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A bstract 

Mora, T., La queste de1 Saint Gr,(AL): A computational approach to local algebra, Discrete 
Applied Mathematics 33 (1991) 161-190. 

We show how, by means of the Tangent Cone Algorithm, the basic functions related to the max- 
imal idea1 topology of a local ring can be effectively computed in the situations of geometrical 
significance, i.e.: 

(1) localizations of coordinate rings of ir variety at the prime idea1 defining a subvariety, 
(2) rings of algebraic formal power series rings. 
In particular we show how the method of “associated graded rings” can be turned into an ef- 

fective tool to compute local algebraic invariants of varieties. 

To Marina: 
they know why 

that know her 

Mesire Gauvain esgarde le vaissel, si le prise plus que rien qu’il eust veue, mais il ne puet savoir 
de quoi il est, kar de fust n’est il pas ne de nule maniere de metal, ne de Pierre ne rest il mie de 
car ne d’os, et de ceu est il tos esbahis. Apres regarde la pucele, si se merveille plus asses de sa 
bialte que de1 vaissel, kar onques mes ne vit il feme qui de bialte s’apareillast a ceste: si muse a 
li si durement qu’a autre rien ne pense. Et ensi corn la damoisele passe par devant le dois, si 
s’agenoille chescuns devant le saint vaissel et tantost sont les tables replenies de tos les bials 
mengiers que Pen porroit deviser; et Ii pales fu raemplis de si bones odors corn se totes les espieces 
terrienes i fuissent espandues. 

Quant !a damoisele fu une fois alee par devant le dois, si s’en retorne et entre en Ia chambre 
dont ele vint. Et mesire Gauvain le convoie des iex tant corn il puet et quant il ne la voit mes, 
si regarde devant lui a la table ou il seoit, mes il ne voit chose qu’il puisse mengier, ains esr ia 
table vuide devant lui, et il n’i a nus qui n’ait auttesi grant plentti de viande comme s’ele sorsist. 
Quant il voit ce, si en est si esbahis qu’il ne set qu’il doie dire ne que fere, kar bien set qu’il a 
mespris en aucune chose, por quoi il n’a eu a mengier ausi come li autres. 
Lancelot, LXVI, 13-14, Ed. Micha, Geneve, Droz, 1978 
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Introduction 

Many properties and invariants of ideals in a polynomial ring can be effectively 
and efficiently obtained once a Grobner basis of the ideal has been computed by 
means of Buchberger’s algorithm. This has made feasible a computational algebraic 
approach to the global study of varieties in the cor?@x affine and projective spaces. 

As polynomial ideals provide an algebraic setting for the global study of varieties, 
the study of local properties of a variety finds an algebraic interpretation in local 
algebra (i.e., the theory of local rings). In this setting an exact counterpart of the 
notion of Grobner bases has been long since defined under the name of standard 
bases; standard bases however don’t share the same good computational properties, 
since Buchberger’s algorithm often fails to terminate when applied to this situation. 

While a general algorithm for standard basis computations is still lacking (for in- 
stance in the ring of formal power series, also under suitable notions of computabili- 
ty), there are situations in which a simple variant of Buchberger’s algorithm, the 
Tangent Cone Algorithm’ , is sufficient for the computation of standard bases. 
While the Tangent Cone Algorithm properly applies only to the case of the localiza- 
tion of a polynomial ring to the origin, elementary algebraic manipulations allow 
to apply it at least in the following two situations: 

(1) the localization at a prime ideal of a coordinate ring, 
(2) the ring of algebraic formal power series. 

Both cases have important geometrical interpretations: 
(1) let r,CI,CI,Ck[X1,...,X,] be prime ideals; let B:=k[X,,...,XJ/I,, pCB 

the image of I3 and let A be the localisation of B at p; let I be the prime ideal in 
~4, which is the extension of the image of I2 (each prime ideal in A can be given in 
such a way). 

The geometrical meaning of this situation can be roughly described as follows: 
we have three affine varieties V3 C vzC V, (5 being defined by Ii); A describes a 
neighborhood of V3 in Vt ; I defines the variety V2 “locally”, i.e., in such a 
neighborhood; by studying I we are attempting a description of the local behaviour 
of vz. 

(2) The study of algebraic formal power series is related instead with the study 
of analytically irreducible branches at the origin of an algebraic variety and comes 
out naturally when studying singular points of algebraic varieties: in fact, every 
analytic component of a germ of a complex algebraic variety is definable by such 
series. 

The Tangent Cone Algorithm can therefore be used as a computational tool for 
local algebra, at least in the two cases discu ssed above. The aim of this paper is to 
give a survey of such an approach. 

’ If I’m allowed a P*~;~ I1.IU! historical remark, the birth date of the Tangsent Cone Algorithm is known, be- 

ing the night of January 12, 1981. The birth place is however less precisely known, since the author got 

the crucial idea on a night train from Genoa to Antwerpen in a neighborhood of the Swiss-German 

border. 
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We start with a discussion of the local description of a variety at a point (Section 
l), thus producing a first example of computational problems to which the Tangent 

Cone Algorithm can be successfully applied. 
In Section 2 we will recall the bask motiarr; and tk- Iti k&c results related with the 

Tangent Cone Algorithm. Then (Section 3) we will show how it can be used to effec- 
tively solve the problems posed in Section 1. 

Section 4 will describe a computational model for rings of algebraic formal power 
series based on the Implicit Function Theorem and on the Tangent Cone Algorithm, 
which has been recently introduced and which allows to give effective versions of 
classical theorems from the Weierstrass Preparation Theorem to the Noether Nor- 
malization Lemma and which gives an algorithm for computing elimination ideals 
in a ring of algebraic power series. 

Then we will enter local algebra proper: after a recall of some basic notions from 
local algebra (Section 5), we will give a computational model for localizations of 
coordinate rings at prime ideals, based on the Tangent Cone Algorithm, which @ves 
an effective description of the topological notions involved and allows for standard 
basis computations (Section 6). 

In particular the associated graded ring is explicitly presented as a polynomial ring 
modulo a homogeneous ideal given by a Griibner basis. Because of this, algorithms 
relying on GrCibner bases can be applied and the classical “method of associated 
graded rings” is turned into a computational tool (Section 7). 

Finally we briefly discuss the applications of the Tangent Cone Algorithm to the 
theory of isolated singularities, proposed by Luengo, Pfister and Schanemann (Sec- 
tion 8). 

None of the results presented in the paper is origina12, but we hope to have im- 
proved their presentation with respect to the original research contributions and to 
provide an updated survey of the applications of standard basis techniques in com- 

putational local algebra. 

1. An introductory problem 

Let P denote the polynomial ring k[X,, . . . , XJ with coefficients in a field k. 

If fE P- {0}, it can be uniquely written as a finite sum of nonzero homogeneous 

polynomials:f= Ci=l,...,t i9 l f f- homogeneous and nonzero, deg( f,) < l < deg( fi) < 
hkti+*)<**- l To the polynomial f we can associate its order, ord(f) := deg(fi) 
and its initial form, in(f) :=fi I The order of f is the infinitesimal order at the 
origin off as an analytic function; its initial form is the lowest order nonzero Taylor 
approximation off at the origin. 

2 To the references quoted in the text one should add [22,23] which contain the original presentation of 

the Tangent Cone Algorithm and [24], with its application to localizations of coordinate rings at prime 

ideals. Moreover the pioneering work [lOI is rich in applications of standard basis techniques to ideals 

of power series. 
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If IcP=k[X,, . . . . X,J is an ideal, we define in(l) := (in(f): f E P), the initical 

form ideal of I, to be the homogeneous ideal in P generated by the initial forms of 
the elements in I. Geometrically (when the base field k is a subfield of C), it is the 
ideal which defines the cone of the tangents at the origin (counted with the correct 
multiplicity) to the variety in Cn defined by fi3 we are clearly assuming that the 
origin is in I/, i.e., IC (Xi, . . . , Xn); otherwise in(l) is the polynomial ring and the 
cone of tangents is void (as it should be). in(l) gives therefore a kind of “lowest 
order approximation” to such variety. 

Let V be the variety in C” defined by the radical ideal I. Let f e P, if g E P is s.t. 
f-g E I, then f and g define the same polynomial function f (xl, . . . ,x,) = 
!a1 , . . ..x.) on V. What are the infinitesimal order at the origin and a lowest order 
nonzero Taylor approximation at the origin of the polynomial function 

f( Xl , . . ..x.)? 

roposition 1.1. Consider the set Rf :=(gEP: g-fd). Assume there is geRf 
s. t. in(g) 4 in(Z) and let s :=ord(g). Then the following hold: 

(i) if h E Rf, ord(h) CS, then in(h) E in(I); 
(ii) if h E Rf, ord(h) 1 s, then ord(h) =s, in(g) - in(h) E in(l). 

Proof. (i) Since ord(h) < ord(g), in(h -9) = in(h); since h -g E I, in(h) = ic(h -g) E 
in(I). 

(ii) If ord(h) >s, then in(h -8) = in(g) 4 in(l); since h - g E I, in(g) = in(h - g) E 
in(l), a contradiction. Then if ord(h) zs, necessarily ord(h) = s, in(h - g) = 
in(h) - in(g); then: since h -g E I, in(h) - in(g) = in(h - g) E in(I). Cl 

It is thzil clear that the answer to the question above is: ord(g) and the residue 
class of in(g) mod in(l). 

However, there are cases in which a g as required by the proposition doesn’t exist. 
In fact consider P:= UZ [X, Y], f = X, I the ideal generated by X-X 2, V the 

variety defined by 1, which is the union of the two lines x = 0, x = 1. The polynomial 
function f (x,y) =x vanishes identically in any point of I/ which is sufficiently near 
to the origin, so it coincides locally with the polynomial function g&y) = 0. This 
is reflected by the fact that in the set RJ there is no g s.t. in(g) & in(l) = (X): in fact 
if g-fd, then g-X=h(X-X2) for some polynomial h, so g=X+h(X-X2)= 
X( 1 + h( 1 -X)) and in(g) is a multiple of X. 

While X$ I, the vanishing of the polynomial function x is reflected by the fact 
that X= (1 - X)-l (X - X 2), so X belongs to the ideal generated by X- X 2 in any 
ring containing the inverse of (1 - X); introducing the inverse of (1 - X) makes 
sense, since “near the origin” 1 -A never vanishes so it is an invertible function. 

In fact we can find a natural solution to our problem by considering the “local” 

3 To be precise in order that this geometrical notion makes sense, we should restrict ourselves to radical 
ideals. 
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problem (infinitesimal orders, lowest order approximations at 
data (functions defined near a point) and so by carrying on the 
developed to the larger ring of the rational functions which are 

:= ((1 -t-g)-‘fi f,gE P, g(O)=O} Ck(Xl, *e*sXri) 

where we define, for h = (1 + g)-‘f, and for an ideal IC Lot(P): 

in(h) := in(f), ord(h) := ord(f), in(r) := (in(h): h E I) C P 

preserving the geometrical meaning of these notions. 
As we will establish later (Proposition 3.1), the following holds: 

Fact. If K Lot(P) is an ideal and h E Lot(P), then there is ho E Lot(P) s.t. 
(9 either ho = 0 or in(h,-J $ in(l); 
(ii) h-h&. 

As a consequence we have: 

Proposition 1.2. Let IC Lot(P) be an ideal. Let FcI be s.t. in(F) = in(l). Let 
h E Lot(P). Let ho E Lot(P) be s.t. h - ho E I and either ho = 0 or in(hO) $ in(l) (the 
existence of ho is guaranteed by the above Fact). Then: 

(i) he:P [!and only ifh,=O; 
(ii) if ho # 0, g - h E I and ord(g) c ord(hO), then in(g) E in(l); 

(iii) if ho #0, g - h E 1 and ord(g) I: ord(hO), then ord(g) = ord(h& in(g) - in(hO) E 
in(l). 

Proof. (i) If ho =0, then h = h -ho E I. If ho #0, then ho BI, otherwise in&) E 
in(l); so h - ho E I implies h $ I. 

(ii) and (iii) The proof is the same as for Proposition 1 .l. Cl 

As a consequence, the infinitesimal order at the origin of the rational function 

h(xl , . . . ,x,) is ord(hO), its lowest order Taylor approximation at the origin is the 
residue class of in(hO) in P/in(l). 

To go back to the example we are discussing, in Lot(P) we have 
X=(1-X)-‘(X-X’)E(X-X2), so ho = 0, reflecting the fact that x vanishes iden- 
tically in any point of V which is sufficiently near to the origin. 

In the same way we could have considered P” := k[[X,, . . . , Xn I]. It is clear that 
all the notions and the considerations we have carried out for P and Lot(P) could 
have been developed for formal power series too. In fact any f E P” - (0) can be 
uniquely written as a (perhaps infinite) sum of nonzero homage eous ~o~~no~ials: 

f= Ci= I.._( i9 f A homogeneous and nonzero, deg( fi) < l c deg(cf;;) c deg(A+ 1) < l ** 

and so we can associate to it its order, ord(f) :=deg( fl) and its initial form, 
in(f) :=ft ; also to an ideal K PA, we can associate the homogeneous ideal 
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in(l) := (in(f): f e 1)~ P; all these concepts have the same analytical meaning as in 
the polynomial case.4 

So now we are considering convergent power series gl, . . . ,gr, f, with gi(0) = 0, SO 
that the ideal I=(g,,...,gr)cPA is s.t. Ic(&,...,&), some neighborhood U of 
the origin where the analytic functions gr Qxr, . . . ,x,), . . . ,g&, . . . ,x,) are defined 
and the set V:={(xr,...,x,)~U: gi(Xr,...,Xn)=O}. Then we consider some 
neighborhood W of the origin s.t. the analytical function f (xl, . . . ,x,) is defined in 
Wand we would like to speak of the infinitesimal order at the origin and a lowest 
order nonzero Taylor approximation at the origin of the analytical function 

f( Xl , . . ..x.) on Vn W. 
By extending Proposition 1.2 to ideals in PA (having earlier extended also the 

corresponding Fact), we obtain that there is ho E P” s,t. h -ho E I, and either ho =0 
or in&)$in(l). Then the infinitesimal order at the origin of the analytical func- 
tion f(q, . . . . x,,) on Vn W is ord&) and a lowest order nonzero Taylor approx- 
imation is the residue class of in&) mod in(l). 

2. Recalls: The Tangent Cone Algorithm’ 

The discussion above should have made clear the interest of being able to explicit- 
ly compute a set FCIC Lot(P) (or PA) s.t. in(F) = in(l) and for each h E Lot(P) 
(respectively PA) an element ho s.t. h - ho E I and either ho = 0 or in&) @ in(l). We 
remark immediately that the existence of such an algorithm in P” is at present an 
open problem$ but there is a solution, based on the Tangent Cone Algorithm, 
both for Lot(P) and for rings of algebraic formal power series [2,3]. We are going 
therefore to introduce the Tangent Cone Algorithm, which will be our main tool for 
such computations. 

Let P:= k[X,, . . . , XJ be a polynomial ring over a field, let T = (X,, . . . , X,,) 
denote the free commutative semigroup generated by {X,, . . . , Xn} , let < be a 
semigroup total ordering on T. Then each polynomial f e P - (0) can be written in 
a unique way as: 

4 Again, to be precise, in order that the analytical notions make sense, we should restrict to convergent 

series, but the algebraic formulation can be performed with no restriction. 

5 For a detailed introduction to the Tangent Cone Algorithm, the reader can consult the recent survey 

[=I. 
6 An important exception is when I is O-dimensional (for that case cf. [Y,25]). One clearly must in- 

troduce computability restrictions (if one allows a single power series whose coefficients are given by a 

semirecursive function, then standard basis computation becomes undecidable), but otherwise I’m 

unable to figure a general obstruction against the existence of a standard basis algorithm for power series; 

for that matter however I’m unable to figure how such an algorithm should work. 
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Denote: T(f) := ml, M(f) := clml . T(f) is the maximal term, M(f) the maximal 
monomial of f. 

When we need to specify the ordering c on which the definitions above depend, 
we will use either the notation T< , M, ; when < = f 0, eve will use T,, MD instead 
of T,, M,. 

If FcP, denote M(F) :={M(f): f0’- {0}}, M(F) the ideal generated by 
M(F). Therefore if I is an ideal, M(I) is the monomial ideal generated by the max- 
imal monomials of the elements in I. 

We say f E P - { 0) has a Griibner representation in terms of FC P- { 0} if and on- 

ly if it can be represented: 

f= C giJ, giEP_{CO), JEF, T(gi)T(&)sT(f) for every i 

(such a representation will be called a Grobner representation). 
Given f E P - { 0}, FC P - { 0}, an element h E P s.t. f- h E (F) and either h = 0 or 

M(h)$M(F) will be called a normal form off w.r.t. F. 
Let NF(f,F):= {REP: h is a normal form off w.r.t. F}. 
In case < is a well ordering, the result below is well known and gives a definition 

of Grobner bases; we just recall that an algorithm (Buchberger’s algorithm) is 
known to compute Grobner bases, whose termination is proved using, in an essen- 
tial way, the fact that < is a well ordering. 

Theorem 2.1. If Ic P is an ideal, and FC I - { 0) , the following conditions are 
equivalent : 

(1) M(F) generates the :&al M(I), 
(2) f E I- (0) if and ont’y if it has a Grobner representation in terms of F, 
(3) for each f E P - (0) : 

(i) if f E I, then NF(cf; F) = (01, 
(ii) if f $ I, then NF(f; F) #0 and Vh E NF(f, F), h +O. 

Definition 2.2. A set r”c I- (0) is called a Grobner basis for the ideal I if and only 
if it satisfies the equivalent conditions of Theorem 2.1. 

We recall here an important property related to Grobner bases (more exactly to 
the ideal M(I)) which we will use later: 

Lemma 2.3. Let B := {t E T: t GM(I)} and let I &note the k-vector space with 

Then Vh E P, there is a unique g E k[ 
Such a g is called a canonical form of the residue class of h mod I and denoted 

Can@, I). Moreover Can(h, I) = 0 if and only i,f h E I, Can(hO, I) = Can(hl, I) if and 
only if ho - hl E I. AIso Can(h, I) can be computed if a Grijbner basis of I is known. 

For our applications, we must however consider a larger class of orderings, the 
“tangent cone orderings”, which don’t cover all possible orderings but a class suffi- 
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cient for most applications. We don’t give here the definition (for which cf. 125)) 
but we limit to explicitly present those tangent cone orderings we will need in the 
applications discussed in this paper: 

If < is an ordering on r, the variables can be divided in two classes ;arrt renamed, 

denoting by 

(2 I, . . . , Z,,,} the set of variables s.t. Zi> 1, 

{Y 1, l **9 Yd} the set of variables s.t. I$< 1; 

each term m E T is then the product m = ~~~~~ of a term mZ in the 2 only and of 
a term my in the Y only (one can consider also the case in which { Zt , . . . , Z,pl} is 
empty).’ 

The restriction < z of < to (Zt, . . . , Z,,} is a well ordering; for the restriction < y 
of < to (Yl,..., Yd) we require that a semigroup morphism w : ( &, . . . , Yd) --) Z is 
given s.t. 

(i) w(m)<0 if m#l, 
(ii) w(mi)< w(mz) implies ml <ym2. 

Moreover we require that: 

D2<?Tl’ if and only if m,<m; or (my=m; and mZ<mk). 

From now on c will be a tangent cone ordering. 
Denote by Lot(P) the following subring of k(& . . . , AT,& 

Lot(P) := ((1 -kg)_‘f: T(g)< l}. 

We can define for h = (1 +g)-* f and for an ideal IC Lot(P): 

T(h):=T(f), M(h):=M(f), M(I):=(M(h): heI)cP. 

efinition 2.4. Given f e Lot(P) - {0}, FC Lot(P) - { 0}, an element h E Lot(P) is 
called a normal form off w.r.t. F if 

f-h= C gi&, gid.&pj- (O}, cf;:eF, 

either h = 0 or M(h) $ M(F). 

Nf(f, F) will denote the set {h E Lot(P): h is a normal form off w.r.t. F}. 

ition 2.5. We say h E Lot(P) - (0) has a stundard representation in terms of 
FC Lot(P) - (0) if and only if it can be represented: 

f= C g;J; giELOC(P)-(O},JEFy T(gi)T(ji)sT(f) fore"eV' 

(such a representation will be called a standard representation). 

’ If (Y,,..., Yd) is empty, then we have a well ordering and there is no need of the Tangent Cone 

Algorithm, which actually in such instances reduces to Buchberger’s algorithm. 



A computational approach to local algebra 169 

ef%ition 2.6. A set FC II- { 0) is called a standard basis for the ideal IC Lot(P) 
if and only if M(F) generates the ideal M(I). 

Theorem 2.7. The following conditions are equivalent: 
(1) F is a standard basis of I, 
(2) $5 I if and on@ g f has a standard representation in terms of F, 
(3) for each f E Lot(P) - (0): 

(i) if f E I, then NF(J F) = (01, 
(ii) if f & I, then NF(cf; F) f: 0 and Vh E NF(f, F), h +tQ. 

Proof. Cf. [25, Theorem 21. Cl 

Proposition 2.8. Let F be a standard basis for the ideal ICLoc(P), then: 

(1) 
(2) 
(3) 

Let h E NF(g, F); then: if h = 0, then g E & if h +O, then g# I. 
If hENF(g,F), h#Q, then T(h)=min(T(g’): g’-gEI). 
If g, gk Lot(P) - I are s.t. g -gk I, then M(h) =M(h’) for each h E NF(g, F) 
and h’ E NF(g’, F). 

Proof. Cf. 125, Proposition 71. Cl 

A variant of Buchberger’s algorithm, the Tangent Cone Algorithm’, allows to 
compute standard sets of ideals. More precisely: 

Theorem 2.9. Given g, f,, . . . , fr E Lot(>), there is an algorithm (the Tangent Cone 
Algorithm) which computes polynomials u, h such that 

u is a unit in Lot(P), 

u-‘h is a normal form of g in terms of (fi,eg~,fr). 

As a consequence, it is possible, given g, fi, . . l , fr E Lot(P): 

( 1) to compute polynomials gl , . . . , g, such that ( g, , . . l , gJ is a Starr&u-d basis for 

(fi, l *a 9f,); 
(2) to decide whether g E ( fi, l l . , f,). 

The notion of standard bases can be extended to submodules of Loc(P)’ in two 

8 For the purposes of this paper, it is not crucial to know how it works. The interested reader can con- 

sult the survey [25], where improved versions are presented. There are available in;plementations: a 

MODULA-2 one running under MS-DOS by G. Pfister and H. Schonemann (Humboldt Univ. Berlin); 

a Common Lisp one in the ALPI system by C. Traverso (Pisa); a Pascal one iq the Macintosh system 

COCOA by A. Giovini and G. Niesi (Genova). Standard bases can also be computed (by Lazard’s 

Homogenization Technique 1171) on any system with a Buchberger algorithm for the so-called “total- 

degree” or “deg-rev-lex” ordering. 
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different ways’, w.r.t. a fixed ordering c on T for which it is possible to apply the 
Tangent Cone Algorithm. 

First of all, for any arbitrary choice of t terms ml, . . . , m, E T, for each @ := 

(fiY . . . ,f,) E Lot(P)‘, we can define: 

T(e) := max{ T(h) + mi), 

M(~):=(~!,...,~,)EP’, where pi:=M(hl if T(h)+mi=T(@)g 

pi := 0 otherwise. 

If @cLoc(P)‘, let us denote M{@}:={M(@): ~E@-{O}}CP~, M(G) the sub- 
module of P’ generated by M{ G}. If U is a submodule of Lot(P)‘, we say @C U 
is a T-standard basis for U if M(G) = M(U). This notion [ 131 is more suitable from 
an algebraic point of view than from a computational one, however a suitable 
generalization of the Tangent Zone Algorithm allows to compute T-standard bases. 

We can also consider [26,13] the set of terms r of P t to be the set of elements 

(P 1, . . ..Pr)EPt s.t. there is j with pie T, pi- - 0 if i# j and impose an ordering c t on 
V.Y+ ‘1 3.L. 

for r,rk T, @,@‘E T,, KS ‘5’ and @ LS t @’ imply r@ s t t’#f. 

Then each @E f’- (0) can be written in a unique way as: 

Denote: Hterm(@) := @, , Hmon(@) := c&i. The two functions can be obviously ex- 
tended to Lot(B)‘. 

If @ G Lot(P)‘, denote Hmon{ @) :== { Hmon(@): Qi E Cp - {0}}, Hmon(@) the sub- 
module of P’ generated by Hmon{ a}. 

If U is a submodule of Lot(P)‘, we say @ is a standard basis for U if 
Hmon(@) = Hmon( U). 

A generalization of the Tangent Cone Algorithm allows to compute standard sets 
of submodules of Lot(P)’ at least in the following two cases*‘: 

(1) rleiCIr2ej if and only if i<j or (i=j and 7472) [26]. 
(2) For given ml, . . . . mt E T, rlei<,72ej if and only if r,WZiC72mj or (rtmi=t2mj 

and i<j) [13]. 
We will refer only to the second case, in which case we will say that < t is compati- 
ble with < and ml, . . . . m,. We remark that in this case a standard basis is a T- 
standard basis too. 

Let US now restrict to an ordering s.t. for each i Xi< 1. EachfE P” - (0) can be 
uniquely written as an ordered (possibly infinite) sum of monomials: 

9 Both ways generalize a corresponding way of defining Griibner bases for submodules of P’; for a 
presentation of them and a comparison of their respective merits cf. [21], where they are called T-bases 

and S-bases respectively. 

K) Where (e,, . . . . e,) denotes the canonical basis of Lot(P)‘, i.e., C _fiei := (fi, . . . ,f,). 
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f= C mi, CiEk-{O}, miET, ml>m2>~m*>mi>mi+I>g**. 

We can extend our definitions, denoting: 

T(f):=ml, M(f) := cpq 

and remarking that the definitions agree with the one previously given for elements 
in Loc(P)CP’: in fact (1 + g)-‘f has the power series expansion CiaO g’f and it is 
easy to verify that M(( 1 + g)-‘f) = M(f) = M( C g’f). 

Also if FCP*, we denote M(F) := {M(f): f cF- {0}}, M(F) the ideal 
generated by M{ F}. Then the generalizations of Definitions 2.4-2.6, Theorem 2.7 
and Proposition 2.8 hold for PA too. However, no algorithm is presently known to 
actually compute a standard basis of a given ideal I, also under suitable computa- 
tional restrictions, unless I is O-dimensional [!?,25]. 

3. An introductory solution 

We started the previous section with the remark that it was interesting to explicitly 
compute a set FcK Lot(P) s.t. in(F) = in(l) and for each h E Lot(P) an element 
ho s.t. h -ho EI and either ho =0 or in&) $ in(l). Here is a solution: 

Let < be a semigroup ordering on T s.t. 

for ml,m2E T, deg(ml)<deg(m2) =+ ml>m2. 

This is equivalent to say that the function w: a”-+ Z! defined by w(m) = -deg(m) is 
s.t. 

w(m,) < w(m2) - ml < m2; 

so c is in the class of orderings we are considering. 
We will consider also the well ordering c w on T which agrees with < on terms 

of the same degree, but is compatible 
i.e., 

ml<,m2 if and only if 

(instead of anticompatible) with the degree, 

deg(mr ) < degW2) or 

(deg(mr) = deg(m2) and ml 9~). 

Finally remark that the definition of Lot(P) we gave (w.r.t. C) in Section 2 and 
the one we gave in Section 1 agree, since w.r.t. C, T(g)< 1 if and only if 

ge(Xr, l **9 Xn) if and only if g(0) =O. 

roposition 3.1. Let IC Lot(P) be an i&d. Let FC I be a standard basis of I. Let 
h E Lot(P) and let ho E Lot(P) be a normal form of h. Then: 

(i) {in(f): feF> generates in(I); 
(ii) {in(f): f EF) is a Grtibner basis of in(l) w.r.t. the well ordering cW; 

(iii) if ho = 0, then h E I; 
(iv) if ho + 0, in(ho) @ in(l); 



i72 T. Mom 

(v) if h,zO, g - h E I end ord(g)c ord(&), then in(g) E in(l); 
(vi) if ho $0, g - h E I and ord(g) 2 ord&), then ord(g) = ord&), in(g) - in(&) E 

in(l). 

roof. (i) and (ii) Since Vh E Lot(P), M(h) = M(in(h)), we can easi!y conclude 
that both M(I) = M(in(i)) and M(F) = M(in(F)), so that M(in(F)) = M(in(l)). Also, 
if f is a homogeneous element of p, M(f) =M,(f). Therefore M,(in(F)) = 
M(in(F)) =M(in(l)) =M,,,(in(l)). So {in(f): f E F} is a Grobner basis, and therefore 
a basis, of in(l). 

(iii) Is obvious. 
(iv) If in&) E in(l), then M(hO) = M(in&)) E M(in(l)) = M(I). 
(v) and (vi) The proof is the same as for Proposition 1 .l. Cl 

This solves completely the problem we pcsed, since we are able to compute stand- 
ard bases and normal forms in Lot(P) by means of the Tangent Cone Algorithm. 

We explicitly make the further remark that the residue class of in&) mod in(l) 
(i.e., the least nonzero approximation of f(x 1, . . . ,x,)) can be represented by 
Can(in(hO), in(l)) C k [B] . 

We are now going to show that it is possible to do the same, and more, also in 
the ring of algebraic formal power series. 

4. Computing with algebraic series 

In two recent joint papers [2,3] with Alonso and Raimondo, a computational 
model for algebraic formal power series has been proposed which relies on a sym- 
bolic codification of the series by means of the Implicit Function Theorem, in- 
troduced in [l] and on the Tangent Cone Algorithm. What follows is a short 
summary of the main results which can be obtained. 

We will use the following notation: for a ring B s.t. k[Z,, . . . . Z,] CBC 

k[K 1, . . . ,ZJ], denote B,,, := {fg-‘: f,gEB, g invertible in k[[Z,,...,Z,]]}, and 
remark that for B= k[Z 1, . . . , Z,.], and for each ordering c s.t. m 5 1 Vm, 
B lot = Lot(B). We will also use “2” as a shorthand for “Zr, . . . ,Z,“. 

Let k be a computable field; kj[X 1, . . . , X,Jalg denotes the ring of algebraic for- 
mal power series (i.e., the ring of algebraic functions which vanish and can be 
developed in Taylor series at the origin). Let us fix an ordering < on the semigroup 
T= (X,, . . . , X,) s.t. 

for ml,m2c T, deg(m,)<deg(m,) a ll~,>rn~.~~ 

Let us consider polynomials Fi, . . . , F, E k[X,, a *a p Xtl, Yi, . . . 9 Y,.] vanishing at the 

II The original result is more general, covering those orderings for which there exists a semigroup mor- 

phism w: T-Z s.t. w(m)<0 iff mf I and w(ml)< W(Q) implies ml<m2. 
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origin and s.t. the Jacobian of the Fi with respect to the 5 at the origin is a lower 
triangular nonsingular matrix. Under this assumption, by the Implicit Function 
Theorem, there are unique fr, . . . . f,~k[[Xr, . . . . Xn]]alg s.t. h(O)=0 Vj, and 
Fi($,fi ,..., f,)=O Vi. 

Definition 4.1. (F1, . . . , F’) is called a locaHy smooth system (LSS) defining 

fi, l ,f,M[& •&Jla~g if: 
(1) The Jacobian of the 4 with respect to the 5 at the origin is a lower triangular 

nonsingular matrix. 

(2) f,, l .0 9fr are the unique solutions of FI = 0, . . . , F, = 0 which vanish at the 
origin. 

Given the LSS F:= (Fl, . . . , F,) defining fi, l ,fr, let 

P:= k[Xp . . . . xn, Y& . . . , y,], k[X, Fl,,, := k@‘vf~, l .- ,frli,,C WXllai,. 

TO compute in it, we consider the evaluation map oF : Lot(P) -+ k[$, F],,, defined 
by a,(q) =cf;:, for which Ker@) = (F1, . . . , F,) Lot(P), so that k[&, F],,, = Lot(P)/ 
(F,, . . ..F.). 

If an algebraic series g is given by assigning a polynomial G(&“, T) s.t. G(&, g) = 0 
and an algorithm to compute any truncation of g, it is possible to compute a LSS 
F s.t. gek[&, F],,,. 

It is possible to show that, for suitable orderings c u on P which restrict to < on 
T, a locally smooth system (FI, . . . , F,) is a standard basis in Lot(P) for the ideal it 
generates and M,,(F,, . . . , F,) = (Yi, . . , Y,); therefore, by normal form computations 
it is possible to modify the LSS defining the fi so that it satisfies the following 
assumptions, for an explicitly obtained ordering <,: 

(1) F= (F*, . . . . Fr) is a LSS for fi, . . . . fr, 
(2) j+O Vi, 
(3) &=I$(l+Qi)-Ri with Qi, RiE(&,_Y), RiEk[&, q,---, q-1, l$+1,-*-, K] and 

Mo(Ri) =“(A)9 

(4) {F,, ... , F,) is a standard basis for the ideal it generates in Lot(P) w.r.t. < o 

and AI, = v, 
(5) ca restricts to < on (x>, 

Such an F is called a standard locally smooth system (SLSS) over Co 
By applying the Tangent Cone Algorithm w.r.t. Ca in Lot(P), given 

G0 , . . . , G, E Lot(P) and denoting gj := a(Gi) Vi, it is then possible: 

(1) to compute HE Lot(P) which is a normal form of Go w.r.t. {&, l ~.,F,}; such 
an H is s.t. H= 0 if and only if go --. - 0 and, if H+O then a(H) =go, M,(H) E k@‘l, 

M,(H) =M(go); H is called a representation of go, 
(2) therefore to decide whether go = 0, and, if go $0, to domputc T&o), M&o) 

and in(go), 
(3) to compute a representation of a normal form Of go w.r.t. {g,, l m . , gJ, 
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(4) to compute HI,..., H, s.t. Hi is a representation of hi := a(Hi) and 

{h ,, . . . . h,} is a standard basis for I:=(g,, . . . . g,) w.r.t. <, 

(5) as a consequence {in(ht), . . . . in(h,)) is a Grobner basis of in(l) w.r.t. < ,,,, 

(6) also, if HO is a representation of a normal form ho of go w.r.t. {h,, . . ..hr}. 
then the residue class of in(ho) mod in(I) (which has the analytical meankg dis- 
cussed in Section 1) can be explicitly obtained, by computing Can(in(ho), in(l))C 

WI. 
By applying the above techniques, one can moreover give computational versions 

of classical theorems: 

Theorem 4.2. Given a Pocal smooth system G:=(G1, . . ..G.)Ck[&Z, _Y]=:P 
defining f,, . . . , f& k[[& Z]],,, and Go E Lot(P) s.t. denoting g := CT&O), 

g(4 l ... O,Z)#O, then: 

reparation Theorem. It is possible to compute: 

(1) 

(2) 

(3) 

(4) 

gn ordering < on (3, Z) s.t. T(g) = Zd, whose restriction to (8, we denote 
c’; 
a SLSS F:=(l$..., F,) over < defining fl, ...9 fr s.t. k[&J,F]l,,= 
k[& Z, G],,, and a representation GE Lot(P) of g; 
c .%,% fifcK[&, 1, c/O, . ..) &-I, &(), . . . . &&19 . . . . &09 . ..) lj,d_ll=: Q over 
c’, defining hj, hUEK[[&]]alg, i= 1, . . ..r. j=O, . . ..d- 1; 
I/, I( E Lot(Q), V a unit s.t. 
(a) W:=(H,F) is a SLSS over <, 
(b) Wei(g):=gow(v)=Ci=o d-1 hjZ’=Cj=o...d-l o~(r/j)Z’~K[~~l,.,[x,l, 
tc) L= %‘(~k+ &=&__d- I’hijz j* 

eierstrass ivision Theorem. If moreover BE P is given12 such that Q(B) =: 
b # 0, then it is possible to compute A E Loc( Q), and polynomials Aj E k [&, II/], 
.j=o, . . . . d-l, s.t. 

(1) b=o&A)Wei(g)+ gj=o . . . d-1 OH(Aj)Z’; 

(2) c * j=O...d- 1 oH(Aj)Z J is the canonical form of b w.r.t. (g) in k[[&Z]];13 
(3) o&A), on(Aj) are unique. 

eorem .3. Given a local smooth system G :=(G1, . . . . G,)C k[& _Y] =: P de- 
fining fl,...,f,Ek[[&,Z]]alp and H,,...,hl,~Loc(P) and denoting h,:=ao(H,), 
I=(h,, . . . . h,) c WWI,~,, then: _ 

emma. It is possible to compute: 
(1) a linear change of coordinates C : k[ [$]lalg --) k[ [Xl],,,; 
(2) d = dim(l); 

I2 B must belong to P, not to Lot(P) in order that the construction holds. 

I3 I.e. it is in the residue class of 6 mod g and no terms with nonzero coefficients in its expansion are 

a multiple of T(g). 
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(3) a SLSS H dej’ining algebraic series in k[[X,, . . . , X,]],,,; 
(4) Bl,...,B,-dr A,,...,A,Ek[XI,...,Xd,H],oc[Xd+,,.~.,Xn] 

s.t. denoting, with aslight abuse Of notation, oH : k[X,, . . . , & HI,,, [Xd+ 1, . . . , X,] + 
k[[&]],l, the &W?PtSiOn Of the 6What~On morphism OH, bi := oH(Bi), aj := oH(Aj), 
one has: 

(a) C(l)nk[[X,, l **,X,]],l,=(% 
(b) ViB$k[Xl, •gd~9HIIoc [&+I9 boe9 .&+i- I] [x,$+i] is a rrwkpdynomial in 

X d+i whose Coefficients (in k[X,,...,Xd,H]loc [X&19...,Xd+i_I]) belong to 
(Xl, l e*,Xd+i-l, &, l **g Y,)* 

(c) (61, ...9b,-d,al, •~.,a,)k[[Xllalp=C(I), 
so that: 

(d) k[[&]]&C(I) is an integral e.XteIZSiOn Of k[[X,, . . ..Xd]]&. 

Algebraic Series Elimination. Moreover for each j, it is possible to compute: 
(1) a limar change of coordinates C: k[[X]],l, - k[[X]],1,; 
(2) a SLSS H defining algebraic series ink[[X,, . . . , Xi]]alg; 

(3) Al,...,A,~k[X,,...,Xj,H],,, 
s.t. denoting J:= (A,, . . . , A,)k[[X,, . . . 9 Xj]],l, one has: 

J=C(I)K[[~l],l,nK[[x,, l **9Xjllalg* 

5. Recalls: Local algebra 

The analytical notions we have discussed in Sections 1 and 3 can be stated and 
interpreted in algebra topological terms; also they can be generalized in order to 
allow a local study of the ring of rational functions defined on a variety V “near” 
a subvariety V’. The aim of this section is to briefly review the algebraic bases for 
the local study of an algebraic variety.14 

Let A be a commutative ring (Noetherian and with identity), L CA be an ideal 
s.t. nL”=(O). For each SEA-{Q}, there is n s.t. aEL”-L”? We then define 
vL(a) := n. The function vL : A - (0) + IN, the order function, satisfies, 

Va,bEA-{O):*’ 

v(a + b) 1 min(v(a), v(b)), 

v(ab) 1 v(a) + v(b). 

Let us consider the direct sum GrL(A) := an =O oo L”/L”+ ‘, which is an Abelian . . . 
group, and a graded one if we consider the elements of L”/L”+’ to be the 
homogeneous elements of degree n. Gr,(A) is turned into a graded ring by the 
following multiplication: 

l4 This section is essentially an abstract from the classical treatise [31, Chapter VIII]. 

I5 We will often omit the subscript L. 
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if ad’/Lni’, be L’r’/L”“f’, then there are al E LN, b, EL’” s.t. a (respectively 6) 
is the residue class of a6 (respectively b,) mod L”+’ (respectively L”“‘). Therefore 

albl EL f?i + :. Define ab E Lf?i + n/L/II + 12 t i 

IL is straightforward 

to be the residue class of a6 b1 mod L”‘+” + ‘. 
to verify that the above definition doesn’t depend on the 

choice of al and 6, and that, with this definition of multiplication, GrL(A) is a 
(commutative, Noetherian, with identity) graded ring. 

Let us define, for aeA - {0}, inl(a) E GrL(A) to be the residue class of 
a mod Ln+l, where n = vr(a); and let us define inL(0) :=O. The function 
inL : A + GrL(A), the initial form function, satisfies Va, b E A - { 0} : 

in(a) if v(a) < v(b), 

in(a + b) = in(b) if v(a) > v(b), 

in(a) + in(b) if v(a) = v(b) and in(a) + in(b) # 0; 

v(a + 6) > min(v(a), v(b)) if and only if v(a) = v(b), in(a) + in(b) = 0; 

in(ab) = in(a) in(b) unless in(a) in(b) = 0; 

v(ab)> v(a) + v(b) if and only if in(a) in(b) = 0. 

If we choost the set (L”: n E N } as a basis of neighbourhoods of 0, then we obtain 
a ring topology on A, the L-adic topology, which is Hausdorff (since nL” = (0)). 
Under this topology the closure of an ideal I (the set of elements of A which are 
limits of Cauchy sequences of elements in I) is cl(l) = n(l+ L”), which is an ideal 
too. 

A is complete if each Cauchy sequence of elements of A has a limit in A. By stan- 
dard topological techniques, we can obtain A”, the completion of A, which is a 
topological ring under the LA-adic topology, where LA = LA* = {a E A”: there is a 
Cauchy sequence (a,: n E hl ) c L converging to a}. 

Since nL*n = (0), we have the associated graded ring GrLA(AA) and the func- 
tions vL~, inLA; quite straightforwardly one proves that GrLA(A”) = Gr,(A), and, 
having identified the two rings, that vL A and inLA coincide on A with vL and in,. 

For an ideal IC A, the completion of I is the ideal 

I* = {a EA? there is a Cauchy sequence (a,: n E N ) C I converging to a]; 

it is easy to prove that cl(l) = I* n A and I” = IA A = cl(l)A”. 
Notwithstanding the obvious importance of completions, they are not an easy ob- 

ject to deal with computationally, because they are rings of series unless the L-adic 
topology is discrete (L” = (0) for some n). 

A more suitable (at least for computational purposes) overring of A is the 
ZariskiJication A l + L of A, i.e., thz localization of A at the multiplicative closed 
system l+L=(l+g: geL}.16 AI+L is the ring of “formal fractions” (1 + g) -‘h, 
h E A, g E L, with the usual identification: 

16 There 

h =O. 
are no zero-divisors in l+t, in fact if gEL, heA are s.t. (l-g)h=O, then h=g”hEL”Vn, 

so 
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(l+g)-‘h=(l+g,)-‘h, if and only if (l+gl)h=(l+g)hr.” 

It can be identified with a subring of A”, since in A”, for each ge L, 1 -g has as 
its inverse the limit of the Cauchy sequence &=O,,Bn g’. Moreover Le= LA,+,= 
LA nAl + L induces a topology on Al+ L, whose restriction to A is the L-adic 
topology; the completion of A I + L for this topology is again A? Also, it is straight- 
forward to verify that Gr&A 1 + L) = GrLA(AA) 5: Gr,(A), and, having identified the 
three rings, that uLlp and inLe are the restrictions of V,_A and inLA and so coincide on 
A with vL and inL. Al + L is a Zariski ring, i.e., it has the following properties: 

(a) every ideal is closed for the Le-adic topoiogy; 
(b) for each ideal IcA,,~, IAAnAI,L=I, 

so that for each ideal IC A, cl(l) = IA1 + L n A. Moreover it is the smallest extension 
of A in AA which is a Zariski ring.18 

To each ideal Ic A, the homogeneous ideal inL(I) := (inL(a): a E I)cgrL(A) is 
associated. Clearly in(l) = in(cl(1)) = in(lA 1 + L) = in(rl\). An L-standard busis of I Is 
a finite set {gl, . . . . 8,) C I s.t. inL(l) = (inL(gl ), . . . , inL(g,)). l9 

Example 5.1. Let A := k[& . . . ,&I, L := (Xl, . . . J,). Then GrL(A)= A, with the 
usual grading; vL(f) is the order off; inL(f) is its initial form, inL(I) = in(l) is the 
ideal defining the cone of the tangents at the origin of the variety defined by the 
ideal I; we reobtain therefore the notions of Section 1, so that the L-adic topology 
on A is, very roughly speaking, the algebraic setting for the analytical notion of “in- 
finitesimal order”. 

We remark that the completion AA of A is the formal power series ring 

HE,, . . . 9 XJ], while its Zariskification Al + L is the local ring at the origin Lot(A), 

which stresses in this first example the computational advantage of the latter on the 
former. 

Prime ideals in A correspond to irreducible algebraic varieties in the affine space 
k”; prime ideals in AA correspond to (germs of) analytic irreducible varieties pas- 
sing through the origin; prime ideals in Al+L to “locally” irreducible algebraic 

varieties passing through the origin, and can be obtained by extending to Al +L 

ideals of varieties in k” which are not irreducible but have a single and (globally) 
irreducible component passing through the origin. 

So all the notions above, in this simplest case, are related to the “local” behaviour 
of a variety “near” the origin; we can also appreciate a major difference between 
the completion and the Zariskification: e.g. I:=((Y2-X2+X3)(1 +X))CA is not 

prime while J= (Y 2--X2+X3) is such; in Aj+L, IAl+L=JAl+L=(Y2-X2+X3) 

I7 So A,+L is effective, whenever A is such. The same doesn’t hold for A* which is a ring of series. 

l8 Because in such a Zariski ring the elements of 1+ L must be invertible. 

I9 The definitions aud the constructions leading to the concepts of Grobner and standard bases can be 

interpreted in topological terms so that they are a generalization of the notions related to L-adic 

topologies. For such a topological theory unifying the notions of Grobner bases, standard bases and L- 
standard bases, one can consult [28]. 
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is a prime ideal, since (1 +X) is invertible (corresponding to a variety not 
through the origin); however in A” we have the factorization Y 2 - X2 + X 3 = 
(Y+ Xg(A’))(Y- Xg(A )) where g(X) E k]lX]] is the formal power series correspon- 
ding to the Taylor expansion of the analytical function g(x) :=mx). 

xample 5.2. This leads to a second important case we have already treated (in Sec- 
tion 4), which is related” with the analytic study of singular points of algebraic 
varieties, for instance in the Newton-Puiseux algorithm [30,8] for determining the 
analytic branches of a curve at a singular point and more generally when studying 
analytic components of a complex algebraic variety. We have A := k [ [X,, . . . , X,&+,, 

the ring of algebraic formal power series (i.e., the ring of algebraic functions which 
vanish and can be developed into Taylor series at the origin), L := (X1, . . . , Xn). 

Again AA = k[[X,, . . . , XJ], while, A being local with maximal ideal L, A 1 + L =A. 

The geometrical interpretation is essentially as in the example above, prime ideals 
in Q corresponding to analytically irreducible branches at the origin of an algebraic 
variety. 

Before introducing the next two examples we need the following: 

Lemma 5.3. Let Q be a ring; iet HCJC Q be two ideais, with nJ’ = (0). Let 
A := Q/H, 71: Q -+ A the canonical projection, L := z(J). The following conditions 
are equivalenP : 

(1) H = n(H+ J”), i.e., H = cl(H) w.r.t the J-adic topology; 

(2) f-IL” = (0); 
(3) L contains a/l zero-divisors of A; 
(4) J contains all associated primes to H 

Proof. Cf. [31, V.I, Chapter IV, Theorems 12 and 12’1. Cl 

Example 5.4. Let Q:= k[Zr, . . . , Z,J; let HC JC Q be two ideals. Let A := Q/H, 
n : Q --+ A the canonical projection, L := n(J). Let us moreover assume that J is 
prime and that the conditions of Lemma 5.3 are satisfied. 

Under this assumption we can localize A at L, obtaining the local ring AL; we 
are interested in the topology on AL induced by its maximal ideal a := LAL. 
Remark that, AL being local, it coincides with its Zariskification. 

Let V be the variety defined by H (assuming H is radical) and W the subvariety 
of V defined by J, then A is the ring of polynomial functions on v, while the ring 
of rational functions on I/ is obtained by inverting those elements of A which are 
not zero-divisors, i.e., it is the ring of formal fractions 

*O Not as easily as the example above could induce to believe. 

*I Their geometrical meaning in case H ani J are radical ideals is that the variety defined by J is con- 

tained in each irreducible component of the variety defined by H. 
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g-‘J, $ E A, g E A, g not zero-divisor 

with the usual identification 

g- ‘f= g; ‘A if and only if gf! - glf= 0 

and the resulting arithmetics mimicking the one in Q. 
A polynomial function f~ A identically vanishes on W if and only if f E L,22 

therefore a rational function g-If is defined on W if and only if it has a represen- 
tative g;‘fi with g, $ L. So we have obtained that AL is exactly the ring of those ra- 
tional functions on V which are defined at each point of IV, while CI is the ideal of 
those rational functions on V defined and vanishing on IV. 

The prime ideals of AL canonically correspond to those prime ideals of A which 
contain H and are contained in J, so (again if M is radical) they describe those 
irreducible algebraic varieties which are contained in V and which pass through the 
subvariety IV. 

The notions related to the a-adic topology are, in a very rough sense, a generaiiza- 
tion of the concepts involving the “infinitesimal order” (see Example 5.1) in a 
“neighborhood” of W, for “germs of rational functions” over the topological 
space Spec(A) of all prime ideals (irreducible algebraic varieties) of A with the 
Zariski topology. 

Example 5.5. More in general, we can avoid requiring that J is prime, so: let 
Q:=k[Z,, . . . . Z,,], HcJcQ be two ideals, A :=Q/H, n:Q+A the canonical pro- 
jection, L := n(J); let us assume that the conditions of Lemma 5.3 are satisfied. 

We can study the L-adic topology of A; in this case the Zariskification will be 
given by AI+L. It is important to remark, for the applications below, that if L is 
maximal, then A 1 + L = AL.23 

If H is not closed for the J-adic topology, one should substitute cl(H) to H in the 
above setting; the algorithm we are going to discuss in the next section applies this 
substitution automatically. 

6. Standard basis computation in local rings 

In Section 3 we have seen that by using standard bases it is possible to explicitly 
obtain ord(a), in(a) for 61~ Lot(P), in(l) for IC Lot(P) and also to compute the 
order and the initial form of the residue class of a mod I (which are respectively the 
order and the canonical representative in k[ 1 of any normal form of a w-r.t- to 

22 Since this is equivalent to say that tlgc Q s.t. n(,~) =f, g E J. 
23 Since L is maximal, if acii L, tk KC the ideai generated by a and L is the whole ring, SO 1 =sa + b for 

some SEA, bE L; then (1- b)-Isa= I in AI+~, so a is invertible in AI+~ and A,-_CAI+L. Since if ad 
can be written 1+ b with b E L, then a@ L (otherwise 1 EL), the converse inclusion is obvious. 



a standard basis of I), so covering the situation discussed in Example 5.1. In Section 
4 we have extended this to k[[&, . . . , X,Jals (Example 5.2). 

-We intend here to show that tl-.; same technique can be used to cover the situation 
discussed in Example 5.4; we wr ‘11 do so by solving the more general but computa- 

tionally easier case presented in Example 5.5. First of all we remark that if we are 
able to compute u&r) and in&) for a EA, we have solved also the problem of 
computing “order” and “initial form” of elements modulo an ideal, because of the 
following result: 

Proposition 6.1. Let A be a commutative ring (Noetherian and with identity), L c A 
bean idea1s.t. nL”=(O).Let ICA,3:=cl(l)=n(I+L"), R:=A/s, n:A -4 the 
canonical projection, a:=n(L). Let aEA, b:= ir(a)#O. Then: 

(1) Gr,(R) = GrL(A)/inL(l). 
(2) There is c s.t. n(c) = b and inL(c)$in,(l). For such a c: v,(b) = vL(c) and 

in,(b) is the residue class of inL(c) mod inL(l). 
(3) v,(b) = min{ vL(c): z(c) = b). 

Proof. (1) We explicitly define a homogeneous morphism n: Gr,(A) -+ Gr,(R) 
whose kernel is inL(I). It is sufficient to define Z7(a) for a homogeneous a E Gr,(A) 
of some degree n; so a is the residue class mod L"+' of some a E Ln - L”‘l. Then 
b:z nt/Y\rn I& \=I L ? !et /% be the residue class of b mod an + ’ ; we define n(a) := p. It is 
clear that the definition doesn’t depend on the choice of a (since ~(L"+*)c a”+‘) 
and that the application is a morphism. 

We are left to prove that Ker(Z7) =in,(l)=inL(s). In fact if amine is 
homogeneous of degree n, then there is a E (3 f7 L”) -L” +’ so that a = in,(a), but 
then z(a) = 0. 

Conversely let a E Gr,(A), homogeneous of degree n be s.t. l7(cx) = 0, and let 
aEL”-L”+’ k s.t. a= inL(a); since Z7(a) =0, then b := n(a) E a”+‘; since 
&(a”+‘) = L”+* + 3; there are CE L”+‘, de5 s.t. a=c+d, but then vL(c)s 
n + 1 <n = vL(a) implies a = inL(a) = inL(d) E in&j). 

(29 Since n(a)#O, atEs= n(I+L”), so there is n s.t. aEI+Ln and aeI+L”+‘; 
by the first implication we have a = d+ c with CE L", d E I, so n(c) = b; if 
in&) E inL(I), there is dl E I s.t. inL(c) = inL(dl); but then cl := c- d, E Ln+ ', 
a=(d+dl)+cEI+Lnfl. 

Since inL(c)$inL(3), ~@~+L~'~=n-'(a"+~); so bEa”-a”+*, o,(b)=n=v&). 
Since CEL"--L"+*, by the definition above H(inL(c)) = in&(c)) = in,(b). 

(3) let c be as above so that inL(c) $ in&), and assume there is d s.t. n(d) = b 
and vL(d) < v&); then c - d E 3 and in&) = in&- d) E inL(3)j a contradic- 
tion. Cl 

In other words, the “order” of a modulo I is v,(b) and its “initial form” mod I 
is in,(b). 
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On the other hand we should be able to give a representation of the associated 
graded ring which is suitable for computations. Now if we are given a ring R and 
an ideal a, then we know that G-,(R)- @a”@+‘, which is clearly not a represen- 
tation very suitable for computational purposes. But since Q has a finite basis 

(b 1, . . . , b,), Gr,(R) is generated as an algebra over R/a by the residue classes 

P I, ...,pI of b r, . . . , b,, and so it is isomorphic to the quotient of a polynomial ring 

Wa)[& . . . 9 Xl] modulo a homogeneous ideal b. Clearly a representation of 
Gr,(R) obtained by explicitly giving R/a, Xi, . . . , Xr, and the homogeneous ideal b 
is quite suitable for computations. If, moreover, a is maximal and R is a finitely 
generated k-algebra, then R/a is a field K, which is an algebraic extension of k and 
can be effectively given by means of a Grobner basis of a; in this case we could like 
that the homogeneous ideal lj is explicitly given by means of a Grobner basis. 

We intend to describe in this section how, by means of standard bases and of the 
Tangent Cone Algorithm, it is possible to obtain such an effective representation 
for GrJR) when R=AL, a=cL (A, L and LP as in Example 5.4) or bil=A,+,, a=Le 
as in Example 5 5; and also to effectively compute v,(a) and in,(a) for each w E R, 
in,(l) for each KR. 

First of all, we discuss a very trivial generalization of Example 5.1, which will 
however be our main tool for solving the general problem. 

Let P:=k[Z, ,..., Zm, Yr, . . . . Y,], let p:=(Y, ,..., yS)cp; remark that gr$p(P)=P, 
graded by deg y : P --) IN, where degy(Zi)=O, deg,(q)= 1. 

We impose a well ordering < z on (Z,, . . . 9 -7,) and an ordering < y on 

<&..., Ys) which is anticompatible with the degree i.e., 

deg(m,)>deg(mz) implies ml c ym2 

and we order T, the semigroup of terms in P, by the tangent cone ordering c s.t.: 

mcm’ 
. 

if and only If my< ym; or (my= rn; and mzczmk). 

We will consider also the we!! ordering < ,+, on T defined by: 

mc,n if and only if degY(m)<degY(n) or 
(degy(m)=degY(n) and ma). 

Remark that under c , for-j+ P one has T(f) c 1 if and only iff E ‘$3, SO that Lot(P) = 
p1 +cD. Clearly if f e P, we can write it uniquely as: f = Ci= I...[ A; Ur; home- 
geneous (w.r.t. degy) and nonzero, degy(fi)<==*<degy(fi)<degy(f,+,)<***; 
then vllr(f)=degy(fi), inV(J’)=fi. Also: 

Lemma 6.2. If G is a standard basis for IC Lot(P) w.r.t. c , then it is a p-standard 
basis for I and {inV(f ): f E G) is a Griibner basis for inV(I) w.r.t. c ,,," 

roof. The proof of Proposition 3.1 can be applied verbatim. 0 

Let further (cf. Example 5.5) Q:=k[Z,,...,Z,,,]; let k?&KQ be two ideals, 



with I&:=(&, . . . . h,), J:=(f,, . . . . f,), let H= c~(H~) = r)(hf* + ~‘1). Let R := Q/H, 
x : Q+ R the canonical projection. Let P and ‘$5 be as above. 

Define p : P -+ Q by P(Zi) = Zi, p(q) =fj and let q : P-, R be the composition 
q=np; let A=R,+.,,,, L:=rr(J)A. 

emma 6.3. XI~ above defined q indtices 0 surjective morphism (which we will still 
denote by q) q : Lot(P) = P, +b 3 A, so that 

Ker(q)=(hI,...,h,,fi - &,e==9fm- Ym)=:% 

roof. q: Lot(P) --) A is the composition of the extensions of p: Lot(P) --) Qr +J 
and I~:Q~+~-‘A. The thesis follows since {h,, . . . , h,} is a basis of &Qr + J= 

HQ, +J= Ker(n). 0 

Then, as a consequence of Proposition 6.1, since gr,(A) 5: gr$Pr +,)/in, (3) = 
P/in,(g), after a standard set G of 3 is computed, grL(A) is explicitly given as a 
polynomial ring modulo a homogeneous ideal, which is given through a Grobner 
basis. 

More exactly we have: 

grL(A) = k[Zr, . . . , Zm, Yr , . . . , Y,]/inV (3). 

Moreover, since we have a Grobner basis of inV(3), we know the set B := {t E T: 

t*M,(in@))} = {IE T: r$M@)}. 
The vector space isomorphism between k[Zr+ . . . s Znl, YI, .‘. , K]/in&j) and k[B] 

can be used to impose on the latter vector space a product which makes it iso- 
morphic as a ring to k[Zr, . . . , Zm, I;, . . . , YJ/in#) and in turn to grL(A). It is im- 
mediate to verify that this isomorphism is degree preserving if we just assign to each 
b E B its degree degy(b) in P. We can therefore identify grL(A) with k[B]. 

Also the projection I7: P-, k[B] (cf. Proposition 6.1) can be easily computed by 
computing the canonical representative of an element modulo in-#). 

Therefore we have: 

Let a E Q - {0} c P, and let us compute b E P and a unit u s.t. 
u-lb is a normal form of a w.r.t. G. Let I33 be an ideal in P, F a standard set 
for I w.r.t. <. Then: 

MhO) = 03 U-9 = deg y Mb)), 

Wq(a)) = n(in, (b)), 

(q( f ): f E F) is a L-standard basis of q(1). 

. Let Q:=k[X,Y,Z], H:=(Y2-XZ), J:=(Y2-XZ,X3-YZ, 



A cwnputational approach to local algebra 183 

X 2 Y- Z’); since H is prime and contained in the prime ideal J, then H= cl(H). 
Let R:=&/H=k[x,y,s], A:=Rl+n(Jl, L:=z(J)A=(x3-yz,x2y-z2), P:= 

k[X, Y,Z, K’p;U]. Then 3=Ker(q)=(Y2-X2, Y2-XZ- Ic:X3- YZ-U,X2Y- 
2 2 - T), ‘$3 := (K T, U) c Lot(P). 

A standard basis of 3 is given by G:=(Y2-XZ,X3-YZ-U,X2Y-Z2-T, 
V, YW- XT, ZU- YT) so that 

ing(z)=(Y2-XZ,X3- YZ,X2Y-Z2,v,YU-XxT,ZU-YT), 

gr,(A) = (K [X, x Z]/J)[K W, V]/( V, YU - XT, ZU - YT) 

=(K[X, y,Z]/J)[T,U]/(YU-XT,ZU- YT). 

Iff:=x4-y3EA, a normal form of X4 - Y3 w.r.t. G is XU, so vL(f)= 1 and 
inL( f) =xu. A standard basis of (Xc/, 3) is 

GU (XW,X2T,XYT, YZT+ TW,XZT+ U2,Z2T+ T2,U3) 

so that a L-standard basis of (f) is {xu,x2t,xyt9yzt+ tu,xzt+u2,z2t+t2,u3) and 

inL((f)):=(xu,x2t,xyt,yzt,xzt,z2t,u3). 

Let us now assume, moreover, that J is prime (cf. Example 5.4). Then denoting, 
as in Example 5.4, a the maximal ideal of AL = RnqJl: 

Lemma 6.6. Let K be the field of fractions of Q/J; p: Q-+ Q/J= R/z(J) = A/L 
denote the canonical projection; o : P 3 Q/J[ 5, . . . , YJ c K [ q, . . . , IJ denote the 
morphism which coincides with p on Q and s.t. @I$) - :‘; _ Cwin: 

(1) J=inP(3)nQ; 
(2) ifF is a Griibner basis of in#) w.r.t. < ,,,, then FCI Q is a Griibner basis of 

J w.r.t. cz and p(F) is a Grtibner basis for p(in&$)) w.r.t. the restriction of < W 
to the terms of KIYl, . . . . yS]; 

(3) Gr,(A)=P/in&J)=(A/J)[&,..., YJ/p(in&j)); 

(4) Gr,(&,)=WK, ...9 Wp(iq.d3N; 
(5) let IcAL be an ideal: if G is a L-standard basis for IfI A, then it is a a- 

standard basis for I. 

roof. (1) W, fi = in,( fi - I$), so JC in, (3) fI Q. Conversely assume a E 
incp(3)nQ. Then there is bE3fIPs.t. in,(b)=a, i.e., b=a+c with cE(&,..., Y,); 
since c -I- C= b = C gi(fi- q), by evaluating at Y, = 9.. = Y, = 0 we obtain a= C gi fi 
for some g;E Q, so a E J. 

(2) Both facts zre well-known properties of Grobner bases (cf. [12]). 
(3) Is trivial. 
(4) V= { inL( f ): f $ L} is a multiplicative closed system, for if al, a2 E V, fi ,f2 & L 

are such that in(h) then f 1 f2 $ L, since L is prime, and ala2 = in( fi f2 ) E I/. 

Clearly V-‘Gr,(A) =z ;;1., . . . . YJ/‘p(in&‘$)), so we have to prove that Gr,(A+ 
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V-‘C&(A). In fact we obtain such an isomorphism in the following way: if a E AL, 
II = 6% with b $ L, we associate in,(a) with inl(b)-‘in,(c). It is easy to verify that 
the definition doesn’t depend on the choice of a nor on the choice of its representa- 
tion and that the resulting application is bijective and a morphism. 

(5) If aEI, a=b-‘c with bgL, then c- -badnA, so inl(c)E(inl(g): gEG)C 

GrL(A) and in,(a) =inL(b)-‘in&) E (inL(g): gf G)c V-‘Grt(A). El 

By means of Lemma 6.6 we obtain an explicit representation of Gr,(AL); in 
order to get computational results from it, we need some more insight on the way 
we present K. 

Let us consider B0 := {b E B: degr (b) = 0) C Q. Because FlT Q is a Grobner basis 
of J w.r.t. cz we have a k-vector space isomorphism between A/J and k[&], 
which by Grobner basis techniques allows to define a domain structure on k&J 
isomorphic to A/J and therefore to define a field structure isomorphic to K on the 
set of formal fractions {f-‘g:g’,g~k[&], f#O], so that we can identify K with the 
latter set. 

Let us now consider Bi :=(b~Bnk[Y,,..., Y,]}. Since p(F) is a Grobner basis 
for p(in&$)) w.r.t. the restriction of cW to the terms of K[Yi, . . . . Y,], it is easy to 
pro-de that Bi = {I; E T: b$M(p(in#)))}, so, again, we have a K-vector space 
isomorphism between Gr,(A,+K[Y,, . . . . Ys]/p(inV(s)) and K[Br] and so a ring 
structure on the latter isomorphic to the one of Gr,(AL). As a consequence: 

Corollary 6.1. Let ao, a1 E Q - (0) c P, a0 $3, and let us compute bo, b, E P and 
units uo, u1 s.t. u,“bi is a normal form of ai w.r.t. to a standard Sasis G of 3. Let 
133 be an ideal in Lot(P), F a standard basis for 4 w.r.t. < . Then: 

{ q( f ): f E F) is an a-standard basis of q(l)AL . 

xample 6.5 (colatinued). Actually J is a prime ideal and one can easily remark that 
J=in,(S)nQ, A/L=Q/J=k[X, Y,Z]/(Y2-XZ,X3- YZ,X2Y-Z2) so that K= 

k(C ul, 0 where q2 -~&++~++O. 

Since Gr,(A) =K[X, Y, Z]/J[T, U]/(YU-- XT, ZU- YT) one has Gr,(A,)= 
[T, U]/(qU- CT, &I-- qT)==K[T] by identifying U with </VT= q/CT, since 

q2-SC=0. 
Since a L-standard basis of (f) is [xu,x2t,xyt,yzt + tu,x?;t + u2,z2t + t2, u3}, an 

a-standard basis of (f )AL is (T > . 

Already in this easy example, we must remark that L-standard bases can be quite 
complex also if a-standard bases are easy, and, especially, that th,o arithmetics of 

Y under this presentation, can easily become unfeasible for the lack of canonical 
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representatives for elements, which require to perform arithmetics mod J (and SO 
normal form computations) just for testing equality. 

If however J is a maximal ideal, then K= Q/J and is isomorphic to k[&]. &SO 
AL=A, o,=vL, in,= inL, Gr,(AL) =grL(A) so we are reduced to the easier case of 
Proposition 6.4. 

Moreover if c z is a lexicographical ordering, the (reduced) Griibner basis of J 
is given by {gl, . . . . 8,) where each gi is the minimal polynomial of the class of Zi 
mod J, over the field K[Z,, . . . , Zi_#(fi, . . . 9 fi_1). SO k[&] is just the usual 
presentation of the algebraic extension K over k. 

Moreover (in case k is of char 0), if we are willing to perform a random linear 
change of coordinates substituting 21 with 2, - C CiZi (Ci E (I?), the reduced Griibner 
basis of J becomes (probabilistically) {g&), Z2 - gz(Z1), . . . , Zm - g&Z,)}, so that 
k[&] is the usual presentation of the simple algebraic extension K over k. 

The interesting fact is that a bit more of algebra allows to show that one can effec- 
tively reduce oneself to this case. 

For that we must first compute a GrGbner basis of the prime ideal J. From it 
[6,16,7,18], we can easily obtain a maximal subset { Zi,, . . . , Zd} of algebraically in- 
dependent variables mod J. Let us further relabel our variables denoting 

NJ 1, . . . , Ud} the algebraically independent ones, and { I$ ..#, V,} the remaining 
ones. 

Primbasissatz [14]. Under the assumptions and with the notation above, there are 
polyncmials gl, . . . ,gr, g, giE k[Ul, . . . . Ud, &, . . . , &J[VJ with leading coefficient 
in k[&, . . . , &I, gW&, -.a, &-j] S.t. denoting Q” := k( L$, . . . , Ljd)[ 6, . . . , v,], 

(i) each gi is irreducible over k(&, l -., &)[Vl, . . . . f$_,]/(gl, . . ..gi_l). 
(ii) (gt , . . ..gr).g= J, 

(iii) Jo := (gl, . . ..g.)Q’ is a m aximal idea? and K= Q”/Jo, 
(iv) (gl, . . . , gJ is a reduced Griibner basis of Jo, 

(9 Q$ = QJ l 

Proposition 6.8. Denote Ho := HQ’, R” := Q”/Ho, z” : Q” -+ R” the canonical pro- 
jection. Then n”(Jo) is a maximal ideal in R” and R&O) = AL. 

Proof. Both rings are the quotient of Q~o = QJ by the extension of H in Q$= 

Q J* q 

ample 6.5 (contin ). A lexicographical GrGbner basis of J is { YZ - X 3, 
-X2Y,XZ- Y2, X4}, from which we know that a maximal set of 

algebraic independent variables is {X}. So Q’= k(X)[Y, 21, Ho := (Z- l/XY 2), 
(Z- l/XY”, Y3-X4), R”:= Q’/H’=k(X)[y,z], Tt”(J’)=(z-l/Xy2, y3-X4). 
= Q”/Jo = k(X)[q, c] with q3 = X4, c = t, !.Xq2. 

So we take P:=k(X)[Y,Z,U, V], $=(Z-1/XY2,Z-l/XY’-U, Y3-X4- V), 
p := (U, V). 



A standard basis of 3 is given by G:== {Z-l/XY2, W, Y3-X4- V} so that 

inV(3)=(Z-I/XY2,U, Y3-X4), 

gr&l+K(X)[Y,Z]/JO[U, V]/(U)=K[V]. 

Iff:=yz-X3EQo, a normal form of YZ-X3 w.r.t. G is l/XV, so u,(f)= 1 and 
in,(f) = 1 /XV. A standard set of (1 /XV, 3) is 

so that a a-standard basis of (f) is { V}. 

7. The effective method of the associated graded rings 

The chapter on local algebra of the classical treatise [31] begins with a section 
headed “The method of associated graded rings”. The basic idea is as follows: even 
in the most general setting we presented in Section 5, GrL(A) is the quotient of a 
polynomial ring over A/L modulo a homogenous ideal. Since the structure of such 
a ring is more easy to handle, one can hope to get informations on A and its L-adic 
topology, by solving related questions on Gr,(A). 

In the setting we discussed in the previous section, we have something more, 
namely an explicit presentation of C&(A) as a polynomial ring modulo a 
homogeneous ideal, which is given through a Grobner basis. 

So, at least in principle, the method of associated graded rings is turned into a 
computational tool, since, because of this presentation of Gr,(A), Grobner basis 
techniques can be used to find explicit solutions to a variety of questions on it. 

In what follows, we will mostly restrict to the case of a local ring AL and to the 
topology of its maximal ideal a, assuming that Gr,(A,) is explicitly given as a 
polynomial ring P over K*- .-AL/a, modulo a homogeneous ideal H given through 
a Griibner basis: 

Gr&lL) -K[y,, ..=,yJ =K[Y,, . . . . Y,]/H 

and that we know elementsfi, . . ..fseAL s.t. yi=in,(fi). 
In the easiest case of Example 5.1, AL = Loc(P)/J, a = (XI, . . . , Xn), we have s = n 

and: 

[Y,, .*.,Y,l =K[Y,, l *.9 Y,]/H with H= in(J) and yi = in(Xi). 

In the case A,=k[[X,, . . . ,X,.&,/J (Section 4) we have: 

with H= in(J) and yi = in(Xi). 

In the case of Example 5.4 (with notation of Lemma 6.6) we have: 

with =p(ing($))j 

and Yi = inr.(q(A)). 
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Let us remark explicitly that in all these cases, AL is effectively a k-algebra for 
some computable field & and kC K. 

7. I. Dimension 

It is a classical result that dim(&) =dim(Gr,&J). Moreover if H is an ideal in 
the polynomial ring P=K[Yi, . . . . yS] and a Grobner basis of H is known, 
dim(WH) = dim(P/M(H)) and there are several algorithms [6,16,7,18,11] to com- 
pute dim(P/M(H)). 

One can remark that the computation of the dimension is easier if one starts with 
a lexicographical Grobner basis, but very often to compute the lexicographical 
Grobner basis is very hard. 

7.2. Systems of parameters 

A system of parameters in the local ring AL, dim(&) = 6, is a set {a,, . . . , as) of 
elements of AL which generate a primary ideal for the maximal ideal u. It is easy 
to show that: let il 1, . . . , Ad be homogeneous elements in P s.t . the radical of 
H, := H+(A,, . . . . Ad) is (5, . . . . Y,) (which can be checked testing if dim(Hi) =0) 
and let al, . . . . adEAL be s.t. in(ai) is the image of Ai modH; then {al,...,as} is a 
system of parameters. Moreover for a generic choice of cij E k, Li = C cij 5 satisfies 
the condition above. 

So a system of parameters is obtained by choosing random cij E k and setting 

ai := z ciifje Checking if a given set is a system of parameters is easily done by the 
dimension test above. 

7.3. Hilbert function 

If I is a homogeneous ideal in the polynomial ring P=K[&, . . . , Y,], the Hilbert 
function of 1, Hilbp(I) : N + N is defined by letting Hilb& n) to be the dimension 
as a -K-vector space of the degree n component of the graded module P/H. It clearly 
coincides with the Hilbert function of M(I), which can be computed by com- 
binatorial techniques [20,5,15] and it is a polynomial for sufficiently large n. 

If A, is a local ring with maximal ideal a and J an ideal in A,_, the Hilbert func- 
tion H,,(J) : IN + ib.J is defined by HilbA,(J, n) = length(AL/(J+ a”)), where the 
length of an AL-module 1M is the length r of a maximal strictly descending chain of 
AL-modules M=M,XV, > =KU&=(O). 

It can be easily proved that HilbA,(J, n) = Ci=o...,, Hilbp(in,(J) + 
computation of the Hilbert function (and of the Hilbert polynomial) of an ideal in 
a local rin5 rr is reduced to the same problem on polynomial rings. 

Many interesting invariants (like the dimension, which is the dimension of the cor- 
responding quotient ring and the multiplicity) of the ideal JcA, can be directly 
read off from the Hilbert polynomial. 

A more general situation has been studied with similar techniques in [29]. 
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;. 4. Regularity 

A local ring is called regular whenever its associated graded ring is isomorphic to 
a poiynomiai ring. The geometrical meaning (in the case of Example 5.4) is quite 
easy; with the notation of Example 5.4, this means that the variety defined by J is 
a regular subvariety of the one defined by H. 

In the representation we obtain for Gr,(&) this doesn’t necessarily mean that 
the ideal H is the zero ideal; it just means that it is generated by linear t;ements. 
This can be however easily checked and, if the ring is regular, it is immediate to 
modify the presentation of G&4,) in order to present it as a polynomial ring. 

7.5. Resolutions 

Two algorithms to compute (the initial modules of) a free resolution of an ideal 
I in a local ring AL (as in Example 5.4) are presented in [ 131. 

The first algorithm makes use of the fact that (like Buchberger’s algorithm) the 
Tangent Cone Algorithm, while computing a standard basis (gt, . . . , g*) of an ideal 
in Lot(P), produces also a basis of the module of syzygies among the gi (which is 
a submodule of Lot(P)‘). By the extension of the algorithm to modules (case 2) the 
same result holds. So each module of syzygies can be iteratively computed by com- 
puting a standard basis of the previous one (as in Bayer’s [4] resolution algorithm 
over a polynomial ring). 

The second is a constructive version of the following theorem in [27]: 

Theorem 7.1. Each graded Gr,(A,)-free resolution of in,(l) lifts to an AL-free 
resolution of I which is obtained by adapting the techniques proposed in [21] and 
uses the notion of T-standard bases. 

8. Isolated singularities 

The Tangent Cone Algorithm for modules (case 1) has been applied in [ 19,261 to 
the study of isolated singularities. 

Let V be a variety in C” with an isolated singularity at the origin; two important 
invariants of the singularity are the Milnor number p and the Tjurina number r of 
the singularity, the first being a topological invariant and the second an analytic in- 
variant of the singularity. 

In case V is a complete intersection variety with an isolated singularity, both 
numbers have an easy characterization as dimensions of C-vector spaces; namely let 
V be a complete intersection variety in C’ with an isolated singularity at the origin; 
in particular V is given by equations fi = l = fm = 0, where J;: E C [X,, . . . , Xn],24 
f (0) = 0. 

24 Actually one should require the fi to be convergent power series; the (nonessential! restriction is due 
to computability reas0r.s. 
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One can explicitly give, in terms of the J;:, bases for an ideal I, c C [[X,, . , _, XJ] 

and a module C&C C[[X,, . . ..X.J]“, s.t. 

(1) W&9 l **, XJVl, and W&, ...9 . X,J]“/ UT are finitely dimensional Gvector 
spaces, 

(2) p = dim& [[Xi, l , XJ]/IJ, z= dim& [IX,, . . . , X,,]]*/U,). 

Lemma 8.1. Let {f,, . . . . ft} dt[Xl, . . . . X,,] =: P, denote by 1 the ideal they generate 
in k[Xl, . . . , X,J, by J the ideal they generate in k[[X,, . . . , X,,]], by Lot(I) := 
ILoc(P). If J is a O-dimensional ideal, then: 

dimk k[[X,, . . . , XJ] LJ = dimk Loc(P)/Loc(l) = dimk P/M, (I) 

where < is any total semigroup ordering on T s.t. w,(xi>< 0 for each i. 

Because of the previous lemma and its generalization for modules, both y and r 
can be computed easily by means of the Tangent Cone Algorithm. 

In a similar way, other invariants (related to the Poincare complex of the 
singularity) for isolated singularities can be described in terms of the finite dimen- 
sion as C-vector spaces of modules UZ [[Xi, . . . , X,J]‘/U, for some submodule Li ex- 
plicitly given through a basis. 

By the generalization of the Tangent Cone Algorithm to modules, such invariants 
have been extensively computed and used to derive theoretical results [ 19,261 on 
isolated singularities of curves in UZ2 and complete intersection curves in c3. 
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