k1

· · · · · γ
xr+s+d
kd

.

Apparently, the genetic algorithm described in Álvarez et al. (2006a) seems to provide some
cocyclic Hadamard matrices of larger order than those previously obtained with other algorithms.
It is worth noting that this heuristic algorithm may be performed provided that an explicit basis for
2-cocycles (both representative 2-cocycles and 2-coboundaries) is known.
Calculations in Baliga and Horadam (1995), Flannery (1997) and Álvarez et al. (2006a) suggest that

Gt4 = Zt × Z22 and G
t
5 = D4t give rise to a large number of Hadamard cocyclic matrices. The authors

have observed this behavior on a third family of groups, Gt7 = (Zt×fZ2)× χZ2.
Now we include some executions of the genetic algorithm running on these families. The tables

below show some Hadamard cocyclic matrices over Gti , and the number of generations (i.e. iterations)
and time required (in seconds) as well. Note that the number of generations is not directly related to
the size of the matrices. Do not forget about randomness of the genetic algorithm.

t iter. time product of generators of 2-cocycles over Gt2
2 2 0.05′′ (1, 1, 1, 0, 1, 1, 1, 0)
3 3 0.23′′ (0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
4 25 5.13′′ (1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
5 72 31.95′′ (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1)
6 9000 10h No matrix found! It seems that no Hadamard cocyclic matrix exist!
7 128 3′38′′ (0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1)
8 260 11′30′′ (0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1)

t iter. time product of generators of 2-cocycles over Gt4
2 1 0.03′′ (0, 0, 0, 0, 1, 1, 1, 0, 0, 0)
3 15 1.13′′ (0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1)
4 6 1.28′′ (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0)
5 316 2′48′′ (1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
6 40 39.39′′ (0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1)
7 94 2′45′′ (1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1)
8 373 30′03′′ (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0)

t iter. time product of generators of 2-cocycles over Gt5
2 0 0.02′′ (0, 1, 0, 0, 1, 1, 1, 1)
3 4 0.27′′ (1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1)
4 2 0.5′′ (0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0)
5 6 2.83′′ (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1)
6 3 3.03′′ (1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1)
7 37 1′08′′ (1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1)
8 30 1′24′′ (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1)
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t iter. time product of generators of 2-cocycles over Gt7
2 0 0.02′′ (1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
3 0 0.05′′ (0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1)
4 0 0.1′′ (1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0)
5 2 1.06′′ (0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1)
6 27 28.6′′ (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1)
7 59 1′45′′ (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1)
8 10 31.48′′ (0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1)

There is no doubt that an exhaustive search is only possible for small |G|. In the light of the tables
above, it seems that the heuristic search may not overcome this difficulty as desired. The study of
some local properties on a particular group may lead to improved versions of the genetic algorithm.
This has been the case of dihedral groups (Álvarez et al., 2006a). In spite of this fact, the exhaustive
search may be improved with a deeper analysis of the way in which the elements in a basisB for 2-
cocycles have to be combined so that a Hadamard cocyclic matrix is obtained (see Álvarez et al. (2008)
for details).

Acknowledgments

We want to express our gratitude to the referees for their comments and suggestions.

References

Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2001. An algorithm for computing cocyclic matrices developed over some
semidirect products. In: AAECC-14 Proceedings. In: LNCS, vol. 2227. pp. 287–296.

Álvarez, V., Armario, J.A., Frau, M.D., Real, P, 2006a. A genetic algorithm for cocyclic Hadamard matrices. In: AAECC-16
Proceedings. In: LNCS, vol. 3857. pp. 144–153.

Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006b. Calculating cocyclic Hadamard matrices in Mathematica: Exhaustive and
heuristic searches. In: ICMS-2 Proceedings. In: LNCS, vol. 4151. pp. 419–422.

Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006c. AMathematica notebook for computing the homology of iterated products
of groups. In: ICMS-2 Proceedings. In: LNCS, vol. 4151. pp. 47–57.

Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006d. http://library.wolfram.com/infocenter/MathSource/6516/.
Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006e. http://library.wolfram.com/infocenter/MathSource/6384/.
Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006f. http://library.wolfram.com/infocenter/MathSource/6621/.
Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2008. A system of equations for describing Hadamard cocyclic matrices. J. Combin.
Des. 16, 276–290.

Álvarez, V., Armario, J.A., Frau, M.D., Real, P., 2006. (Co)homology of iterated semidirect products of abelian groups. Preprint. J.
Algebra (submitted for publication).

Baliga, A., Horadam, K.J., 1995. Cocyclic Hadamard matrices over Zt × Z22 . Australas. J. Combin. 11, 123–134.
Flannery, D.L., 1996. Calculation of cocyclic matrices. J. Pure Appl. Algebra 112, 181–190.
Flannery, D.L., 1997. Cocyclic Hadamard matrices and Hadamard groups are equivalent. J. Algebra 192, 749–779.
Flannery, D.L., O’Brien, E.A., 2000. Computing 2-cocycles for central extensions and relative difference sets. Comm. Algebra 28
(4), 1939–1955.

Grabmeier, J., Lambe, L.A., 2000. Computing resolutions over finite p-groups. In: Betten, A., Kohnert, A., Lave, R., Wassermann, A.
(Eds.), Proceedings ALCOMA’99. In: Springer Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Heidelberg.

Horadam, K.J., 1996. Progress in cocyclic matrices. Congressus Numer. 118, 161–171.
Horadam, K.J., de Launey, W., 1993. Cocyclic development of designs. J. Algebraic Combin. 2 (3), 267–290; 1994. J. Algebraic
Combin. (3), 129 (erratum).

Horadam, K.J., de Launey, W., 1995. Generation of cocyclic Hadamard matrices. In: Computational Algebra and Number Theory
(Sydney, 1992). In: Math. Appl., vol. 325. Kluwer Acad. Publ., Dordrecht, pp. 279–290.

Mac Lane, S., 1995. Homology. Classics in Mathematics. Springer-Verlag, Berlin (Reprint of the 1975 edition).
Veblen, O., 1931. Analisis Situs. A.M.S. Publications, 5.

http://library.wolfram.com/infocenter/MathSource/6516/
http://library.wolfram.com/infocenter/MathSource/6384/
http://library.wolfram.com/infocenter/MathSource/6621/

	The homological reduction method for computing cocyclic Hadamard matrices
	Introduction
	Describing the homological reduction method
	Examples
	Construction basis for 2-cocycles
	Basis for G4t=Z t ×Z22=Z t ×(Z 2 ×Z 2)
	Basis for G5t=D4t=Z 2 χheight4.8pt width0.5pt depth-.4pt ×Z2t
	Basis for G7t=(Z theight4.8pt width0.5pt depth-.4pt ×fZ2)× height4.8pt width0.5pt depth-.4pt χ Z 2

	Exhaustive search
	Heuristic search

	Acknowledgments
	References


