10,444 research outputs found

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Locating a bioenergy facility using a hybrid optimization method

    Get PDF
    In this paper, the optimum location of a bioenergy generation facility for district energy applications is sought. A bioenergy facility usually belongs to a wider system, therefore a holistic approach is adopted to define the location that optimizes the system-wide operational and investment costs. A hybrid optimization method is employed to overcome the limitations posed by the complexity of the optimization problem. The efficiency of the hybrid method is compared to a stochastic (genetic algorithms) and an exact optimization method (Sequential Quadratic Programming). The results confirm that the hybrid optimization method proposed is the most efficient for the specific problem. (C) 2009 Elsevier B.V. All rights reserved

    Consumer choice in competitive location models: Formulations and heuristics

    Get PDF
    A new direction of research in Competitive Location theory incorporates theories of Consumer Choice Behavior in its models. Following this direction, this paper studies the importance of consumer behavior with respect to distance or transportation costs in the optimality of locations obtained by traditional Competitive Location models. To do this, it considers different ways of defining a key parameter in the basic Maximum Capture model (MAXCAP). This parameter will reflect various ways of taking into account distance based on several Consumer Choice Behavior theories. The optimal locations and the deviation in demand captured when the optimal locations of the other models are used instead of the true ones, are computed for each model. A metaheuristic based on GRASP and Tabu search procedure is presented to solve all the models. Computational experience and an application to 55-node network are also presented.Distance, competitive location models, consumer choice behavior, GRASP, tabu

    Little Boxes: A Dynamic Optimization Approach for Enhanced Cloud Infrastructures

    Full text link
    The increasing demand for diverse, mobile applications with various degrees of Quality of Service requirements meets the increasing elasticity of on-demand resource provisioning in virtualized cloud computing infrastructures. This paper provides a dynamic optimization approach for enhanced cloud infrastructures, based on the concept of cloudlets, which are located at hotspot areas throughout a metropolitan area. In conjunction, we consider classical remote data centers that are rigid with respect to QoS but provide nearly abundant computation resources. Given fluctuating user demands, we optimize the cloudlet placement over a finite time horizon from a cloud infrastructure provider's perspective. By the means of a custom tailed heuristic approach, we are able to reduce the computational effort compared to the exact approach by at least three orders of magnitude, while maintaining a high solution quality with a moderate cost increase of 5.8% or less

    Bandwidth selection in kernel empirical risk minimization via the gradient

    Get PDF
    In this paper, we deal with the data-driven selection of multidimensional and possibly anisotropic bandwidths in the general framework of kernel empirical risk minimization. We propose a universal selection rule, which leads to optimal adaptive results in a large variety of statistical models such as nonparametric robust regression and statistical learning with errors in variables. These results are stated in the context of smooth loss functions, where the gradient of the risk appears as a good criterion to measure the performance of our estimators. The selection rule consists of a comparison of gradient empirical risks. It can be viewed as a nontrivial improvement of the so-called Goldenshluger-Lepski method to nonlinear estimators. Furthermore, one main advantage of our selection rule is the nondependency on the Hessian matrix of the risk, usually involved in standard adaptive procedures.Comment: Published at http://dx.doi.org/10.1214/15-AOS1318 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Solution Methods for the \u3cem\u3ep\u3c/em\u3e-Median Problem: An Annotated Bibliography

    Get PDF
    The p-median problem is a graph theory problem that was originally designed for, and has been extensively applied to, facility location. In this bibliography, we summarize the literature on solution methods for the uncapacitated and capacitated p-median problem on a graph or network
    • 

    corecore