143 research outputs found

    New methods of computing the projective polynomial resultant based on dixon, jouanolou and jacobian matrices

    Get PDF
    In elimination theory, particularly when using the matrix method to compute multivariate resultant, the ultimate goal is to derive or construct techniques that give a resultant matrix that is of considerable size with simple entries. At the same time, the method should be able to produce no or less superfluous factors. In this thesis, three different techniques for computing the resultant matrix are presented, namely the Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials, and their generalizations to the multivariate case. The Dixon-Jouanolou method is proposed based on the existing Jouanolou matrix method which is subjected to bivariate systems. To further extend this method to multivariate systems, the entry formula for computing the Dixon resultant matrix is first generalized. This extended application of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou method for the bivariate systems of three polynomials to systems of n+1 polynomials with n variables. In order to implement the Dixon-Jouanolou method on systems of polynomials over the affine and projective space, respectively, the concept of pseudohomogenization is introduced. Each space is subjected to its respective conditions; thus, pseudo-homogenization serves as a bridge between them by introducing an artificial variable. From the computing time analysis of the generalized loose entry formula used in the computation of the Dixon matrix entries, it is shown that the method of computing the Dixon matrix using this approach is efficient even without the application of parallel computations. These results show that the cost of computing the Dixon matrix can be reduced based on the number of additions and multiplications involved when applying the loose entry formula. These improvements can be more pronounced when parallel computations are applied. Further analyzing the results of the hybrid Dixon-Jouanolou construction and implementation, it is found that the Dixon-Jouanolou method had performed with less computational cost with cubic running time in comparison with the running time of the standard Dixon method which is quartic. Another independent construction produced in this thesis is the Jouanolou- Jacobian method which is an improvement of the existing Jacobian method since it avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to produce a considerably smaller resultant matrix compared to the existing Jacobian method and is therefore less computationally expensive. Lastly all the proposed methods have considered a systematic way of detecting and removing extraneous factors during the computation of the resultant matrix whose determinant gives the polynomial resultant

    New methods of computing the projective polynomial resultant based on dixon, jouanolou and jacobian matrices

    Get PDF
    In elimination theory, particularly when using the matrix method to compute multivariate resultant, the ultimate goal is to derive or construct techniques that give a resultant matrix that is of considerable size with simple entries. At the same time, the method should be able to produce no or less superfluous factors. In this thesis, three different techniques for computing the resultant matrix are presented, namely the Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials, and their generalizations to the multivariate case. The Dixon-Jouanolou method is proposed based on the existing Jouanolou matrix method which is subjected to bivariate systems. To further extend this method to multivariate systems, the entry formula for computing the Dixon resultant matrix is first generalized. This extended application of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou method for the bivariate systems of three polynomials to systems of n+1 polynomials with n variables. In order to implement the Dixon-Jouanolou method on systems of polynomials over the affine and projective space, respectively, the concept of pseudohomogenization is introduced. Each space is subjected to its respective conditions; thus, pseudo-homogenization serves as a bridge between them by introducing an artificial variable. From the computing time analysis of the generalized loose entry formula used in the computation of the Dixon matrix entries, it is shown that the method of computing the Dixon matrix using this approach is efficient even without the application of parallel computations. These results show that the cost of computing the Dixon matrix can be reduced based on the number of additions and multiplications involved when applying the loose entry formula. These improvements can be more pronounced when parallel computations are applied. Further analyzing the results of the hybrid Dixon-Jouanolou construction and implementation, it is found that the Dixon-Jouanolou method had performed with less computational cost with cubic running time in comparison with the running time of the standard Dixon method which is quartic. Another independent construction produced in this thesis is the Jouanolou- Jacobian method which is an improvement of the existing Jacobian method since it avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to produce a considerably smaller resultant matrix compared to the existing Jacobian method and is therefore less computationally expensive. Lastly all the proposed methods have considered a systematic way of detecting and removing extraneous factors during the computation of the resultant matrix whose determinant gives the polynomial resultant

    APPROXIMATE GROBNER BASES A BACKWARDS APPROACH

    Get PDF
    The main result of this thesis is to give a method for approximating the Grobner basis of an approximate polynomial system. The Grobner basis of a polynomial system is arguably the most fundamental object of exact computation polynomial algebra, as it answers many of the important questions of commutative algebra, such as ideal membership and computation of the Hilbert polynomial. It is traditionally computed using variants of Buchberger’s algorithm. Here, we take a backwards approach, and show that a Grobner basis can be computed using the Hilbert polynomial and another important basis from the jet theory of partial differential equations: an involutive basis. This direction, motivated by approximate systems, will allow us to avoid the strict monomial orderings and ordered elimination (reduction) strategies, at the heart of Buchberger-type methods, which are usually numerically unstable. For the the computation of exact bases for an ideal near to the one from which we began, we make avid use of structured (numerical) linear algebra. Additionally, we introduce approximate leading terms and an approximate reduced row echelon form. Neither of these require Gaussian elimination, unlike the exact case

    Computing real radicals by moment optimization

    Full text link
    We present a new algorithm for computing the real radical of an ideal and, more generally, the-radical of, which is based on convex moment optimization. A truncated positive generic linear functional vanishing on the generators of is computed solving a Moment Optimization Problem (MOP). We show that, for a large enough degree of truncation, the annihilator of generates the real radical of. We give an effective, general stopping criterion on the degree to detect when the prime ideals lying over the annihilator are real and compute the real radical as the intersection of real prime ideals lying over. The method involves several ingredients, that exploit the properties of generic positive moment sequences. A new efficient algorithm is proposed to compute a graded basis of the annihilator of a truncated positive linear functional. We propose a new algorithm to check that an irreducible decomposition of an algebraic variety is real, using a generic real projection to reduce to the hypersurface case. There we apply the Sign Changing Criterion, effectively performed with an exact MOP. Finally we illustrate our approach in some examples.Comment: ISSAC 2021 - 46th International Symposium on Symbolic and Algebraic Computation, Jul 2021, Saint-P{\'e}tersbourg, Russi

    Solving rank-constrained semidefinite programs in exact arithmetic

    Full text link
    We consider the problem of minimizing a linear function over an affine section of the cone of positive semidefinite matrices, with the additional constraint that the feasible matrix has prescribed rank. When the rank constraint is active, this is a non-convex optimization problem, otherwise it is a semidefinite program. Both find numerous applications especially in systems control theory and combinatorial optimization, but even in more general contexts such as polynomial optimization or real algebra. While numerical algorithms exist for solving this problem, such as interior-point or Newton-like algorithms, in this paper we propose an approach based on symbolic computation. We design an exact algorithm for solving rank-constrained semidefinite programs, whose complexity is essentially quadratic on natural degree bounds associated to the given optimization problem: for subfamilies of the problem where the size of the feasible matrix is fixed, the complexity is polynomial in the number of variables. The algorithm works under assumptions on the input data: we prove that these assumptions are generically satisfied. We also implement it in Maple and discuss practical experiments.Comment: Published at ISSAC 2016. Extended version submitted to the Journal of Symbolic Computatio

    La queste del saint Gra(AL): A computational approach to local algebra

    Get PDF
    AbstractWe show how, by means of the Tangent Cone Algorithm, the basic functions related to the maximal ideal topology of a local ring can be effectively computed in the situations of geometrical significance, i.e.:(1)localizations of coordinate rings of a variety at the prime ideal defining a subvariety,(2)rings of algebraic formal power series rings.In particular we show how the method of “associated graded rings” can be turned into an effective tool to compute local algebraic invariants of varieties

    Lazy exact real computation

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Toric Border Bases

    Get PDF
    We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals

    Computer algebra, theory and practice

    Get PDF
    corecore