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Summary

Given a box in Mn containing an isolated root £ of a set, S', of polyno
mials in Z[xi , . . . ,  xn] how can the sign of a g(£) be determined where 
q G Z[xi , . . . ,  xn]? An effective method for solving this problem would have 
applications in graphics programming and in several areas of computer 
algebra.

A number of algorithms are presented which solve the problem in both 
general and special cases (e.g. univariate polynomials, triangular systems, 
etc). The emphasis is on finding ‘gap functions’, i.e. functions K (S,q ,t;)  
such that |<?(£)| <  -^(S, 9 ,0  implies #(£) ^  0. If g(£) ^  0 its sign can be 
found by numerical means.

The numerical techniques make considerable use of interval arithmetic and 
include an algorithm for determining whether a given box does contain 
exactly one isolated solution of S.

An extension of the problem to ‘elementary expressions’ which include log 
and exp terms is also discussed and some conjectures and experimental 
findings presented.



C ontents

A ck n ow led gem en ts 6

1 Lazy E xact R eal C om pu tation  7

1.1 Exact C om putation.................................................................................... 7

1.2 A Model of Exact C om putation ............................................................  10

1.3 Lazy Algebraic Computation...................................................................  13

1.4 Methodology .............................................................................................. 14

1.5 The Rest of the R eport.............................................................................  17

1.6 An E xam p le .................................................................................................  18

2 E xact A r ith m etic  20

2.1 Introduction.................................................................................................  20

2.2 Interval A r ith m etic .................................................................................... 21

2.2.1 N o ta tio n ............................................................................................  23

2.2.2 Interval E xten sion s........................................................................  24

2.3 Interval Iteration M eth o d s ......................................................................  28

2.3.1 The Krawczyk O p era to r ..............................................................  29

2.3.2 Exclusion T e s t s ............................................................................... 30

1



2.4 Exact Arithmetic rnsing Intervals.............................................................  32

2.4.1 Algorithm \ f  a l id a te ........................................................................ 34

2.4.2 Algorithm A p p r o x im a te .............................................................  44

2.4.3 Correctness and Complexity of V a l i d a t e ................................. 44

2.5 Non-Polynomial Fm nctions.......................................................................  48

2.6 Conclusion....................................................................................................... 50

3 A lgebraic N o ta tio n  aind B asic R esu lts  53

3.1 N o ta tio n ..........................................................................................................  53

3.2 Measures of S ize ............................................................................................  54

3.3 Roots of P o lyn om ia ls .................................................................................  55

3.4 Polynomials as Determinants ................................................................. 56

3.5 The Bezout N u m b e r .................................................................................  59

4 Special C ases 61

4.1 Introduction...................................................................................................  61

4.2 Univariate R ep resen ta tion ........................................................................ 62

4.2.1 The Single Variable C a se .............................................................  62

4.2.2 Equality of Algebraic Numbers ............................................ 64

4.2.3 The General Univariate Case ...........................................  67

4.2.4 Obtaining at Univariate R epresentation................................... 69

4.3 Rational R ep resen ta tion ........................................................................... 71

4.4 Triangular S ystem s;..................................................................................... 72

4.5 Gap Functions for (General S y s te m s........................................................  75

2



4.6 Conclusion.......................................................................................................  77

5 E lim in ation  M eth o d s 79

5.1 Characteristic E q u ation s............................................................................  79

5.2 Grobner Basis M ethods...............................................................................  80

5.3 Polynomials as Linear Operators ........................................................... 81

5.4 Avoiding the Characteristic E q u ation ...................................................... 84

5.5 Univariate S y s te m s ...................................................................................... 85

5.6 Computing Upper Bounds for q ............................................................... 86

5.7 Nested Radical Expressions ...................................................................... 87

5.8 A Digression...................................................................................................  88

6 R esu lta n t M eth o d s 90

6.1 The Macaulay R esu lta n t...........................................................................  90

6.1.1 Canny’s Gap F u n c tio n ................................................................  90

6.1.2 A New Gap F u n ction .................................................................... 91

6.1.3 Root Separation.............................................................................. 94

6.2 The Multivariate Dixon
Resultant ...................................................................................................... 94

6.2.1 The Dixon R esu lta n t...................................................................  94

6.2.2 Applying the Dixon R esu ltan t..................................................  96

6.2.3 A Lower Bound from Input
P a ra m eters .........................................................................................101

6.2.4 The Univariate C a s e .......................................................................104

6.2.5 The Dixon u -R esu ltan t................................................................... 105

3



7 C losed  Form  E xpressiom s 106

7.1 Closed Form C a lcu la tio n ............................................................................ 107

7.2 Gap Function Structuires............................................................................ 109

7.3 Rational E x p ress io n s ................................................................................... 110

7.4 Algebraic Expressions................................................................................... 114

7.4.1 General Algebraic Expressions...................................................... 114

7.4.2 Nested Radicail E x p ress io n s ..........................................................117

7.4.3 Conjectures amd Non-constructive R e s u l t s ............................... 117

7.5 Exp-Log Expressions ................................................................................... 119

7.5.1 The Uniformitty Conjecture.............................................................119

7.5.2 Counting E xpressions....................................................................... 120

7.6 Empirical R esea rch ....................................................................................... 125

7.6.1 Continued Fraactions ....................................................................... 125

7.6.2 Exhaustive Search ...........................................................................126

7.6.3 Statistical Infcorm ation....................................................................129

7.7 Refining the Uniformiity C onjecture........................................................ 133

7.7.1 C ounterexam ples..............................................................................133

7.8 An Alternative Uniformity Conjecture ..................................................135

7.9 C on clu sion s..................................................................................................... 138

8 C onclusion  140

8.1 Interval Arithmetic for Exact A rithm etic ................................................ 140

8.1.1 Practical Issu ees................................................................................. 140

8.1.2 Validating F u m ction s.......................................................................141

4



8.2 Transforming Equations to Univariate F o r m ........................................142

8.3 Elementary N u m b ers....................................................................................143

8.4 Grobner and Resultant M ethods............................................................... 144

8.5 The Uniformity Conjecture..........................................................................145

8.6 F in a lly ...............................................................................................................145

A  P seu d o -C o d e  N o ta tio n  146

B A lgorith m s 148

R eferences 151

5



Acknowledgem ents

Prof Ken Jukes at the University of the West of England agreed to my doing this 

work despite it greatly diverging from the general research direction of UWE. He, 

and his successors in the Faculty of Computing and Mathematical Sciences, were 

generous in providing time and resources throughout.

Dr Dan Richardson was the ideal supervisor and is a good friend. Hopefully, as 

we both approach retirement we will have more time to sit in the BTP, drink 

coffee and just talk - without thinking too much about mathematics.

Finally, this thesis would never have been written without the unwavering and 

unconditional support of my wife, Eleanor. She was understanding and encourag

ing throughout the eight years it took to do and in the last few months especially 

provided the environment that ensured it was finally completed. I owe her more 

that I can say for this and for everything.

6



Chapter 1

Lazy Exact Real C om putation

1.1 Exact Com putation

The aim of this thesis is to describe practical algorithms for the implementation of 

exact computation with subsets of the real numbers. Given some subset IK of the 

real numbers1, we interpret the term exact computation to refer to the possibility 

of defining algorithms for numbers in K including at least the following:

1. (Approximation) Provide approximate numerical representations of num

bers to arbitrary precision, i.e. given e > 0 and a representation of cn £ IK 

find /  £ Q  such that \ f  — a\ < e.

2. (Field Operations) Given representations for a, (3 £  IK, find a representation 

for a  +  /?, a  — (3, a x  p, a r where r £ Q  (assuming the result to be real and 

taken to be positive where possible) and a / p  (if p  ^  0).

3. (Sign Determination) Decide if a  >  /?, a  =  P or a  < p. Equivalently, 

determine the sign of a  — p.

1 References to ‘reals’ should always be taken as shorthand for ‘computable reals’
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The term exact arithmetic is used here for algorithms and/or systems meeting 

the first two requirements; the term exact computation is reserved for when the 

last requirement is also met.

Exact computation is clearly possible in Z and Q. On the other hand, from the 

time of Turing’s earliest papers [Tur36, Tur37], it has been known that the third 

requirement, sign determination, is generally undecidable. Thus any theorem 

containing such statements as; ‘if a =  0 . . .  ’, ‘if a > b . . .  ’ or ‘if a ^  b . . .  ’ fails to 

be constructive if a and b are arbitrary reals. Equivalently, and of greater practi

cal importance, algorithms cannot depend upon decisions about the equality or 

inequality of real numbers.

One response to the general lundecidability of sign determination has been the 

development of algorithms for exact arithmetic with sign determination replaced 

by an approximate equality test = e which compares values to within some pre

defined tolerance e. Clearly any system supporting the first two criteria of exact 

computation can support = e testing. Examples include iRRam [MiilOO] and XR 

(an implementation can be fomnd at [Bri02]), while programming libraries such 

LEDA [Alg] and LiDIA [LiD] provide data types with similar properties.

A less common response, the one adopted here, is to seek algorithms for classes 

of number beyond Q for which exact computation is possible. That it is possible 

in A (the algebraic numbers) has been known for many years, though few good 

algorithms exist. An important subset of the algebraic numbers are those defined 

by nested radical expressions (e.g. ^ 1  +  y/^7^) which are of particular relevance 

to geometric computations. Exact [Fv93] provides an early implementation of 

sign determination in geometric computation. The more recent CORE library 

for computational geometry [Yap] provides a more sophisticated zero testing en



vironment.

Papers by [Cav70] and later by Richardson [Ric97] and MacIntyre &; Wilkie 

[MW96] show that (assuming the correctness of Schanuel’s conjecture) sign deter

mination can be extended to the elementary numbers (the closure of the algebraic 

numbers under exp(-)). Richardson’s proof is constructive and provides an algo

rithm (which may fail to terminate in the case that Schanuel’s conjecture is false) 

for deciding if an elementary constant is zero.

Schanuel’s conjecture states

C onjecture 1. / / a i , . . . , a n E C are linearly independent over Q then the tran

scendence degree of Q [ a i , . . . ,  a n, ea i , . . . ,  eQn] : Q is at least n.

The conjecture, if true, implies several important results (including the algebraic 

independence of ir and e). Unfortunately it seems particularly resistant to proof or 

dis-proof [Ax71]. It is uncertain for what further sets of reals sign determination 

is possible.

Even if we assume Schanuel’s conjecture, we do not have a practical way to solve 

the fundamental problem. That is, we do not have any solution method whose 

complexity is polynomial in the (bit) size of the input, and many people believe 

that no such solution method exists. On the other hand, if the problem is truly 

intractable, there is a remarkable scarcity of difficult specific examples.

Nevertheless, the problem of deciding whether a constant expression is zero is 

important to many areas of mathematics, especially computer algebra. Van 

der Hoeven [vdHOO] gives some examples including: simplifying expressions e.g. 

y/9  +  4 \/2  —2\/2  =  1 and deciding if expressions are defined e.g. log( \ / 9 -h 4 \/2  —

9



1 — 2\/2)- To these we could add the general comments above and, as additional 

examples: finding limits automatically, e.g. the behaviour of lim ^oo A  +  Bx  

depends on whether B =  0 and deciding if over constrained equations have solu

tions, e.g. is there a solution to x\ — 2 =  0, x\ — 9 — 4xi =  0, x2 — 2x\ — 1 =  0? 

(decide if any two equations have a common root then decide if the third is zero 

at that point).

Another application occurs as part of quantifier elimination in semi-algebraic sets, 

most familiarly within Collins’ CAD algorithm [ACM84]. See also [Ped91b] and 

[Can91] for sign determination methods used as part of CAD.

In this thesis therefore we describe algorithms which could be used for those 

classes for which the problem is known to be solvable including the discussion of 

some practically useful subsets (such as nested radical and exp-log expressions).

1.2 A M odel of Exact Computation

Following the ideas of Richardson [Ric97, Ric96a, Ric96b, Ric99a] we define exact 

computation more precisely in the following way.

D efin ition  1. An n-box B  C Rn is the Cartesian product of n closed intervals 

with rational endpoints. The width of a box, w{B ) is the maximum width of its 

intervals and m (B ) denotes the (rational) vector composed of the midpoints of 

the intervals2.

D efin ition  2. Let B  be an n-box and let F  :C Rn —► Mn be continuous over B  

with continuous derivatives then if there exists exactly one point £ G B at which

2 A fuller table of notation used for boxes and intervals is given in §2.2.1 where other con
structs are needed.
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the Jacobian J(F , £) is non-singular and F(£) =  0 then Fb (the restriction of F  

to ~B) defines £.

The focus of this thesis will be exact computation over Z(£) the set of rational 

expressions in components of £. Strictly, since £ =  ( £ i , . . . , £ n) is only given 

implicitly, we should, in a constructive context, view the £* as indeterminates 

rather than ‘values’. This can be confusing and instead we take the elements of 

Z(£) to be represented by corresponding elements of Z ( x i , . . . ,  xn). In general it 

is useful to have a notation which emphasises the structure of the representation 

rather than the value and so q E Z ( z i , . . . ,  xn) will represent the value expressed 

as g(£).

D efin ition  3. An  exact real computation system is a 4-tuple (F , V, A, Z )  where 

T  be a countable set of functions from Rn to M and V, A  and Z  are algorithms 

such that:

1. (Validation) Given a function F  E F n and an n-box B ; V(F, B) determines 

whether Fb defines a point

2. (Approximation) If Fb defines a point £ say, then given any e >  0, A(F, B, e) 

returns C such that £ E C C B  and w (C) < e.

3. (Zero Testing) If Fb defines £ then given q G Z ( x i , . . . ,  xn), Z (F ,B ,q )  

decides if q{£) =  0.

The first algorithm is required because of the general method used to define £. In 

general, given F  and B  it will not be obvious whether Fb is a definition of a point. 

An alternative approach is to assume the function has the required property and 

continue from there. But at some point such verification is needed and it seems

11



appropriate to include it here. This requirement might be very simple in some 

cases: for example if F =  (a\X\ — b i , . . . a nxn — bn) with a*, 6* G Z. It is of 

course possible to define functions whose validation would be undecidable, see for 

example [Ric68].

The need for the second two algorithms is directly related to the requirements at 

the head of the chapter.

P rop o sitio n  1. An exact real computation system as defined above is capable of 

meeting the requirements for exact computation given at the start of this chapter 

for K  =  Z(£) with each a  G K represented by the the corresponding expression in 

Z[xi, . . . , x n] if  Z[x1}. . .  ,x n] C T .

Proof. 1. (Approximation) Using A , for any S >  0 a box C can be found 

containing f  with w (C) < 25. £ can be approximated by m(C) (the vector 

of mid-points of the intervals comprising C) with accuracy <  ±<5. For any 

a  G Z ( x i , . . .  , xn), v =  a (m (C)) gives an approximation to a(£). Clearly 

la (£) — v\ < £ for some 5.

2. (Field Operations) For a,(3 E Z (x i , . . . ,  xn) so are a  +  (3, a  — (3, a x  (3 and 

ol/ p. For the last case algorithm Z  can decide if /?(£) =  0 and thus whether 

a /P  is a valid representation.

For a r it is sufficient to consider the case where r =  1 /m  and a  G Z [x i , . . . ,  xn\ 

Replace F  =  F (x i , . . . ,  xn) =  ( / i , . . . ,  /„) by F' =  ( / i , . . . ,  / n, x™+1- ol) and 

augment B  with an interval containing a (£ )1/,m (which can be done by ra

tional arithmetic).

3. (Sign Determination) Z  can decide if 5 =  0. If not, let V{ be a sequence of 

approximations to <5(£) such that |5(£) — Vi\ < 2~\ Such a sequence exists
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from part 1 of the proof. Since 5(£) ^  0, for some i it must be the case that 

0 0  [vi — 2~l , Vi +  2“*]. The sign of 5(£) is the same as that of Vi.

□

The model described above may be called ‘lazy’ computation in the sense that 

no attempt is made to produce a simpler representation of, say, a(£) +  /?(£) than 

the expression a  +  (3. Ideally we should like algebraic computation to be lazy in 

another sense which is described in the next section.

1.3 Lazy Algebraic Com putation

The ‘standard’ representation of a real algebraic number is its minimal polynomial 

together with an interval identifying which root is being specified. In this case, 

F  =  (pi (xi ) , . . .  ,Pn{xn)) where the Pi are the minimal polynomials.

Of course univariate defining polynomials are often not ‘given’ as part of a prob

lem. For example, the first quadrant intersection of x2 +  y 2 =  4 and x +  y  =  1 

defines a pair of real algebraic numbers. Such implicit definitions arise quite nat

urally, and though it is possible to extract univariate polynomials which define 

the same numbers, it adds a further overhead even before any arithmetic is done.

The standard model is also difficult to extend to the elementary number case. It 

is not known whether a set of n polynomials in Z[xi , . . . ,  xn, exp(xi ) , . . . ,  exp(xn)] 

can be reduced to n univariate forms (each a polynomial in some Xi and exp (re*)), 

for example3.

3Discussion with Dr Richardson
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The ideal scenario would require only that the function defining f  is a general 

polynomial mapping. Current experience suggests that this is an unrealistic hope, 

especially if, as implied here, the aim is to do repeated calculations with the 

In such a case, for all but the smallest systems, some ‘pre-processing’ may convert 

F  to a different form which enables subsequent computations to be carried out 

far more efficiently. For example, a Grobner basis for the polynomials could 

be computed - this has the advantage that it can be adapted to deal with the 

elementary case also. Alternatively, in the purely algebraic case, some linear 

combination 0 of the will be a primitive element of the field Q[£ i , . . . , £n] 

allowing each & to be represented as a rational function of 0.

1.4 M ethodology

Symbolic manipulation tends to be slow on computers whereas arithmetic is fast. 

Again following Richardson [Ric96b], we use of a combination of algebraic and 

numerical methods. Our model of exact computation assumes three algorithms. 

The next chapter addresses the first two problems: deciding whether a function 

F  and a box B  defines a point and providing an efficient way of approximating a 

value. Both of these are solved by primarily numerical methods.

How to decide, for q G Z ( x i , . . .  ,x„), whether q(£) =  0, the third algorithm of 

our model is the major burden of this report.

In the purely algebraic case there are a spectrum of approaches which might be 

used. At one extreme it is possible to determine a polynomial x{z ) such that 

x (q( 0 )  =  0. A necessary condition for <?(£) =  0 is that x(0) — sufficiency is 

achieved by showing that no other root of x  could correspond the value of g(£).

14



One step toward a numerically based solution is to find not x, but estimates of 

its coefficients. A knowledge of the upper bounds of these is sufficient to provide 

a lower bound for any non-zero root and from this numerical methods alone are 

sufficient. The practical difficulty encountered is that such estimates can give 

very poor bounds and lead to very large floating point mantissae being required.

An ideal scenario would be to bypass x  and use a purely numerical approach. 

Since J(F, £) is non-singular, £ is an isolated root of F. Thus either #(£) =  0 or 

there exists L >  0 such that \q{£)\ >  L.

Functions yielding bounds such L above are called gap functions or witness con- 

jectures [vdHOO], i.e. a gap function is a mapping G such that 0 G(F, B, q) <  

|^(01- Equivalently, \\og2(G(F, B , q))\ is a measure of the number of bits neces

sary to distinguish q(£) from zero. Unfortunately few gap functions are known 

and those that are almost always badly underestimate the actual bound.

In the context of this thesis, a modified definition of exact computation is appro

priate. The version used here will be:

D efin ition  4. An exact real algebraic computation system is a 4-tuple (F , V, A , Z )  

where T  =  Z [z i , . . . ,  xn] and V, A  and Z  are algorithms such that

1. (Validation) Given a function F E F n and an n-box B , V(F, B) determines 

whether Fb defines a point.

2. (Approximation) If Fb defines a point f  say, then given any e >  0, A(F, B , e) 

returns C such that ( G C c B  and w( C) < e.

2. (Bounding) If Fb defines £ then given q €  Z ( x i , . . . ,  xn), Z {F , B,  q) returns 

a value L G Q such that |</(f)| < L implies #(£) =  0.

15



The restriction of T  to polynomials is shown in Chapter 2 to provide a possible 

validation algorithm. In fact the algorithm is more general Chapter 2 shows how 

it may be extended.

It is not necessary that a polynomial map have only isolated zeros, since an addi

tional polynomial 1 — xn+i det J{F)  can be appended to the map to restrict the 

solutions to isolated points (note that Fb defining a point does not not necessarily 

imply that F  has only one zero in B , just that there is only one at which J (F )  

is non-singular). It might seem that this could be used more widely but there 

is one problem: over what interval is xn+i to be defined? In the algebraic case 

there is a gap function which can be used to define a lower bound for det J (F )  

and the upper bound over a box B  can easily be estimated.

Combining a gap function L with part 3 of Prop. 1 provides a sign determination 

algorithm. As in that proof consider a sequence Vi such that \q(£) — Vi\ < 2~%. It 

may be that for some Vi, q(£) is shown to be non-zero. If not, lim^oo Vi =  0 and 

thus for some i, max(|uj — 2“*|, \vi +  2' - ;i ) <  L at which point q(£) is deduced to 

be zero.

Gap functions are only one way of deciding the sign of q. There are sometimes 

algebraic or other ways of making the decision for particular q or F  (consider 

the case where F  is a linear map). In some systems there is a natural canonical 

form. For example in Chapter 7 a gap function is given for expressions formed by 

field operations on rational numbers, nevertheless it is computationally simpler 

to reduce the expression to its canonical form to decide if it is zero.

The alternative definition above is not forced to rely on gaps. For example, if in 

a particular case q is easily shown to be zero then the value returned as L could
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be 1 +  \q(0\  with q computed with minimal accuracy.

1.5 The Rest of the Report

Chapter 2 focuses on interval arithmetic as a way of implementing exact arith

metic in a situation where, as in this case, values are given implicitly as roots. 

Interval based variants of Newton’s and other root finding algorithm provide the 

mechanism for approximating value. Convergence criteria for such methods are 

shown to provide a basis for an algorithm to decide if a set of equations has a 

unique solution in a box.

The three chapters on algebraic systems use a common notation and depend on 

some well known results. It was convenient to group these together and they 

appear in Chapter 3. Before considering general algebraic systems, a number of 

special cases (for example sets of univariate polynomials) are described in Chap

ter 4 and some results given. Given the absence of good algorithms for the general 

case, it is worth considering whether systems of polynomials should be converted 

to a more convenient equivalent form, e.g. finding a set of univariate polynomials 

sharing a root with a given system. Doing this algebraically is possible by stan

dard techniques but an alternative possibility is suggested, using lattice reduction 

algorithms.

Chapter 5 considers the application of Grobner basis methods to the general 

case. Though Grobner bases have many advantages and provide an essentially 

canonical way of representing polynomials, the cost of computing the basis is high. 

The main alternative is the use of multivariate resultant methods two examples 

of which are given in Chapter 6 and which both lead to a new gap functions for
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the general case.

The extension to a subset of the elementary numbers is discussed in Chapter 7. 

The chapter is largely concerned with experiments and conjectures about sign 

determination of exp — log expressions and the Uniformity Conjecture.

1.6 An Example

It is convenient to have an example which can be used to illustrate a variety of 

methods. The one chosen is based on the identity y/9 +  4 \/2  =  1 +  2y/2

Set X\ =  a/2 and X2 =  y/9  +  4 \/2 . Proving the identity is equivalent to showing

x\ — 2 =  0 where X\ € [1.41,1.42]

x\ — 9 — Ax\ =  0 where x2 €  [3.82,3.84] (1.1)

implies x2 — 2xi — 1 =  0

As a triangular system this is not the most general form (the equations also form 

a Grobner basis) so where appropriate one of the following two equivalent systems 

will be used.

x ix 2 — X\ — 4 =  0
( i . 2 )

x2 — 9 — 4xi =  0

or

x\ -  2 =  0

(1'3)x2 — 18x2 +  49 =  0

18



The application of particular results to this example use the format below:

In Example 1.1 p\ =  x\ — 2, p2 =  x\ — 9 — 4xi, q — x2 — 2xi — 1 

Using resultants,

q4 +  4q3 -  28q2 =  0 

and the non-zero roots are 3.65 and —7.65.
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Chapter 2

Exact A rithm etic

2.1 Introduction

The first chapter of this report made a distinction between ‘exact arithmetic’ and 

‘exact computation’. This chapter is concerned with the former topic in so far as 

it can be used to implement the latter. The ideas described here are adequate to 

resolve two problems required to implement exact computation.

Firstly, some systems supporting exact arithmetic have already been mentioned 

but all are designed to do so in terms of field operations and function evaluations 

on given (floating point) values. The system described here provides a higher 

level structure appropriate dealing with values defined as an ‘unknown’ zero of a 

function.

Secondly, the formalism adopted for exact computation defines a real vector £ £ 

Rn as the unique isolated solution of a function within a given n-box. For such a 

model to be viable it is necessary to be able to validate the claim that a function 

and box do indeed define £. Part of this chapter describe an algorithm for this.
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The solution to both problem will be based on the use of interval arithmetic.

2.2 Interval A rithm etic

Numeric calculation traditionally uses floating point arithmetic for speed and ac

cepts the penalty of inexact results. These days floating point packages, whether 

hardware or software based, provide values which are accurate to one bit in the 

mantissa per operation but evaluation of an expression involving a number of 

operations may still require considerable post hoc error analysis to determine the 

reliability of the result.

To overcome this various system have been developed which allow a programmer 

to specify the required accuracy of a final result rather than individual operations. 

Such systems are usually support the notion of = e (i.e. a = e b iff \a — b\ <  e).

The starting point of such approaches could be traced to Turing’s first papers on 

undecidability [Tur36, Tur37] which model real numbers as sequences of intervals 

of decreasing width. Rice [Ric54] used recursive functions to define convergent 

sequences. The term ‘exact’ is used by Vuillemin in [Vui90] where real values 

are defined as sequences of nested intervals (using continued fractions) which are 

guaranteed to converge to a specified value. This paper is the basis of a con

siderable amount of later work, both theoretical and practical, two illustrative 

examples being [Pot96] and [EP97] which continue Vuillemin’s work with contin

ued fraction definitions of expressions.

All of these methods are based on some form of lazy evaluation. A numerical 

‘object’ is represented by a mathematical expression which is evaluated to only
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as much precision as is required (for example by using a truncated power series 

representation or by continued fractions). It is less easy to deal with the situation 

where, as in much of this report, values are given implicitly as a solution of a set 

of equations. The implicit approach is on, the other hand, quite easily adapted 

to dealing with explicitly given expressions: as a simple example, 7r is easily and 

naturally defined as the solution of sin(x) — 0 in the interval [3.1415, 3.1416].

Interval arithmetic, introduced originally by Ramon Moore [Moo79] and now rela

tively widely used and mature (see e.g. [Abe94, AH83, Han92, Neu90]), developed 

more from a desire to replace post hoc error analysis of numerical methods with 

automatically computed error bounds than from theoretical concerns with precise 

accuracy.

In practical applications, input values are often known only approximately. Even 

when they are known, it may not be possible to represent them as floating point 

numbers and finally, calculation with floating point values introduces rounding 

errors. Interval arithmetic therefore replaces each real value x with a closed 

interval x  =  \x, x\ such that x G x. We write IK =  {[m, x]\x, x G Q} for the set of 

real intervals (it is assumed throughout that intervals have rational endpoints).

Field operations on numbers are replaced by corresponding operations on intervals 

in such a way that the resulting interval is guaranteed to contain the true result. 

Detailed descriptions of interval arithmetic can be found in the papers already
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quoted above but, as an example, field operations on intervals can be defined as

[a, 6] +  [c, d] =  [a +  6, c +  d]

[a, b] — [c, d\ =  [a — d, b — c]

[a, 6] x [c, d] =  [ min{a x c, a x d, b x c, b x d},

max{a x c, a x d, b x c, 6 x d}] 

l/[a , 6] =  [1 /6 ,1/a] if 0 ^ [a, 6]

Interval arithmetic is ‘sub-distributive’, for a, b ,  c  € IR, a (b  +  c )  C a b  +  b e  but, 

in general, not distributive. Also familiar identities may fail when evaluated using 

interval arithmetic. For example, x  — x  =  [x — x, x — x] [0,0].

In practice, floating point arithmetic is used to implement arithmetic and, for

example, [a, 6] +  [c, d] =  [a+6, c+d] is replaced by [a, 6] +  [c, d] =  [(a+ 6)|, (c+ d )|]

where x i  is the largest floating point number such that x |<  x , and x ]  is the 

smallest floating point number such that x |>  x. It is assumed throughout that 

arbitrary precision floating point arithmetic is available and that the error in 

replacing x with or x[  can be reduced to any pre-chosen value.

2.2.1 N otation

Various notations have been used for interval arithmetic with no two of the au

thors cited above using the same. The notation used here is based on that sug

gested by Kearfott in [Kea] and is perhaps nearest to standard.
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Notation Definition Interpretation
X [.x , x\ an interval
X x  G x an arbitrary value from a interval

w(x) x  — X the width
m(x) (x  +  x ) / 2 the midpoint

|x| max(|x|, \x\ ) absolute value
r(x) ( x  — x ) / 2 the radius

int(x) ( x , x ) the interior of an interval
rf(x, y) max(|x — y \ , \ x  — y \ ) distance metric

X ( x i , . . . , x n)T a vector of intervals - an n-box

X ( x i , . . . , x n )T
an arbitrary point in the box X

X (x 1, . . . , x n )T
a vector in Rn

X max(|xj|)
m (X) ( m ( x i ) , . . . , m ( x n))T
w( X) max(u;(xi))
r(X ) max(r(xj))

d(X,  Y ) m ax(d(xi,yi))
Y e X Vi, yi  e  int(xi) or Xi =  [yu yf\
x n Y ( x i n y i , . . . , x „ n y n)T X f l Y  =  0 if any X; D yi =  0
X U  Y (xi  U y i , . . . ,  x„ U y n)T undefined if x, D yi =  0, for any i

The notation used for vectors is also used for matrices. A single value x can 

be treated as a thin interval x  =  [x,x\,  thus it is not unreasonable to write 

both x G y  and x C y .  Vectors and matrices, both interval and point are used 

similarly.

2.2.2 Interval Extensions

D efin ition  5. [Moo79, p20]. Given a function F : X  C Rn —► an inclusion

monotonic interval extension of F  is a function F  : IRn —>• ff im such that

1. Y  C X  implies F ( Y )  C F( X)

2. w(Y ) =  0 (i.e. Y  is a point vector, Y ) implies F(Y ) =  F( Y)
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Usually, F  will be used both for the function and its interval extensions - the use 

of bold face for the intervals serving to distinguish the two. Where this is not 

clear from context the form F  is used.

2.2.2.1 The N atural E xtension

For rational expressions the ‘natural’ extension is that obtained by replacing each 

field operation with its equivalent interval equivalent. For monotonic functions, 

a natural extension can be obtained by evaluating the function at the end points 

of the interval.

D efin ition  6. (Based on [Moo79, p l9 ]) For F  : X c  IRn —> R771, write F “(X) C  

IRm for the smallest interval vector containing the image of F  over X  (for this 

case alone the interval endpoints need not be rational)1.

Clearly F U(X) C  F(X ) and ideally an interval extension will be as ‘near’ to the 

image as possible. A suitable restriction of interval extensions, which covers the 

elementary and most useful functions, is to those which are Lipshitz continuous

D efinition 7. [Neu90, p33] A function F  : X  C IRn —» IRm is Lipshitz contin

uous on X  if  F(X ) is defined and for any X i,X 2 C  X, there exists k G R+ such 

that

d(F (X 1),F (X 2) )< /c d (X 1,X 2)

It is shown in the standard texts, e.g. [Neu90, AH83], that the natural interval 

extensions for elementary functions and field operations are Lipshitz continuous.

1 Moore’s definition allows for maps of families of arbitrary subsets of Rn to an interval 
vector.
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Interval extensions are not unique and ways of representing expressions give better 

results (in the sense of evaluating to narrower intervals) than others2.

2.2.2.2 The Centred E xtension

For algebraic expressions better extensions can often be found by using Horner’s 

scheme rather than direct interval evaluation (in general the smaller the number 

of operations used in computing the expression the smaller the enclosure) but a 

better technique is to use ‘centred forms’ or higher order Taylor series forms.

Centred forms start from the Mean Value theorem: for A, B  G X

_ _  dp.
Ft(A) =  F,(B) + £  -  Bj)

j J

In particular if B =  m( X)  then

r)F
f?*(X) C Fi(m(X))  +  -  ™(X;)

j 3

However each of the derivative values are in J  (the interval evaluation of the 

Jacobian of F)  and so

FU(X)  C F(m (X )) +  J(X  -  m(X) )

The right hand side provides an alternative interval evaluation for F  to the natural 

form which can give a tighter estimate for FU(X).

2This is, of course, not a problem unique to interval arithmetic: a similar situation arises in
floating point calculations. Unfortunately, in interval arithmetic, you have both problems.
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For example, if F(x)  =  x4 — 1 1 a;3 +  9a;2 — 25a; +  4 evaluated over [0.2,0.4],

F u([0.2,0.4]) C [-5.24, -0.727]

F([0.2,0.4]) =  [—6.35, 0.378] evaluated as presented

=  [—5.63, —0.449] rewritten in Horner form 

=  [—5.30, —0.664] in centred form

Note that the simplest interval extension falsely includes zero in the computed 

range.

Several authors have some claim to devising the Taylor series method which 

extends centred forms by using higher order derivatives. The approach of Berz 

[MB01, MB03] seems most developed. There has been some controversy in the 

Interval Arithmetic community over what level of accuracy can be claimed for 

Taylor models. An analysis is given in [Neu02] but the following result for natural 

and centred extensions is sufficient here.

L em m a 1 . If F  is Lipshitz continuous over X  and F\ and F2 are the natural 

and centered interval extensions of F  then there exist k i , k2 €  M+ such that

d(Fu(X ),F ,(X )) <  W ( X )  (2.1)

Proof. See [AH83, pp24-27]. □

Thus if a sequence of intervals tends to a point, the centred extension of F  tends 

quadratically to the image.
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2.3 Interval Iteration M ethods

The numerical solution of a system, F , of equations is often based on an iterative 

process of the form:

X f =  $ { F , X )  (2 .2 )

where $  has a fixed point at a zero of F. Simply replacing values by intervals 

and functions by interval extensions gives an interval scheme:

K =  $ (F , X)
(2.3)

x' = k n x

Such a scheme is called convergent if the sequence converges to a point vector 

where X<°> =  X  and for k >  0, X(*+1) =  $ (F , XW) Pi X ^  .

The advantage of the interval version is that, if the iteration converges, the true 

solution is guaranteed to be within each interval vector of the iteration. More 

generally if F (f)  =  0 and ( G X  then f  G X', in particular, if X' =  0 then F  has 

no zeros in X.

Though direct analogues of Newton’s method exist, in practice the most com

monly used algorithms are the Krawczyk [Kra8 6 ] and Hansen-Sengupta [HS81] 

operators. The latter being a Gauss-Seidel variant of the former. The Krawczyk 

version has been used to illustrate this section only because it is slightly simpler. 

With small modifications the Hansen-Sengupta operator could be substituted 

(and would never give worse results).
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2.3.1 T he Krawczyk Operator

D efin ition  8. The Krawczyk operator for a function F  and interval vector X  is 

K (F , X, X, C) =  X  -  C F ( X )  -  (CJ ( F , X) -  J)(X  -  X )  

where C  is a (real) conditioning matrix.

T heorem  1 (Krawczyk, Kahan, H ansen &; Sengupta). Let F  : X  —> Rn be

Lipshitz continuous on X  and let X' =  K(F,  X ,X ,C )  then ([Neu90, p l77])

1. I f Y  G X  and F(K ) =  0 then Y  G X'.

2. / / X / n X  =  0 then F  has no zero in X .

3. If X  e  int(X) and 0 ^  X 7 C int(X) then F  has a unique zero in X  (and 

therefore in X!).

Neumaier also shows K(F, X , m (X ), J _ 1(F, m (X ))) C K ( F , X , X , C )  and so 

m (X ) is always an optimal choice for X  (and the first condition of point 3 above 

is automatically satisfied), while a floating point approximation to J - 1 (F, m (X)) 

is used for C.  In future K(F,  X ) will be used as shorthand for the optimal form.

Moore [Moo79, p63] presents a range of iteration schemes which are guaranteed 

to converge if K ( F , X ,  X , C )  C  X . In practice two variants of the Krawczyk 

operator can be used directly. The first is to use X' =  X f l  K(F,  X , m (X), C)  

where C  approximates J _1 (F, m (X )). As mentioned above this gives the ’best’ 

enclosure. Alternatively, C  can be computed for the initial matrix and reused at 

each iteration.
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Note that the Theorem does not provide a guarantee of convergence or proof of 

non-existence of roots. Consider the case where F  has a zero on each face of 

X. Point 1 then guarantees that every zero is also in X' and so X' =  X . Even 

if F  has only one zero, there is no guarantee that the condition X' C  in tX  is 

eventually met. This is addressed, and the problem resolved, in the context of 

the algorithm described below at §2.4.1.

2.3.2 Exclusion Tests

Interval iteration methods have an advantage over traditional iteration schemes 

which Th. 1 and Prop. 2 exemplify: some boxes can be shown not to contain 

roots. Tests which reveal the presence of roots are sometimes called inclusion 

tests, those which show their absence are exclusion tests.

It is tempting to make use of exclusion tests since any division of a box into 

sufficiently small sub-boxes is likely to yield more boxes without than with roots. 

A number of different exclusion tests have been invented. The simplest being to 

evaluate -F(X) since 0 0  E (X ) C  F U(X) implies F  has no zero in X.

Given a box not containing any zero, a sequence of bisections will eventually 

yield sub-boxes small enough for the exclusion test to work on them. But an 

individual exclusion test may fail (in the sense of not being able to show that 

no zero is present) if a root is just outside the box being tested. The box may 

then be split repeatedly with tests on sub-boxes close to the root still failing. 

[SNar] show that the effects of this ‘clustering’ of failed tests due to a nearby zero 

is reduced dramatically if the centred form is used (as would be expected from 

Eq. 2.1).
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Other methods of exclusion testing have been suggested. Xu et al [XZW96] 

attempt to use only exclusion testing to find zeros of polynomial systems (elim

inating regions definitely not containing zeros). They explicitly reject interval 

methods and rely on rational arithmetic. Unfortunately their method seems no 

different from using intervals: they are just computing upper and lower bounds 

separately.

For specifically polynomial systems a range of methods is possible. In the uni

variate case, Sturm sequences could be used. [Ped91a, Ped91b] extends these to 

the multivariate case.

Dedieu et al [DGY96] give a lower bound for the distance from a point to an 

algebraic surface. From this a box can be defined which contains no zeros of a 

given polynomial system. Their method has the advantage that it could be used 

more generally in algebraic systems containing zero components of dimension 

greater than zero.

Representing a polynomial system as Bernstein polynomials provides an algo

rithm which uses the convex hull properties of Bernstein polynomials to exclude 

large regions rapidly [M091]. Strictly the algorithm they describe also provides 

an inclusion test, from which exclusion tests are produced. A serious practical 

disadvantage of the method is the need to recompute the Bernstein polynomial 

coefficients at each subdivision of the box.

It seems unlikely that any of these methods, other than the simplest, warrant 

being used.
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2.4 Exact Arithm etic using Intervals

The definition of exact computation in Def. 3 requires arithmetic with two prop

erties. It must be possible to approximate a value with arbitrary accuracy and it 

must be possible to decide if the restriction of a function F  to an interval box Fb 

defines a point. In this section an algorithm is presented for the more restricted 

version of Def. 4 where F  is a polynomial map. Since the algorithm is based on 

isolating roots using the Krawczyk operator it conveniently solves both problems: 

called to verify Fb defines a point it will return either that there are no roots, 

more than one, or a smaller box containing the root. If Fb does define a point, 

successive calls return a sequence of nested, strictly smaller root enclosures which 

converge to a point.

D efin ition  9. For any box X  define d im X  to be the number of components of 

X  with non-zero width. If w (x i) =  0, i will be called a point dimension.

The term ‘dimension’ as used above could be slightly confusing. All the boxes de

scribed in this chapter are embedded in Rn for some fixed given n. An individual 

box, B  then has dim B  <  n.

D efin ition  10. The volume of a boxvo lX  corresponds to the usual notion except 

that point dimensions are ignored unless the box has dimension zero. I.e. vo lX  =  

0  if w {X ) =  0  and otherwise is IIu;(xi)^o w (x 0

Boxes of different dimension are incommensurable. The notation X  ■< k Y  will 

be interpreted as meaning either dim X  < dim Y  or dim X  =  dim Y  and vol X  <  

k vol Y . In a set of boxes 7Z this is extended to the (not necessarily unique) box 

max7£.
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The Krawczyk operator can be applied to boxes containing point dimensions 

with only one minor modification, the statement X' G int(X) is interpreted as: 

for each Xi either i is a point dimension or x.[ G int(xi). Point dimensions are 

always rational numbers (though represented in floating point). An equivalent to 

interpreting int(-) in this way for, say, Xi =  r  would be to replace all reference 

to the variable in F  by its value and add an equation Xi — r =  0 with Xi G 

[max(bi, r  — e), min(bi, r  +  e)] for some small value of e such that the new interval 

has non-zero width.

If d im X  =  0 then X  is just a (rational) point. Since F  is a polynomial map 

deciding if F( K)  =  0 is trivial.

The algorithm has been split into four parts for ease of comprehension. In an 

implementation they could be combined into a single algorithm without difficulty.

•  V alidate - applies the Krawczyk operator to produce a new box. If this 

is not sufficient to either prove that the input box has no roots, or that it 

has exactly one root, one of the other algorithms below is used to test for 

multiple roots or roots on the box boundary. If there is exactly one root, 

V alidate  returns a new box guaranteed to contain it.

•  B isect - applied when a box has to be subdivided because the iteration 

appears not to be converging. B isect has to ensure that when a box is 

subdivided, double counted roots, lying on the boundary of two boxes are 

not introduced. If the maximum number of roots is known to be one, B isect 

can return a box of lower dimension.

•  Boundary - when there can be at most one root in a box, this determines 

whether it is in the interior (in which case the iteration will continue) or on
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a boundary (in which case the dimension of the box being checked drops 

by at least one).

•  Approxim ate - calls Validate repeatedly until a given accuracy is achieved.

In the implementation changes to floating point precision have to be made because 

of the difficulty of predicting the final precision. This isn’t shown in the algorithms 

but involves a step which checks that the minimum width of given intervals (or a 

predicted width) is not so small that it approaches the software-e of the floating 

point package. Typically, suppose an interval x  has width w(x)  =  W . The most 

significant operations are concerned with increasing the number of bits of accuracy 

of the interval. Quadratic convergence will double the number of significant bits, 

this suggests an heuristic to use in conjunction with the Krawczyk operator: if 

|log2 w(x)| >  M / 2  where M  is the size of the mantissa, increase floating point 

precision to 2 M.

The notation used for the algorithms is straightforward and is summarised in 

App. A. Probably the only clarification needed is that:

Y ( i  : a) =  ( y i , . . .  , y i _ i , a , y i+i , . . .  , y n)

and if A  is a variable in an algorithm, X  is its initial value ( X  is used if the
in it

meaning is clear).

2.4.1 Algorithm  Validate

As stated above the basis of this algorithm is to use the Krawczyk iteration to 

converge to roots of F  in some box B. Even if a box contains just one root there 

may be a problem detecting it if it lies on the box boundary (a possibility not
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catered for by Th. 1 ). Also, an iteration may fail to converge because the box 

contains more than one root or because the box is ‘too large’.

For these reasons the algorithm, after applying the operators must make deci

sion based on the new box it has generated. An empty box implies no root, a 

box interior to the previous one implies a unique root. If neither of these obtain 

other methods have to be adopted, for example bisecting the box and applying 

the algorithm to the two parts separately. Bisection introduces its own prob

lems. To avoid double counting of roots (one root on the boundary of two boxes) 

the Validate  algorithm has to be called recursively to ensure that the bisection 

boundary does not itself contain a root.

Some preliminary results are needed to guarantee convergence and to identify the 

case where a box contains at most one root. These are based on results in [Neu90] 

modified for the needs of this section (in general [Neu90] describes a Kantorowich 

style iteration which may converge only linearly and does not take account of 

roots on a boundary).

L em m a 2. Let X  G X, if  C  =  J~1( F, X)  exists then 0 G U -̂ where U  =  

CJ(F, X) — I. Further there exists k G M+ such that w;(U) <  k w (X.)

Proof, for the first part C J ( F , X )  — I  =  0 and J ( F , X )  G J(F,  X) Thus 0 =  

(C J (F, X )  -  I)ij G ( CJ(F, X) -  J)y

For the second part, each term in J(F)  is Lipshitz continuous and so for some 

6 G M+, all terms satisfy w(Ji j (F, X))  <  <fot;(X) which makes ru(Lbj) <  nSw(X.).

□
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L em m a 3. For any box, X , w ( K( F , X) )  <  ||CJ ( F, X)  -  /) ||iiu (X ).

Proof.

w( K( F,  X)) =  w( m{ X)  -  CF( m( X) )  -  (CJ ( F, X) -  I ) ( X  -  m (X )))

=  w ((C J(F , X ) - I ) ( X -  m (X)))

<  \ I C J ( F , X ) - I I \ 1W(X)

□

P roposition  2. For any box, X , write X<°> =  X , X<"> =  K(F,  X*"”1)) nXl""1). 

If, for some n, C (n̂  =  J~l (F, m (X ^ ))  exists and \\C ^ J(F , X (n>) — / | | i  <  1 then 

F has at most one root in X

Proof. From Lemma 3,

w { K { F , X {n))) <  ||C J (F ,X (n)) -  / ^ ( X ^ )

and, so if the condition holds, it;(X^n+1)) =  w(K(F,  X ^ ) )  <  w ( X ^ ) .  Con

tinue the iteration using the value C ^  rather than computing C^n+1\  Now 

J(F,  X^n+1)) C J ( F , X ^ )  since X(n+1) C and so ||C (n) J(F , X (n+1)) -  / | |  <

2. Thus w(X^n+2 )̂ and all subsequent iterates have strictly decreasing widths. If

at some point X W  =  0  then there is no zero, otherwise limn^oo iu ( X ^ )  =  0 , i.e.

F  has exactly one root in X^n\  □

Corollary 1 . I f X  contains a unique root of F, the Krawczyk iteration, with a 

re-computation of C  and J(F,  X) at each step, converges quadratically.

Proof. From Lemma 3,

w(K(F,  X )) <  ||CJ(F,  X)  -  I ) \ \ iw(X) /2

=  0 ( w 2(X))  from Lemma 2

□
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An alternative test for a box to contain at most one root is

L em m a 4 . If J(F,  X ) is regular (i.e for all X  G X , J ( F , X)  is non-singular 

[Neu90]) then F  has at most one zero in X .

Proof If for X , X '  G X ,F (X )  =  F(X' )  =  0 then by the Mean Value Theorem 

there exists a matrix M such that F( X)  =  F(X' )  +  M ( X —X')  or M ( X - X ' )  =  0. 

Since J ( F , X ) is regular and M  G J(F, X ), M  is non-singular and so X  =  X'  □

Thus if an interval evaluation of det J(F, X ) yields a interval not containing zero 

then F  has at most one zero in X . Unfortunately the Jacobian tends to be 

a complex expression and the width of the computed interval can be large. A 

better way of using the result is to evaluate the determinant symbolically just 

once and evaluate the result as efficiently as possible.

The algorithm below uses only the test from Lemma 3 since the matrix on which 

it is based is computed anyway.

It is convenient to sum up what results are now available in applying the Krawczyk 

operator

1. Exclusion tests: F  has no root in X  if

•  d im X  =  0 and E (X ) ^  0, or

•  0 £ F ( X ) ,o r

•  A (F ,X ) H X  =  0
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2. Uniqueness Test:

3. At most one root:

•  d im X  =  0  and F (X ) =  0 , or

•  K { F , X )  C int(X)

most one root:

•  0 ^ det J( F , X ), or

. ncjfF.x)-/!!! < 1

that a zero lies on a box boundary (when the Krawczyk uniqueness will never be 

attained).

1 Algorithm Validate
2 Input: Y  t> box to be validated/approximated
3 W <—  vol Y
4 Tl <—  {Y }  >  boxes to process
5 T  <—  0 >  boxes containing a root
6  w hile 1Z /  0
7 S  <—  0 >  new boxes which may contain roots
8  fo r  Y  G Tl
9 i f  dim Y  =  0

10 i f  F( Y)  =  0 T  <—  T  U {Y }
11  next loop
1 2  end i f
13 V  <—  F (Y )
14 i f  0 V  next loop >  Cannot contain a zero
15 X<— Y
16 C *—  an approximation to J~1(F, m (X))
17 U  <—  CJ(F,  X ) -  I
18 Y  <—  (m (X) -  C m (V ) -  U (X  -  m (X ))) D X
19 i f  Y  =  0 next loop >  can’t contain a zero
20 i f  Y  C  int(X) >  exactly one root in Y
21 T < — T U { Y }
2 2  e l s e  i f  ||C/|| < 1  >  at most one root
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23 i f  vo lY  < 5  >  very small box
24 >  does it lie on the boundary?
25 Z <—  Boundary(Y , X )
26 i f  Z =  0 >  no roo£ on boundary
27 <S <—  <S U B ise c t(Y , true)
28 e ls e
29 T  <—  T u { Z }  >  one root on boundary
30 end i f
31 e ls e
32 S  <—  S  U B isect(Y , true)
33 end i f
34 e ls e
35 S  <—  S  U B isect{Y , false)
36 end i f
37 end fo r
38 i f  # T  >  1 f a i l  >  at least two roots
39 1Z<— S
40 end w hile
41 i f  n =  0
42 return  0
43 e ls e  i f  77. =  {X }
44 i f  vo lX  >  |W  X  <—  B isec t(K ,tru e)
45 return X

Lemma 5. Assuming the correctness of algorithms Boundary and B isect

2. if  at line 7, Z =  max 77. then at the next iteration the maximum volume is 

< ( 1  +  e) v o lZ /2 .

3. For any Fb there exists V* with dim V* =  n such that for all Y  C  B  with

in it

exactly one of the boxes comprising 77. or T  unless the algorithm fails as a 

result of detecting more than one root.

2. if  at line 7, Z =  max 77. then at the next iteration the maximum volume is 

< ( 1  +  e )v o lZ /2 .

3. For any Fb there exists V* with dim V* =  n such that for all Y  C  B  with 

Y  ^  V* the main loop is executed at most dim Y  times.

4- If N  =  v o l(Y )/v o lV * ; the code in the inner loop is executed at most
in it

O ( N l o g N )  times.
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5. If the K raw czyk  iteration convergences quadratically, the code in the inner 

loop may be executed 0 ( N  log M ) times where M  =  log(vol Y ) / lo g  vol V*.
in it

6. The algorithm always terminates. If Y  contains one root a box enclosing it
in it

is returned with volume -<  ̂ e vol Y , if no roots the empty set is returned,
^ in it

otherwise the algorithm raises a fa il’ condition.

Proof. 1. The condition is trivially true on first entry to the loop. Each box 

is processed by the inner loop (lines 8-37). If the condition is true on entry 

to the outer loop then, for any box X  in IZ containing a root, one of the 

following actions must occur:

(a) at line 20 a sub-box of X  containing the root is added to T,

(b) at line 25 there can be at most one root in the box, either on a boundary 

sub-box of dimension <  dim X  — 1 (line 29) or in at most one of two 

boxes generated by B isect (line 27).

(c) at line 35 any other box is split into at least two sub-boxes with no 

common zero.

2 . Boxes added to S  (assigned to 1Z at the end of the loop), are created by the 

B isect algorithm. In the worst case, B isect returns on box with volume

vol Y .

3. It can be assumed that Y  contains at most one root since there are finitely
in it

many roots and V* can be small enough to exclude boxes with more than 

one root. If Y  contains no roots, and vol Y  is small enough, one of the two 

exclusion tests (lines 14 and 19) will detect the fact.

If Y  contains a root in its interior, Prop. 2 guarantees it will be detected if 

vol Y  is sufficiently small. So the cases of no roots and an interior root are
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detected. This leaves only the possibility that there is a root on a boundary 

box (line 27) but, since its dimension must be at least one less, at most a 

further dim Y  iterations passing through the same path will reduce it to a 

rational point if no other test terminates the loop before that.

4. From item 2, box size drops by at least (1 +  e)/2 on each iteration, so if 

volume V* is reached after k iterations V  * ((1 +  e)/2 )fcY , or there are
in it

O(log(TV)) iterations of the outer loop. Since the boxes in 1Z are obtained 

by sub-dividing the original box, and have dimension <  dim Y  the sum of
in it

the volumes of the boxes is <  N  and the result follows.

5. If convergence is quadratic, there will still be at most N  boxes when V* is 

reached after 0(log(log(vol Y )/lo g (v o l V*))) =  O (logM ) steps.
init

6 . Combining the previous steps. Note that a box which is passed immediately 

to the set T  of boxes with one root might not have volume vol Y ,
in it

hence the (strictly unnecessary) call on line 44.

□

2 .4 .1 . 1  A lgorith m  Boundary

Boundary  checks for a root on one or more of the boundaries of a box. It is only 

called if the input box contains at most one root and uses Validate to check each 

(lower dimension) boundary box.

B oundary{Y , X ) is called with Y  being the result of applying the Krawczyk 

operator to X  and Y  (£_ int(X). So at least one of Y ’s boundaries must coincide 

with one of X ’s. Other boundary boxes need not be checked.
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1 Algorithm Boundary >  at most one root on boundary
2 Input: Y  >  Krawczyk operator applied to X
3 Input: X  >  Y  C X
4 >  At most one root, check boundary
5 fo r  i from 1 to  n >  all possible dimensions
6 i f  w (x i) 7  ̂ 0  >  ignore point dimensions
7 i f  Xi =  yi >  coincident boundary
8 U  <—  V alida te(Y (i : [yi, Yi]))
9 i f  U  0 return U

10 e ls e  i f  xj — yi
11 U  <—  V alida te(Y (i : [yi, y i]))
12 i f  U  ^  0 return U
13 end i f
14 end i f
15 end fo r
16 return 0

The correctness of the algorithm, assuming that of Validate is correct for boxes of 

dimension < dim Y , is clear. A worst case scenario for Boundary is that calling 

Validate leads to further calls of Boundary recursing down to the point case.

Lem m a 6 . A box of dimension n has 2n-fc(n”fc) boundaries of dimension k and 

the total number of boundaries of dimension <  n is 3n.

Proof A boundary of dimension k is obtained by choosing n — k point di

mensions (which can be done in 2n-fc(n”J  ways). For each dimension cho

sen to become a point, either the upper or lower bound of the interval can be 

taken giving 2n~k ( ”fc) boundaries. The total number of boundaries is therefore

E on—fc/ n \   on rn
0<k<n Z Vn-fc/ — °  LJ

and thus up to 3n points to be checked, unfortunately in the worst case this is 

done 2n times (when X  =  Y ). However, as in the analysis of Validate , there is 

some minimum box below which iteration stops.
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2 .4 .1 . 2  A lgorith m  B isect

B isect is used both when there is no knowledge of how many roots a box may 

contain and when it is known to contain at most one. The latter case is simpler, 

the box is divided in half along a dividing plane (of dimension n —1 ) perpendicular 

to the longest axis and the algorithm Validate  used to check if the dividing plane 

contains a root. If it does the plane itself is returned. If not the two boxes 

produced by the division are returned

If there is no knowledge of the number of roots, again a check is made of the 

dividing plane. If this contains no zero the situation is as before. If it contains a 

root then another division is made a short distance e/ 2  from, and parallel to, the 

plane. If the new plane contains a no root the box is divided along it, otherwise 

the box contains at least two roots and the algorithm raises the fail condition to 

terminate execution.

1 Algorithm Bisect
2 In p u t: Y  >  Box
3 In p u t: singleRoot >  boolean - true =  max of one root
4 m  <—  w (Y )/2
5 z <—  index of widest dim of Y  t> bisect box
6  a\ *—  yi +  m t> first try  at about 1 /2  length
7 Zi <—  V alidate{Y {i : [ai,ai]))
8  i f  Zi =  0

9 return {Y(z : [|fc,ai]), Y(z : [ai,yl])}
10 e ls e  i f  singleRoot
1 1  return Zi
1 2  end i f
13 >  Try again near first division
14 <2.2 *—  T Tc/2
15 Z2 <—  V alida te(Y (i : [0 2 ,^ 2]))
16 i f  Z2 /  0 f a i l  >  More than one root
17 return {Y(z : [^ ,a 2]), Y ( i  : [a2lyl])}

43



2.4.2 Algorithm  Approximate

1 Algorithm Approximate
2 Inpu t: X  > validated box
3 Input: W  >  find approx. with width < W
4 w hile w  (X) > =  W
5 X  <—  V alida tefX )
6  end w hile
7 return X

2.4.3 Correctness and Com plexity of Validate

Proposition 3. If the zeros of Fb are finite in number and non-singular then the 

algorithm Validate will raise a fail condition if there are >  1 7 return 0  if there are 

none and otherwise return a box B' containing the only root with B' ■< ( l  +  e)B /2.

Proof. The proposition is correct if dim B =  0 since the algorithm terminates 

after at most one iteration. Suppose it is correct for dim B <  n, and consider 

a call with input of dimension n. Both Boundary and Bisect call Validate but 

always for a box of dimension at most n — 1 which will always yield a correct 

result. □

The performance of the Krawczyk [Kra8 6 ] and Hansen-Sengupta [HS81] operators 

are impressive. Interval arithmetic is generally assumed to increase the time cost 

of arithmetic operations by a factor of two to four. Since both operators provide 

quadratic convergence3 this is a small price to pay for the existence and uniqueness

3The speed of convergence depends on a number of factors. As presented initially in [Neu90] 
convergence can be linear when a Kantorwich style iteration is used with the same approxima
tion to the Jacobian being used for the complete algorithm. In the method presented in this 
report the Jacobian is recomputed giving a t least quadratic convergence in a sufficiently small
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tests they provide.

The complexity of deciding if Fb represents a value is hard to ascertain. The 

method described above could be improved in many ways but it is, at its heart, 

intractable. Even if some vastly improved root finding technique were known we 

would not expect it to be polynomial in the input size.

P ro p o s itio n  4. Let F  : Rn —> Rn be a polynomial map where no polynomial 

has degree >  2. Deciding whether F  has at least one zero in a box B  is at least 

NP- Complete.

Proof. The well known NP-Complete boolean satisfiability problem [GJ79, p39] 

is easily reduced to finding a zero in a box. Consider a boolean expression of the 

form D  =  Ai<i<s A  where the Di are disjunctions of boolean variables &i,. . .  6n 

and their inverses. This can be converted to a polynomial map F  where

f Xi(xi — 1 ) for 1 <  i  <  n

1 1 z i +  Y2j  a i j x j  f°r n <  i  <  n +  s and â - G { —1,0,1}

where the first group of equations define the requirement that each Xi must be 0

or 1 as bi is false or true. The second set are formed from the disjunctions in the

following way. Firstly, replace V by + , each bi by Xi and -i&» by 1 — The j th

disjunction now has the form k j  -f Y I  aiXi where kj  is a integer. The may be 0

(bi doesn’t appear the disjunction), 1 (bi is present) or — 1 (~>bi is present), kj is

equal to the number of bi which appear negated. For this expression to correspond

to ‘true’ its value at a root must be in [l,n]. Define a variable Zj whose range

[ z j , Zj ]  guarantees that Zi +  Y 2 a i j x j  = 0 has a solution with Zi G [ z i , z i ]  when the

Xi have values one or zero.

This transformation can be done in polynomial time.

region.
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Suppose the Jacobian matrix is blocked as ^  where A  is n x n and Aij =  

dFi /dxj  for 1 <  i , j  < n .  This is zero apart from the diagonal where An — 2x  ̂— 1.

Bij =  dFi /dzj  =  0 for 1 <  i <  n, n < j  <  n +  s. Finally D  is the unit 

matrix Dij =  dFi /dzj  =  0 for n < i , j  <  n +  5 . It follows that at any root 

det J  =  rii<i<n(2zz — 1) is so non-singular.

F  is a polynomial map with degree <  2  as required then deciding whether it has 

a zero in ([0 , 1 ] , . . . ,  [0 , 1], [zn+1, z ~ ^ \ , . . . ,  [zn+s, ^ l ] )  is equivalent to solving the 

satisfiability problem. □

Some estimates of how complex it is to validate a box in the polynomial case can 

be made.

P ro p o sitio n  5. If evaluating a function has unit cost then, in the worst case, 

for F  : Rn —► the complexity of K raw czyk(Y ) is O(n3(A nN  log N ) n) where

N  =  vo l(Y )/ vol(V*) with Y * , as before and A is some constant.

If the K raw czyk  iteration converges quadratically this can be reduced to 0 { n 3{ AN  log M ) n) 

where M  =  log(vol Y )/log(vo l V*).

Proof. One computation of the Krawczyk operator has cost 0 ( n 3). From Lemma 5, 

this is done directly 0 ( N  log N)  times. However the calls to Boundary and B isect 

also call V alidate  and at least one may be done on each iteration of the original 

algorithm. Boundary dominates the calls since each can require up to 2n calls 

to Validate. Each call applies only to boxes of dimension one less therefore calls 

to Boundary are never more that n deep. This gives a number of steps of order 

0 (n 3(nN  log N ) n).
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The time for quadratic convergence follows similarly from Lemma 5 which gives 

O ( N l o g M )  for the number of iterations. □

Assuming a polynomial map, at each iteration a new Jacobian matrix and in

verse is computed involving 0 ( n 2) polynomial evaluations (assuming arithmetic 

has unit cost). Evaluating a function using the centred form already involves com

puting each of the partial derivatives anyway so this can be done as a byproduct.

L em m a 7. If F  6  Q[a^i,. • •, xn], the cost of evaluating F (B ) and J(F, B ) is 

0 ( n 3D) addition/multiplication operations where D  =  fld eg^ F .

Proof. For F  with n — 1 this can be achieved by using Horner’s scheme. By 

induction the result for n >  1 follows by considering polynomials in recursive 

form. □

This takes the cost to 0 (n 6D (n N  log N ) n).

We have no estimate of V* but a reasonable guess would be to base it on the 

minimum size of a component of a root of F.  Chapter 6  establishes a lower bound 

(using Eq. 6.3) of

l& l >  £ -(eD)”

where L is the maximum of the lengths of the polynomials comprising F,  giving

N  =  vol Y / v o l V *

=  0 (L<eD>"volY)
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2.5 Non-Polynom ial Functions

Validate  was written to deal with validation of polynomial functions but it could 

easily be extended. For example it can be modified to count zeros. Apart from a 

trivial change of not failing when two roots are found in Validate a small change 

is needed to Bisect. As currently used an error is raised if two zeros are found 

in a box. If instead the algorithm is applied recursively to the box eventually it 

must be possible to separate roots into different sub-boxes.

More significantly, it be applied to a wider range of functions.

P rop osition  6 . Let K  =  Q[ xi , . . . ,  xn, eXl, . . . ,  eXn] and suppose F  E Kn. If 

F& has only finitely many isolated simple zeros then they can be counted by the 

Validate routine.

Proof. The only issue is to decide if F(a)  =  0 for a rational point a. Each 

component of F  can be written as JT rieSi with the r* and s* rational. This either 

vanishes trivially or is a polynomial in e1/™ where m  is the 1cm of the denominators 

of the Si. This is impossible since el m̂ is never algebraic for m / 0 .  □

P rop osition  7. Let IK =  Q[xi , . . . ,  xn, sin(xi), cos(xi ) , . . . ,  sin(xn), sin(a;n)] and 

suppose F  E K n. If Fb has only finitely many isolated simple zeros then they can 

be counted by the Validate routine.

Proof. Validate  could be easily extended to functions F  : Cn —> Cn but remaining 

with the reals, a similar argument to the above applies. Each component of F {a) 

for rational a  can be written as a polynomial in Q [sin (l/m ),cos(l/m )] for some 

m  E Z. Either sin or cos can be eliminated using resultants. F(a)  =  0 only
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if the resulting polynomial is trivially zero (since s in (l/m ) is never algebraic for 

rational arguments). □

In [Mai98] and [MaiOO], Maignan shows that how to count zeros of systems such 

as these in the one and two dimensional case using Sturm sequences. Her papers 

also deal with the case of an infinite box.

P ro p o sitio n  8 . Let F  : Rn —► Rn be Lipshitz continuous on a box B  and further 

suppose that

1. F  has only simple isolated zeros (i.e. F( X)  =  0 implies det J(F,  X )  ^  Q);

2. for some d <  d i mB there is a means of deciding if  a box X  C B  with 

di mX <  d contains exactly one root of F  if it contains at most one.

then algorithm Validate can be modified by replacing the test
1 i f  dim Y  =  0
2 i f  F (Y ) =  0 T  <—  T  U {Y }
3 nex t loop
4 end i f

at lines 9-12 by
1 i f  dim Y  <  d
2 i f  F (Y ) has exactly one zero in Y  T  <—  T U { Y )
3 next loop
4 end i f

Proof. The original version of Validate  is able to test F (Y ) =  0 since F  is a 

polynomial and if d i mY =  0, Y  is a rational point. No other properties of 

polynomials are used. □

Even where B  may contain singular zeros, Validate  may be usable:
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C orollary 2. Suppose F  : B  C Rn —> W 1 is Lipshitz continuous on B  and the 

second condition of Prop. 8 above holds. If in addition there is a computable lower 

bound b >  0 such that for all B  G B 7 det J(F, B) ^  0 implies |det J(F, B)\ >  b 

then it is possible to determine whether F& defines a point.

Proof. Let [u, v] =  det J(F , B ). If 0 ^ [u , v] then Lemma 4 applies, if not consider 

the function F' =  ( / 1}. . . ,  / n, 1—xn+i det J{F)).  Clearly J(F ') =  —J( F) 2 and, by 

construction, F' (X)  =  0 implies J( F:X )  ^  0. Thus at any solution of F', either 

xn+i G [m in(l/u, 1/6), m ax(l/u , 1/6)] orxn+i G [min(—1 /6 ,1/u), max(—1/6,1 /u)].  

The proposition can be applied to the two cases separately and the results com

bined. □

This approach can be used for polynomial systems with one of the lower bounds 

from Chapter 6 .

2.6 Conclusion

This chapter has demonstrated the possibility of using interval arithmetic com

bined with interval root finding techniques as a form of exact arithmetic. From 

a theoretical point of view all calculations can be done in Q even those involving 

transcendental functions.

In practice it is convenient to use arbitrary precision floating point arithmetic. 

Extensions based on floating point values are easy to compute (assuming facilities 

for rounding calculations up or down are available). The only problem is where 

intervals are created which have widths indistinguishable from zero. When this
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happens it can be resolved by increasing the precision and then repeating the 

calculation.

Our implementations of interval arithmetic (in MuPAD, Maple and using the 

C + +  GiNaC library) all support both rational and floating point arithmetic, 

swapping to floating point if operations not yielding exact rational values are 

used. Though no check has been made, the speed of even software floating point 

seems to outweigh the greater precision gained from using rational values.

The main alternative to the method for validating boxes used here seems to be 

based on computing the topological degree (also done using interval arithmetic) 

which is described in [Abe94, Abe98]. This has been extended by [KDNOO] to 

the more difficult case of singular zeros of complex systems. Its disadvantage is a 

practical one: it proceeds by bisection where root finding methods can converge 

quadratically (though of course in the worst case they don’t).

No attempt has yet been made to compare the methods. It is expected that the 

new method will do considerably better in the general case. Aberth’s method 

computes the topological degree using bisection of boxes. The method here has a 

single step of comparable complexity: computing the Krawczyk operator rather 

than the determinant. However the ‘unreasonable efficiency’ of the iteration 

means that at a single step the volume of the box being tested is reduced by a 

factor of «  w( Y ) 2 rather than halved as in Aberth’s algorithm.

Other methods of root counting exist but most are primarily symbolic in opera

tion. For specifically polynomial systems a range of methods is possible. In the 

univariate case, Sturm sequences could be used. [Ped91a, Ped91b] extends these 

to the multivariate case. An alternative is described by [Can91]. A more modern
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approach is through homotopic methods [GLW99].
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Chapter 3

Algebraic N otation  and Basic 
R esults

This chapter summarises the notation used in the rest of the report and basic 

results which are used throughout the text and which seem more sensibly grouped 

together rather than be introduced at their first use.

3.1 N otation

The notation used for interval arithmetic is used here as far as possible. B  C M n 

is a box in Rn with rational endpoints and £ E B  is a point defined by a polynomial 

mapping P  : Rn —► Rn. It is convenient to ignore situations where any of the £ 

may be zero and so it will be assumed that 0  0  5* for any i.

Capital letters (avoiding those with well established usages in algebraic num

ber theory) are used for polynomial maps and lower case letters for individual 

polynomials.
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Unless otherwise stated P  =  (p i , . . . , pn) andpt G Z[xi , . . . ,  xn] will be the system 

considered. The aim is to decide if </(£) =  0 (q G Z[ x i , . . . ,  xn]) given that 

det J(P , f ) 7  ̂ 0. The degree of polynomial p in variable x (the highest exponent 

of x ) will be written as deg,,, p. Since X\ , . . .  ,xn are commonly used as variables 

degi(p) is used for degx.p. Used without subscript degp is the total degree of p. 

For a polynomial map, P  the same notation refers to the maximum of the degrees 

over the components of P.

Symbols such as X  and 3̂  will are sometimes used to represent sets of monomials 

in x i , . . . ,  xn or p i , . . . ,  yn respectively. For p G Z[x] we will write p =  Y^Pix% 

with summation assumed to be over 0 <  i <  deg(p). For p G Z[xi , . . .  ,x n] the 

notations or J2kezn • • • xnn or simply ^ P k X k are used

depending on which is felt to be clearest.

The notations < P >  and < p i , . . . ,  pn>  are both used to refer to the ideal generated 

by the p u . . . , p n.

3.2 Measures of Size

For a polynomial P  =  Ylo<i<nPiXl ^ roots z i , . . . , z n, common measures

of ‘size’ are:

IIp IU =

L(p) =  Iblli ‘length’

H{p) =  | |p | |o o  cfhe usual height’

M(p) =  pn m ax(l, \zi\) ‘Mahler measure’

h(p) =  log(M (p)) /n  ‘absolute logarithmic height’
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As with deg(-), the formulae have the obvious interpretations when p is replaced 

by an algebraic number a , e.g. L(a) =  L(Irr(a) )  where Irr (a )  is the minimal 

polynomial in Z[x] having a  as a root and similarly for other measures. The table 

below (abbreviated from [WalOO, p i 14]) provides a convenient summary of the 

relationship between these measures for a polynomial p  with degree d.

M(p) H(p) IMh L (P)

M(p) < 1 y/d +  1 1 1

H ( p ) < (rd/2]) 1 1 1

\\P\U < o 1'2 y / d + 1 1 1

L (P) < 2d d +  1 s /d  +  1 1

Commonly these measures are given for monic polynomials, the effect of allowing 

pn ^  1 is to make some upper (lower) bounds larger (small) than they strictly 

need to be. Unfortunately in most cases there is insufficient information to do 

better.

3.3 R oots o f Polynom ials

Lower case Greek letters are used to represent algebraic numbers and vectors 

of numbers, e.g. £ =  ( £ i , . . . , £ n)- For any algebraic number a, Irr(a) is the 

minimal polynomial of a , deg(a) is its degree and fa] =  max(|a^^| , . . . ,  \ a ^ \ )  

where a  =  . . . ,  a ^  are the algebraic conjugates of a.  den(a) is the smallest

integer d such that da  is an algebraic integer.

A significant part of what follows is based on estimating the sizes of roots of uni

variate polynomials with integer coefficients by estimating their heights (because
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M(-) and so h(-) are generally harder to estimate). Mignotte [Mig92b, pl46] 

provides a summary of estimates of which the most useful here is, if p(z) =  0  

then

T T h (p ) *  |z| ^  H{p) + 1 W

For a few cases, where the coefficients are known, better estimates of \z\ could 

be used (indeed numerical methods could be used to obtain arbitrarily precise 

results) but for most case only a very crude estimate is known. Where p  G Z[x] 

it is often neater to use

1
2  H(p)

<  \z\ <  2H(p)  (3.2)

If even the height isn’t known, a very crude bound for the smallest root (‘smallest’ 

and ‘largest’ always refer to absolute magnitude) is that if a  the is any root then

1
fajdeg(a) —'1

3.4 Polynom ials as Determ inants

It frequently occurs in this report that a polynomial is given in the the form 

of a determinant. Usually there are matrices A, B  G Znxn and the polynomial 

x(z) =  det(Az +  B)  is of interest. It may be required to evaluate the determinant 

and the polynomial, or more usually, to bound its roots. In general the matrices 

may not be square in which case a maximal sub-matrix is sought (one which 

doesn’t vanish identically for all z, and such that any larger sub-matrix does 

vanish identically).

When B — I  this is standard eigen-problem. Danilevsky’s algorithm (described in
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[Ham70] for example) is perhaps the earliest algorithm for this. More commonly 

conversion to Smith normal form is used which has the advantage of working in 

the general case (B ^  I  and not necessarily square). Modern Smith normal form 

algorithms are given in [Gie95a, Gie95b, GS0 2 ] and [GieOl] for the sparse case.

Solving the general eigenvalue problem numerically is described in [GL96, pp375- 

390]. Unfortunately the methods discussed there are not easily converted to 

an interval setting because of problems of dividing by intervals containing zero. 

LU decomposition (which requires only rational arithmetic) is an alternative, 

especially as A~l B  can be efficiently computed from an LU decomposition of A 

[PTVF92]. [Tra98] computes one of the one-sided inverses of A  (i.e. A  need not 

be square nor non-singular) to solve this problem but it is not clear how this 

improves on LU decomposition.

Depending on what is known about the entries in A  and B  bounds on the roots 

of x  can be found. The bounds are mostly based on the following result

L em m a 8 . Let M{z)  — (a^z +  bij)nxn with aij^bij € Z. and write Lk =  

E i < i < J afcil +  \bkil U x ( z )  =  de tM, then H (x)  <  Y l i L i-

Proof. The result is trivially true for n =  1. Assume it is true for k < n Let the 

elements in the first row of M  be a \z  +  6 i , . . . ,  anz  +  bn and their cofactors be 

A i , . . . ,  A n , if A i j  is the coefficient of zj  in Ai then the coefficient of z k in det M  

is

A/fc — (—l ) l+1(fliAi)fc-i +  biA^k)
1 < i < n
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or

\ M k \ <  (M + N ) m axd^-il, |i4i>fc|)
1 < i < n

—n = n
1 < i < k  l < i < k

□

Note that this is just a variant of the Hadamard bound [Mig92b, p303] for the 

size of a matrix using the ||-||i row norm and defining \az +  b\ =  |a| +  |6 |.

C orollary 3. If \a,ij\ <  Ha and \bij\ <  H\> for a l l i , j  then

\Mk\ < n\{Ha +  Hb)n

< n\ 2n max(Ha, Hb)n

Proof Referring to the previous proof, Li < i(Ha +  Hf) since the minors in the 

expansion are successively narrower by one column. □

C orollary 4. If det M(£) =  0 and f  ^  0,

2 \ [ L i  ~  |̂ | ~ 2n Xi 3̂-3̂X XI i

and

i  (Ha +  Hby
2  n\

< | f | < 2 n !  (Ha +  Hb)n (3.4)

In the simple eigenvalue case, Ha =  1, thus if Iz-\-B  =  0 has a solution z =  £ ^  0 

then

2 n!
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3.5 The Bezout Number

The Bezout number is the number of complex zeros of a (zero dimensional) poly

nomial map. More generally it is the number of connected components of the 

variety generated by the map. If P  =  (p i , . . . , pn) with all Pi G Z[xi , . . . ,  xn] it is

N (p ) <  n d e g f e )

The estimate may be much greater than the Bezout number. An example which 

is important in the context of this report occurs when creating a system P  U {1 — 

xn+i d e t J ( P ) }  to guarantee a finite number of roots. In general the degree of 

det J(P)  is greater that that of P  but the number of roots in the new system is 

no more than the estimate based on P  alone would give.

The true value of N (P )  can be computed from the Newton polytope of the system  

[CL098] or, for a zero dimensional ideal, by computing a Grobner basis. More 

efficiently, a better bound can be obtained in many cases by multi-homogenisation, 

originally introduced in [MS87a, MS87b] in the context of solving equations by 

homotopy methods. The basic idea is to partition power products into sets and 

determine the degree in each element of each polynomial in the system. The 

permanent of this degree matrix formed in this way generally gives a lower bound 

than the product of degrees.

The simplest bound is used here since finding the true Bezout number will not 

always be practicable and, for gap functions, a bound is required based on input 

characteristics only.

The Bezout number is often bigger than strictly required by the problem. If the
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ideal < P >  is decomposable there may exist points at which P( f )  =  0  implies 

g(£) =  0  and others where it does not (i.e. Q[£i , . . .  ,£n]/<P{€)>  is n°t isomor

phic to Q[x i , . . . ,  xn] /< P > ) .  The perfect solution would be to know the Bezout 

number for each irreducible component of P.
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Chapter 4

Special Cases

4.1 Introduction

Historically, finding lower bounds for algebraic numbers is more associated with 

the traditions of Algebraic Number Theory and Diophantine Approximation 

(both of which normally work in terms of univariate polynomials) than Alge

braic Geometry (where more general representations are used). Though a goal of 

this research is to place as few restrictions as possible on how numbers are repre

sented, the evidence to date suggests that this is incompatible with efficient zero 

detection. A practical approach may be to combine a more restrictive approach to 

representing the numbers but still to use lazy arithmetic for intermediate results. 

Even if the attempt is made to work with more general systems of equations, 

it is often worth checking for those special cases where better algorithms exist. 

Finally special cases often provide an insight into the more general scenario.

This chapter considers a number of special cases including results involving single 

values and points defined by univariate and triangular systems of equations. In 

doing so it is convenient also to discuss how a general set of polynomials might
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be reduced to one of these special forms.

4.2 Univariate Representation

4.2.1 The Single Variable Case

It is convenient to consider initially the one dimensional version of the problem; 

that is, given polynomials G Z[x\ and an interval x  containing exactly one 

root £ of p, decide if q(£) =  0. It is not necessary to assume that either p or q is 

irreducible but it is assumed that p'(£) ^  0  and so £ is not a zero of any repeated 

factor of p.

There is an easy algebraic method of solution in this case. Let g =  gcd(p, q) and 

h = p / g , then either g(£) ^  0  (implying q(£) ^  0 ) or h(£) ^  0  (implying the 

converse). Thus an interval x* C x  can be found for which either 0 ^  p (x*) or 

0 i  / i (x * ) .

The simplest numerical method is probably the following

Proposition 9. For p, q E Z[x\ with deg(p) ~  d , deg(g) =  m, with p(£) =  0 and 

|"J] < k then if q(£) ^  0

m \  >  (4.i)

where A  =  den(p)m £„<<<.» I® I

Proof den(p)mg(^) is an algebraic integer and so |den(p)mg(£) | >  1 and the 

smallest root is >  |den(p)mg(£) 11~d =  den(p)m(1-d)[f[f)~| 1~d. Since ff] < k,

1?(S) | <  Eo<i<ml®lfc< 1=1
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An alternative algorithm giving a better lower bound is described and analysed 

by Johnson [Joh92] based on the following result

T h eorem  2  (C ollins and  L oos). L e tp ,q  G Z[x] with deg(p) =  d, deg(q) =  m.  

If p(0  =  0  and q(£) ^  0  then

19(01 >  \ L ( p ) - m ( L ( q )  +  l ) ~ d (4.2)

Proof. Johnson cites [CL76] for a proof of Eq. 4.2 by consideration of the lower 

bound of the resultant matrix of resx(p(x), z  — q(x)). However the result is also a 

direct application of Eq. 3.3. The resultant matrix has the first m  rows containing 

the (shifted) coefficients of p  and the remaining rows contain z —<70 , <?i, • • •, qm- D

Comparing this with Eq. 4.1,

A  =  m ax(l, den(p)m ^  \q%\k%)
0 <i<m

<  den(p)mL(q)L(p)m 

implying |(?(£)l >  L(q)1~d(den(p)L(p))m('1~d̂  which is considerably weaker in gen

eral (though see the example below).

Take

Pi =  x3 +  l l x 2 +  17x — 44

p2 =  3x4 +  21x3 -  35x2 -  14x +  22 

with £ «  1.32 and [£] <  8.4.

(4.3)

|P2(01 ^  1-2 x 10 9 Using Eq. 4.1 

|/>2(0I > l/2i/(pi)"'de6P2(l + L(p2))~despl 

«  1.9 x 10-1 4  Using Eq. 4.2 
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(In fact pi  and P2 have a common factor: x2 +  7x — 11  of which £ is a root.)

4.2.2 Equality of Algebraic Numbers

Finding lower bounds for \a — (3\ with algebraic a  and (3 provides a natural 

extension to the Thue-Siegel-Roth theorem [WalOO, p8 ] and has been studied 

extensively. A summary of current knowledge can be found in [EveOOa] and 

[EveOOb]. Unfortunately many of bounds are non-constructive. Schmidt [Sch83] 

(quoted in [EveOOb]) conjectured that, for any 6 >  0 in any fixed algebraic field, 

there are only finitely many a  and (3 satisfying

\a — (3\ <  max(AT(a), M((3))~2' s (4.4)

which makes the link with the Thue-Siegel-Roth theorem explicit1. If correct this 

gives a probability 1 test for a  =  (3 by choosing any value for S.

Using Liouville’s theorem it is easy to show that

\ a - / 3 \ >  (2M (a))-deg(/3)(2M(/3))~deĝ  (4.5)

where M(-) is the Mahler measure. This can be expressed in terms of the more 

usual height/length by using M (a)  <  H(a)^Jdeg(a) +  1 or M (a) < L(a).

By a different method Stolarsky [Sto74, p40] gives a result which in the two 

variable case is very close to Eq. 4.5 as does Mignotte [Mig92a].

It is also possible to reduce the problem to two single variable problems.

2We assume the claim is for a  and (3 in a given algebraic number field.
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P ro p o sitio n  10. Let di =  degfe) then 6  =  f 2 if  16 -  61 < di (rfl+2)/2||Pi ||  ̂ di 

and b i ( 6 )l <  \L (p 2) - dl(L(pi) +  l )~d2.

P r o o f  Trivially P i ( 6 )  — Pi ( 6 )  =  0 is necessary if 6  =  6 -  Thus 6  is als° a root 

of p i  which is tested by the first condition. For 6  ^  6  the second equation above 

defines a minimum for the root separation [Mig92b, p i 6 8 ] □

A result which pre-figures the methods of Chapter 5 is

Proposition  11. F o r  i  =  1,2 s u p p o s e  Pi(6) =  0 w h e r e  P i f x f )  =  So<j<di 

a n d  w r i t e  k i  =  P i ^ ( a s s u m e d  t o  b e  p o s i t i v e ) ,  t h e n  6  ^  6  i m p l i e s

q-(d l— l)(d2~ l) + 3
16 -  61 >  4 K  ( L b  i) + fci)-*(£fe.) + k 2)~ dl (4-6)

w h e r e  K  =  k i k 2  +  k i H ' ( p 2 )  +  k 2 H ' ( p i )  a n d  H ' ( p i )  =  maxo^dilbtfcl}-

P r o o f  Consider the set of equations ( z  —  x \  +  x 2 ) x \ x >2  =  0 for 0 <  z < d*, 0 <  

j  < d 2 . The equations can be partitioned into four sets:

1. z <  d \  — 1 and j  < d 2  — 1 : [ d \  — l)(d2 — 1) — 2  equations. These have the 

form z x \3?2 — £i+1:r2 +

2. z =  d \  — 1 and j  <  d 2  —  1: d 2  equations. For these

x j  ^
z x d l ~ l x ? 2  —  x d l x ? 2  +  x d l ~ l x 2  =  z x d l ~ l x j2  +  xf1_1a;2+1 +  ^

1 0<j<dx

or

k \ z x ^ ~ l x f 2  +  A;iXi1_1a;̂ +1 -f x J2  — 0
0<fc<di
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3. i <  di — 1 and j  =  d2 — 1: d\ equations with the form

k 2z x \ x 2 2~ l — k 2X <2 ~ l X 1+1 —  x {  P 2 k % 2  =  0
0<k<d,2

4. 2 — d\ — 1 and j  =  d2 — 1: one equation:

k i f a z x ^ x f -1 -  k2xd̂ ~ l ^ 2  Pik^i +  /ci^i1 -1  ^ 2  P2kX2 =  0
0< k< di 0<k<d,2

Treating these as a set of linear equations in the x \x 2 leads to a matrix with 

(d\ — l ) (d2 — 1) — 2 rows of ‘length’ 3, d2 of k\ +  T(pi), d\ of k2 +  L{p2) and one 

of kiL{p2) +  k2L(pi) -  kik2.

Applying Eq. 3.3 almost gives the result with one small modification. In the proof 

of Eq. 3.3 no account is taken of the fact that the number of entries in the rows 

of the matrix minors decrease, thus rather than using the full length of the rows 

the sizes decrease. In particular, one row ‘length’ can be replaced by its height.

Taking the last equation gives a height of <  kik2 +  kiH'(p2) +  k2H'(pi). Also, a 

trivial gain, one row can be chosen to have only two elements, for this one of the 

rows from the first set is chosen, replacing a 3_1 by 2_1  and the result follows. □

Take p\ =  x\  +  l lx^  +  17xi — 44, p2 =  3x% +  2 1 ^ 2  — 3 5 ^ 2  — 14x2 +  22 with 

and £ 2 ~  1-32 (in fact p\  and p2 have a common factor: x2 +  7x — 11). 

L{pi) =  73, L(p2) =  95

Assuming 6  ^  f 2, using Eq. 4.5

16 - 6 1  > ~  3.2 x i o - 16

66



Using Prop. 10, £1 =  £ 2 if

|Pi(6 )l <  ;j95“374“ 4 ps 1.9 x 10“ 14 and
L*

16 -  61 <  3“5/248.5“2 «  2.7 x 10“ 5

Using Eq. 4.6

| f i - 6 | > » 1 . 9 x l 0 “ 18

4.2.3 T he General Univariate Case

Hur [HD99] and Strzebonski [Str97] describe resultant based arithmetic for the 

case of q G Z [ x \ , . . .  , x n] and Pi G Zfe]  for 1 <  i <  n. Their concern is more 

with arithmetic and with identifying the polynomial representing the result by p- 

adic (Hur) or interval (Strzebonski) methods. Since they produce a characteristic 

polynomial for <?(£)> detecting zero is a trivial issue.

Both authors use a term by term approach to finding the the final polynomial, a 

multivariate resultant method could be used to eliminate n — 1 variables from q 

reducing it to the single variable case but this is hardly less expensive.

The field operations involve the greatest amount of computation. Strzebonski 

[Str97] (see also [HD99]) suggests using resultants. For example, to add a,/?, 

defined by polynomials p and q respectively, he computes Resy(p(x — y),q(y))  

which has amongst its roots a  +  (3. By factorising the resultant and isolating 

numerically the factor having a  +  (3 as a root a representation for the sum is 

found. The other field operations are defined similarly. This is a costly way of 

doing arithmetic. The cost of resultant calculation is 0 ( d 3) where d is the sum
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of the degrees of the polynomials involved. Typically the degree of the resultant 

is the product of the degrees of its constituent polynomials. Thus if a , /?, 7  G A 

are all of degree n, a simplistic evaluation of ct(3 — ((3 +  y )a  +  a y  requires six 

resultant computations with intermediate polynomials having degrees as high as 

n6 being factorised before the final collapse to zero.

A simple numerical method would be to extend Eq. 4.1.

P rop osition  12. Let q =  Yltezn Qtx 11 • • • xtT and ^  ^  be an upper bound for  

the roots ofpi then

|g (0 | > I/A®"1 (4.7)

where A  =  m ax(l, J2tez*lf* l +  and D  =  E lideg(&)

The chapter on resultant methods below could extend the result at Eq. 4.2 to 

this case, but the bound is generally weaker.

Another gap function is provided by Liouville’s Theorem [WalOO, p83]

T heorem  3 (L iou ville). Let di =  deg(^), Ni =  deg^q) and D =  f \ d i  then

(4 .8 )
i

As usual, M(£i) can be replaced with T(£*), alternatively the Dandelin-Graeffe 

iteration [Mig92b, pl55] can be used to compute a rational upper bound for M(£*)

In Example 1.3 p\ =  x\ — 2, p2 =  x\  — 18^2 +  49, q =  x2 — 2x\ — 1
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Using Eq. 4.7: \q(£)\ > «  8.1 x 1(T15 

Using Eq. 4.8: |g(£)l > ~  1.6 x 10-1 0

These are comparable because the system is so small. For larger system Liou- 

ville’s result is usually better.

4.2.4 O btaining a Univariate R epresentation

Given a general systems S  how may an equivalent univariate system P  be pro

duced? By ‘equivalent’ we mean a system which represents £, i.e. £ €  V (P )  C  

V(S)  (that is P  need not include all zeros of S  as long as it includes £). Two 

possibilities would be to use algebraic techniques such as multivariate resultants 

or Grobner bases, these are briefly mentioned in later sections. An alternative, 

more in keeping with the ethos of this thesis, is numerical: reconstruct the poly

nomial representation of each & from its approximate value &, i.e. if deg& =  d 

then find integers a0, . . . ,  a ,̂ not all zero, such that E 0<t<da*& I sma -̂ This 

gives a putative univariate representation of Of course such a polynomial may 

not be correct but the lemma below shows how the representation can be verified 

or a ’better’ one found.

a o , . . . , ad can be found using ’lattice reduction algorithm’ such as PSLQ [FBA99, 

BP98] or LLL [Poh93, pp ll-26]. (We have found PSLQ simpler to implement 

and use.)

Using PSLQ a putative univariate representation P  for f  can be found. To confirm 

that P  is a correct representation we need
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L em m a 9. Let 5b represent £ and for P  =  {pi\l  <  i <  n, Pi E Z[x i , . . . ,  xn]} 

/e£ Pb represent a point a . If 5* (a) =  0  /or all Si then a  =  f

Proof  Since 5*(a) =  0 for all 5 (a ) =  0 but £ is the only zero of S  in B  so 

a =  f. □

In the case where the Pi are to be univariate this gives an effective technique to 

find a P  which represents £.

1 . Use PSLQ to find a candidate polynomials pi for each f*.

2 . If the root represented by Pb is a  check that Si(a) =  0 for each 5* using 

any of the above methods.

3. If 5 (a ) =  0  the algorithm terminates

4. If 5 (a )  0 then for at least one Pi, Pi{£) 7  ̂ 0. By numerical methods refine 

B until the non-zero polynomial is found.

5. Reapply the PLSQ algorithm to get a new approximation and repeat from 

step 2 .

The Bezout number N (S)  gives a bound on the degree of the first polynomial to 

be extracted. The PSLQ algorithm’s time complexity is polynomial in N  (and 

hence exponential in n).
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4.3 Rational Representation

An algebraic number field Q[£i , . . . ,  £n] contains a primitive element [Lan65, pl83]  

rj =  c* £  Q such that & =  Vi(rj) where Vi G If the minimal

polynomial of rj is f { t ) ,  the polynomial system (pi , . . .  ,pn) can be replaced by a 

rational representation2 (f(t ) ,  X\ — v \ ( t ) , . . . ,  xn — vn(t)). Such a representation 

reduces zero testing to the univariate case: replace each variable in q by the 

appropriate rational expression to obtain a rational expression in t  and use, for 

example, the bound from Eq. 4.2.

Obtaining a rational representation can be done in a number of ways, most obvi

ously by the use of Grobner bases (see Chapter 5 below) once a primitive element 

has been found. Fortunately, with probability one, any integer linear combination 

of the Xi will be a primitive element. Unfortunately, as illustrated in [ABRW96], 

representations found by such a method often have very large coefficients.

Several improvements have been suggested, Rouillier [Rou99] describes a method 

without using Grobner bases to obtain a representation

(/(*), xi -  gi (t) /g{t) ,  gn(t)/g(t))

with / , £ ,  p i , . • . ,  <7n £ This reduces the amount of work by requiring only 

one denominator to be found. Once /  and g are known, the algebraic method 

used by Rouillier could replaced by numeric methods similar to the conversion to 

univariate form.

Rouillier’s approach can still lead to polynomials with very large coefficients.

[ABRW96] shows that the polynomial /  typically has small coefficients and a

2Something of the rather combative history of the development of this idea can be found in 
[GH]. An early description of the method by Macaulay is available as a reprint: [Macl6].
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representation

i -  (* ) / / ' (£ ) , . . . , x n -  gn{ t ) / f ( t ) )

exists and can be constructed.

A modern probabilistic algorithm derived from Kronecker’s idea, which is claimed 

to work well in practice, is given in [GLS]. It finds a representation incrementally 

and never involves working with more that bivariate polynomials.

Rational representation has a major advantage: it very simply reduces problems 

in n variables to a single variable case. However, there is no evidence to suggest 

that, for this problem at least, a conversion to rational form is simpler than 

conversion to univariate form.

4.4 Triangular System s

A triangular system P  =  {p1?. . .  ,pn} is understood to be one in which for each 

i there is at most one Pi G Z[x i , . . . ,  x j  \  Zfoq,. . . ,  £*-1]. The form of triangular 

systems makes them convenient for computing numerically the solutions of sets 

of equations. An important sub-class are systems derived from nested radical 

expressions such as \ /9  +  4y/2 — 1 +  2y/2.

Nested radical expressions built from Z using , x , /  &ndy/ri' are an important 

class of expressions because of their frequent appearance in geometric problems.
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They are also of interest because it is easy to find putative identities such as

\ Z 9 + w i  =  1 + 2 V 2  

\J h  +  2\f& +  \ J b - 2 V l  =  2 \ f l

\jlb-  2\/29  +  2 \/5 5  -  10\/29 =  \fn + 2sfl
- \ J  11 +  2V29 +  V5 

^ Z / Z 2 j l  -  =  (1 +  -  v/32) /v /25

112 +  70V^ +  (46 +  34\/2) V5 =  5 +  4 v ^  +  (3 +  \/2 ) \/5  

(from [DST93, p93]) which are easy to prove using pen and paper but which are 

non-trivial to resolve by a symbolic algorithm. The link with triangular systems

is clear when, say, deciding if \Z9 + 4 \ / 2  =  l + 2 \ / 2  is rephrased as asking whether

x\ — 2 =  0 where X\ £ [1.41,1.42]

x\  — 9 — 4xi =  0 where X2 E [3.82,3.84]

implies X2 — 2xi — 1 =  0 (this is the example from the introduction).

One method of deciding if a division free nested radical expression is zero has been 

re-invented a number of times, including by the authors of [LiOl] or [BFMS00] 

(and of this report). If e is a nested radical expression, a bound on its algebraic 

degree is easily computed

!1 i f e e Z
dega degb i f e =  a ± b o v a x b

n deg a if e =  y/a

as is an upper bound on the largest absolute root value, [e]:

|e| if e £ Z
|"a]+|T] ife  =  a ± 6

|"a]|7T| if e =  a x b
< V R  if e =  yfa

Without division, a nested radical expression always represents an algebraic in

teger and so, as in Eq. 4.1 the bound

[el <  <



can be used. If division is included and, the expression is defined, the method 

also works when

w m  <

is added to the definition of [e].

The same idea can be extended to more general triangular systems.

Lem m a 10. Let P  be a triangular system with P(£)  =  0 then deg£* <  A  := 

1 1 1<j<idj where dj =  degjPj.

Proof. The result is trivially true for i =  1. Assume it is true for i <  k and 

consider

F:= II
where the Cj run over all conjugates of

By the hypothesis the coefficients of p k will have degrees <  A - i  and there will 

be D k_ i terms in the product, i.e. F  e  Q since its coefficients are symmetric 

polynomials over all conjugates of the £ i , . . . ,  £jt_i. Since deg F <  degk(pk)L>k-i 

the result follows. □

C orollary 5. Let P  be a triangular system then degq(£) <  D n (i.e. the degree 

° f  q(£) depends on the degree in Xi of the i th polynomial, not on the degrees of Xi 

appearing elsewhere in the system).

Proof. By consideration of S  U {x n+i — q} with £n+i =  g(f). □

Using this, bounds on [5] can be found sequentially. f̂ ]~| is bounded by any 

root bound of Pi. Suppose bounds on [^7|, • • • | have been found. Since
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the coefficients of Pk are in Z[xi , . . . ,  Xk-i] it is possible to find the first non-zero 

coefficient (alternatively a lower bound for any non-zero coefficient can be found). 

The upper bounds can be be found easily and from this an upper bound for 

as a root bound from Pfc([^T|, • • • ,|£fc-i |)- Eq. 4.7 then gives a lower bound for q.

L em m a 1 1 . If P  is a triangular system and for  Pk E Z[a;i,. . . ,  Xk], Pk =  5ZPMxk 

and maxi(|pfti | ) <  Hk then [Jjt] < 2H^k~1 where Do =  1, A  =  deg£* A - i -

Proof  The result is trivial for k =  1 as it is just a root bound for Assume it 

is true for £ i , . . . ,  £k-i- At least one of the Pki(£i, • • •, £k-i) 7  ̂ 0 (since P( f )  is an 

isolated zero). Assume that the highest degree coefficient which is not zero is the 

sth. Then Pfc( ^ , . . . ,  xk) =  Y ,0<i<s Pki{£i, . • •, 6 - 1 )4  and

f?fc] <  2|max(pjfci( f i , . . .  ) ) / p k s ( € u  • • • , £ k - i ) \I

but |pfcs(£i , . . .  ,£jt-i)| >  H ] r Dk~l and the result follows. □

As with the rational representation, there is no obvious benefit in converting a 

non-triangular system to triangular form. On the other hand numerous methods 

of converting to triangular form exists including the use of Grobner bases and Wu- 

Ritt characteristic sets. For a comparison of several decomposition see [AM99].

4.5 Gap Functions for General System s

This chapter has largely used ad hoc methods to give gap functions for particular 

forms of polynomials. In general the gaps predicted are much smaller than the 

true lower bounds. Not surprisingly when general systems are considered it is 

harder to obtain a gap function and the few known estimates are even weaker.
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Subsequent chapters give several gap functions for more general cases but one 

example is included here (because it doesn’t fit naturally elsewhere).

If < P >  is known to generate an irreducible ideal, an effective version of the 

Hilbert Nullstellensatz provides a gap function.

T heorem  4 (K rick et al). Let p i , . . .  ,ps E Z[xl7. . . ,  xn\ be polynomials without 

a common zero in Cn. Set d := maxfdeg(pi) and h := max* h(pf) where h(p) =  

log H(p) then there exist a E Z \  {0} and g i , . . . ,  gs E Z [x i , . . . ,  xn\ such that 

a =  gipi  H h gsps

deg(gt) <  AncT

h(gi) <  4n(n +  l)dP{h +  log s +  (n +  7) log(n 4- l)d)

C orollary 6. Writing p0 for q with P  =  { p i , . . .  ,pn} set d := maxo<i<n deg(pj),

h =  max0<i<n h(pi) and K  := max0<i<n{ l ,  |&|}- If < P >  is irreducible and g(£) ^

0 then

l ? ( O I  ^  h J ^ n

where
N  =  4ndn and 

f  N  -I- n \
H =  ( j 4 n(n +  1 )dn(h +  log(n +  1) +  (n +  7) log(n +  1 )d)

Proof Consider the ideal < ? U { g } > ,  since < P >  is, by hypothesis, irreducible 

then either q E y /< P >  or q has no common zero with with P.  If q(£) ^  0 the 

latter case must hold and so, as above, there exist go, . . . ,  gn £ Z[x \ , . . . ,  xn] such 

that

a =  goPo +  g\P\ +  — f- gnpn

with a a non-zero integer. Each Pi(£) =  0 so

M  =  l f f o ( $ ) l k ( O I  o r

m \  >  i / i9d«)i

76



Since cleg (go) < N  it can have at most (^*n) monomials each of which are < K

at £. The rest of the H  is the bound on the height of go- □

This doesn’t fit the examples well as they don’t generate an irreducible ideal. 

However factorising p2 in Eq. 1.3 gives a modified example:

In Example 1.3 modified pi  =  x\ — 2, p2 =  x\ — 2x2 — 7, q =  x2 — 2x\ — 1

This is a weak bound, both in magnitude and in requiring < P >  to be irreducible. 

On the other hand it doesn’t require P  to be zero dimensional and has the 

interesting feature that it is the only gap function we know of at a specific zero 

of P.

4.6 Conclusion

The aim of this chapter was to illustrate some rather ad hoc techniques for par

ticular cases and to introduce ideas which will be treated more generally in later 

Chapters. It is interesting to note how few bounds seem to be known - and how 

weak such bounds are.

N  =  32, K  <  3.9, i f  =  96(7 +  log 3 +  9 log 6) «  108

or |g(f)| >  0.1 x 10-26

In a sense such weaknesses are inherent in the methods adopted. Tests for zeros 

usually don’t depend on the behaviour or a particular algebraic number, q(£),
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but on a worst case analysis of the equations defining £. With the exception of 

the bound due to Krick et al, none of the methods take any notice of what is 

known about the value of f  but instead view it in terms of [J]. And in turn, even 

[5] is derived from properties of its defining polynomial. It is only once a bound 

is known that numerical methods re-introduce £ to do the evaluation of <?(£).

In Chapter 6 a well known bound for a general system (due to Canny) is given 

and an improved bound is derived (based on a slightly different analysis of the 

Macaulay resultant). Though the new bound could be improved up in obvious 

ways it suffers the same flaws as those described above. Indeed because of the 

generality of the systems it relates to it is considerably cruder.

This chapter has also described ways of producing more tractable representation 

of numbers. The ideal of lazy computation, espoused in the introduction, had 

two facets: a general representation of algebraic numbers and arithmetic and zero 

testing without complex symbolic computation. Though methods of dealing with 

general systems are discussed in later chapters it seems likely that the first of 

these is unrealistic.
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Chapter 5

Elim ination M ethods

5.1 Characteristic Equations

If we accept, for the moment at least, that useful gap functions for general systems 

P  are beyond reach, what alternative methods exist? One possibility is to find 

the characteristic polynomial x (z ) of q such that P(£)  =  0 iff x{q(€)) =  0 (in 

fact it is sufficient that the minimal polynomial of g(£) divide x)- If q ( 0  =  0 then 

x ( z ) =  z kh(z ) (k >  0) and h(q(£)) ^  0. To prove that q(£) =  0 is then reduced 

to showing that \q(£)\ <  c where c is the magnitude of the smallest root of h (for 

which bounds are well known). But for some sufficiently small box B  enclosing 

£ either 0 0  #(B) (and so g(£) ^  0) or \q(£)\ <  c.

There are three obvious ways by which a suitable x  might be found: using Grbbner 

bases, multivariate resultants or the characteristic set methods associated origi

nally with Ritt and rediscovered by Wen-tsiin Wu [Wu78]. From the perspective of 

this report the Wu-Ritt method is less useful because of its emphasis on symbolic 

triangularisation methods (which are also possible with Grobner bases). Com

prehensive details of Wu-Ritt methods are available in [WBC01] with a Maple
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software library at [Wan].

5.2 Grobner Basis M ethods

Familiarity with the elementary properties of Grobner bases is assumed. For 

details see, e.g. [CL092, AL94]. G(P)  signifies any Grbbner basis of < P > .  None 

of the results which follow depend on which monomial ordering is used. Only the 

following properties of Grobner bases are required (details can be found in either 

of the books mentioned).

L em m a 12. If < P >  is 0-dimensional then:

a) for  1 < i <  n, one of the generators of G(P) has a leading power product of 

the form x^ for some di,

b) A set of n polynomials in which there is a polynomial with a leading term of 

the form x^ for  1 <  i <  n is a Grobner basis, and

c) Q[x i , . . .  xn] / < P >  is a finite dimensional vector space with dimension equal to 

the number of zeros of P,  counted with multiplicity.

If G(P)  is known then by computing q =  0 (mod <G(P)>)  iff q G < P >  It will 

therefore be assumed that q £  < P > .

One way to use Grobner bases in this context would be to compute G ( P U { z  — q}) 

where z  is a new variable. By using an appropriate elimination ordering it is 

possible to obtain a polynomial in Q[z] whose roots correspond to the values taken 

by q at zeros of P.  (In practice G ( P U{1  — zq})  is a better choice.) Unfortunately 

this has several disadvantages: adding an extra variable to a polynomial system 

can have a drastic effect on the time taken to compute the basis; elimination
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orders typically require longer computation times than other orderings; a new 

basis computation is required each time a sign is to be determined; and finally, 

in the radical expression case, P  will already be a Grobner basis in aq, . . . ,  xn - a 

fact which should be exploited if possible.

There is an alternative. From Lemma 12, polynomials in Q[x i , . . .  xn] form a 

vector space with basis set of power products, S  C {x r-± x T2 ■.. xrj \ £ N, 1 <  

i <  n}. [M6193] and [MS95] showed how this could be used to solve polynomial 

equations1.

5.3 Polynom ials as Linear Operators

It is simpler to work with polynomials over Z and equations whose roots are 

algebraic integers rather than Q and arbitrary numbers in this section. Such a 

conversion is easy to make with a Grobner basis and it is assumed subsequently 

that it has been done. Thus every generator of the basis is monic.

If G =  { # i , . . .  gm}  is a Grobner basis then any p £ Z[a;i,. . .  xn\ can be written as

m
p = ' ^ c igi +  r  where c*, r £ Z[zi, . . . x n]

i=i

where r is the unique remainder after p  is successively divided by each of the <&. 

The remainder will be written as \p\. If p =  [p] we will say that p  is reduced.

Lemma 12 a) implies that only a finite number of different monomials can appear 

in a reduced polynomial. In particular no monomials divisible by x f  are present 

since they are divisible by one of the generators of G(P).  By computing each

1 Since the first draft of this paper, an excellent description of their m ethods has appeared 
in the book “Using Algebraic Geometry” [CL098]
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monomial from 1 to x f -1^ 2-1. . .  x j 1-1 and retaining those which are already 

reduced, a basis U =  (ui, u2, . . . us) can be constructed for Z[xi, . .  . x n\ / < P > .  

Every reduced polynomial can be considered as a vector with basis U.

In Example 1.1 pi =  x\  — 2, p2 =  x\ — 9 — 4xi, q — x2 — 2x\ — 1

Pi and p2 form a Grobner basis in lex order with x2 > X\ and define a vector 

space spanned by (1 , xi, x2, XiX2).

Now for any Ui, Uj G U
s

[uiUj] = ^ 2  akuk with ak e  Q
k=1

and for any q G Q[xi , . . .  xn\ / < P >
s

q =  ^ 2  Qjuj where qj G Q 
j = 1

and for any Ui £ U
s

i=i
s

=  f°r some â - G Q
j'= 1

This can be rewritten as the matrix equation

=  Q [/ where Q =  (a^) G Qsxs

L em m a 13. If the zeros of P  are {ai i , . . .  a^} then the eigenvalues of the equation 

QU =  XU are ( g ( a i ) , . . .  q{ak)}-

Proof  by Lemma 1 2  c), k =  \U\, thus the equation has k eigenvalues. It is 

therefore only necessary to show that each q(a) is an eigenvalue for each a  G
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{ a i , . . .  ah}- By the definition of [•]
m

qui =  ^  bij9j +  [qui]
3 = 1

If P (a )  =  0 then gj(a) =  0  for 1 <  i <  m  giving

q(ot)ui(a) =  [iqui](a)
s

— 'y  ̂cijuj(°L)
3 = 1

but taking this over all i is equivalent to QU(a) =  q(a)U(a).  Thus q(a)  is an 

eigenvalue. □

In Example 1.1 p\ =  x\  — 2, p 2 =  — 9 — 4xi, q — x2 — 2x\ — 1

The matrix representation of q =  x2 — 2x\ — 1 is

/ - I  - 2  1 0 \
Q =  - 4 - 1 0  1
W 9 4 - 1 - 2

\ 8  9 - 4 - 1 /

The characteristic equation is

X(z) =  z 4 +  4z3 -  28z2

=  z 2(z2 +  4z  — 28)

The smallest non-zero root is >  l / ( H ( x )  +  1) =  1/29 «  0.034. Using the bounds 

given in the example, q(£) €  [—0 .0 2 , 0 .0 2 ] and so q(£) =  0 .

For a larger example, the characteristic equation could be extracted by converting 

the matrix to Jordan normal form. A close to optimal algorithm is given in [GS0 2 ] 

which requires 0 ( s 4(log s +  log||Q||)) operations where s =  # [ / .  However s is the 

number of zeros of P  and is 0 (2 2n) which is doubly exponential in the input size.

83



5.4 Avoiding the Characteristic Equation

Direct computation of the characteristic polynomial is impractical for all but the 

smallest cases. However bounds for its coefficients can be obtained using the 

Hadamard inequality.

P ro p o sitio n  13. If q is represented by a matrix Q and q(£) ^  0 then

l9(?)l >  2 jjQjjf

Proof. From Hadamard’s inequality detQ  <  ||Q||? and no coefficient of x  is 

greater than the determinant itself. □

alternatively

P ro p o sitio n  14. Let Ti be the maximum absolute sum obtained by taking the 

5 — 1 largest entries of row i and let T  =  maxi<j<s Ti. Then q(£) ^  0 implies

19(01  ̂^

Proof. In place of the eigenvalues of Q —q l  — 0 consider those of Q~l — {1/q)I =  0. 

Since Q is an integer matrix its determinant has absolute value >  1 and so the 

elements of its inverse are <  T s~l (applying Hadamard’s result to any minor of 

Q). A standard result from linear algebra that if A is an eigenvalue of an s x s 

matrix M  then |A| <  5 ||M||oo and so

|1 M 0 I  <  s T 3- 1

□
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For the example, the first bound is > .001 and the second >  0.0025. Since 

s =  0 ( 2 ^ )  the bounds for larger problems rapidly become impractically small.

Note that it is not necessary to actually create the matrix if the bounds are to 

be used. As each row is found, only the maximum of the norms is needed. An 

alternative idea, which seems initially appealing, is to compute, just once, the 

(sparse) matrix representation for each X*. (In fact all the matrices can be com

puted simultaneously by finding the representation for JT  u%xi where the Ui are 

unspecified parameters.) The matrix for q can then be produced by evaluating it 

over the ring of matrix representations. Of course the matrix representation of X* 

is just its companion matrix and, if that were known, methods more appropriate 

to having univariate representation might be used.

5.5 Univariate System s

Finally, in theory a lower bound could be found by bounding the height of each 

matrix representation of a variable. This has not been possible in the general 

case but the situation is easier for univariate systems.

A polynomial system P  =  (pi ,--- ,Pn)  where pi € Z[x*] is already a Grdbner 

basis under any admissible monomial ordering. As before it will be assumed 

that the pi are monic. Monomials forming a basis of Z [ x i , . . . ,  xn] / < P >  are 

M  =  ( n  XT |Vz, 0  <  rii <  di =  deg(pi)}. As before s =  Y[dj  is the dimension of 

M.
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Let Xi  be the matrix of Xi. Then for m  G M,

{mxi  if degi m  ^  di — 1

(Pi — x f )  otherwise

X i

Thus rows in Xi  contain a single one or are some permutation of the coefficients 

of Pi and consequently X h h < U i L ( P  i )ki and thus if deg^g) =

i i Q i i ^ ^ n w
i

which could be combined with Prop. 13 to give a bound based solely on the input 

parameters for the univariate case - but unfortunately one which is weaker than 

Liouville’s Eq. 4.8.

5.6 Com puting Upper Bounds for q

Not only are the lower bounds computed by the method above small but the 

matrix Q has to be recomputed for each q. Consider instead finding the matrices 

Xi for 1 <  % < n where XiU — XiU, i.e. eigen-equations for the individual roots. 

From these it would be possible to find Ti such that |a |̂ <  Ti where a  is any zero 

of 5. Now for any such a  we have

«(<*) - X/* n
sGZ" l<i<n

or k(a)l < I I  T i ‘
s£ Zn l<i<n

and so we have a value for T  with the advantage that the Ti have only to be 

computed once.

Computing Ti doesn’t require all of Xi to be found. If G  includes the generator
j j  -1

x^ +  . . .  then only rows of ^corresponding to monomials with x^ as a factor

need be calculated.
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5.7 N ested  Radical Expressions

The cost of computing a Grobner basis is high which limits the usefulness of the 

techniques described here. Nested radical expressions are a special case as they 

give rise to equations of the required form without further processing and the 

greatest part of the cost can be in computing the matrix representation. R,ather 

than explicitly finding the rows of the matrix to obtain T  and D  for the lower 

bound formula, both parameters can be estimated directly from the basis.

A nested radical expression gives rise to a set of n equations in unknowns X\ , . . .  xn 

which can be ordered to give

where r* E Q[ z i , . . .  ar*_i] =  E sez * - 1 r*>s IIi<j<* x*j3 - For this form estimates of the 

Ti can be computed directly using

As an example, consider an example mentioned earlier (due to Ramanujan).

xf1 — 7*1 =  0

T i  <  I n i 1 7 *  <  I n . o l 1 7 *

se zi_1 i<?<*

s j s / w j h - = (i  +  -  y f ) i \ p x > (5.1)

Converted to a system of equations this becomes:

— 32 =  0 or Xi — %/2>2/h

5 x 52 ~  2 7  =  0  or X2 =  f /2 7 /5  

£ 3  — 3 =  0  or £ 3 =  v 3̂

with q =  £ 4  — 1 — £ 3  +  £ 3
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This gives

Ti < 1.45, T2 <  1.41

T3 < 1.38, T4 <  0.49

giving T  <  0.49 +  1 +  1.38 +  1.382) «  5

This gives a lower bound for \q(£)\ >  0  of about 5-375, an impracticably small 

number for calculations, but of interest in illustrating that, in the nested radi

cal case at least, deciding the sign number is theoretically amenable to entirely 

numerical methods.

5.8 A Digression

If the £ is known to be the only root of P  within an n-sphere, a slight modification

to q allows the decision on whether q(£) =  0  to be ‘read off’ from the characteristic

equation.

Proposition 15. Letf f  E Qn be an approximate rational zero of S vrithS(£*) ^  0 

and f  the only zero of S in an open ball £(£*,r) .  Define

d : = r 2 — ^  { X i - C i ?
1 < i < n

and let x  be the characteristic equation of g =  dq2, then q(£) =  0  if and only if 

the variation in sign of the coefficients of x  is even.

Proof  Consider the roots of S  at which g(ai)  is real, f  is one and is the only 

real root at which d is positive. If at some complex a*, g(ai) is real then so is 

g(ai). oTi is also a complex root of S. Thus complex roots of S  at which g is real 

lead to repeated roots in \ -
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Descartes’ Rule of Signs [Mig92b, pl97] states that the parity of the number of 

strictly positive roots of a polynomial is the same as that of the sign variation of 

the polynomial’s coefficients. Now if p(^) ^  0 the only positive real roots of of x  

are g(£) itself plus an even number of roots corresponding to complex roots of S  

at which g is real. Thus g(£) ^  0 implies <?(£) ^  0 and that the sign variation in 

X must be odd. □

89



Chapter 6

R esultant M ethods

6.1 The Macaulay Resultant

6.1.1 Canny’s Gap Function

Resultant methods provide the main practical alternative to using Grobner bases 

for extracting characteristic equations. Probably the best known multi variant 

resultant formulation is that of Macaulay [Macl6 ] which is used by Canny [Can8 8 , 

p70] to obtain the following result (in the notation of this report):

T heorem  5 (C an n y). Let P  =  (pi , . . .  ,pn) with Pi G Z[xi , . . . ,  xn] have only 

finitely many solutions. If P(£) =  0, deg P  =  D  and H(p) =  H then £j 0 

implies

fol >  (3D H ) - nD"

It is not difficult to find systems with bounds of this form, for example the 

equations H x i — 1 =  0, Xi — xf_Y =  0 for i =  2 , . . . ,  n has xn =  H~D(n 1} as a
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solution. Note that Canny’s prediction is exponentially (in n) less than the true 

answer. Applying this to the n +  1 polynomials P  U { z  — q} gives

C orollary 7. Let deg(P  U { z  — q}) =  D  and H ( P  U { z  — q}) =  H  then q(£) =  0 

or

|g(£)| >  (3D H )~ (n+1)D’'+1 (6.1)

In Example 1.2 pi  =  X\X2 — X\ — 4, Vi =  x \ ~ 9 — 4a;i, q =  x 2 — 2xi — 1

cTIIQ

H  =  9, n = 2
|®(0I > 54'~24 «  2.6 x io-42

Comparing this with the Grobner basis results, a basis has s <  D n elements (i.e. 

the maximum number of solutions of P)  but a good estimate for the height of the 

matrix for q is lacking and one as small as (3D H ) n seems unlikely to be found.

6.1.2 A N ew  Gap Function

The Macaulay resultant generalises the Sylvester resultant to the n variable case. 

Its construction (based on [CL098, p97], modified slightly) will only be described 

for the special case of interest here, polynomials po =  z  — q , p i , . . .  ,pn, with

Pi,--- ,Pn,q e  Z[xu . . . ,£„]. Let di =  deg Pi, d =  Z )o < i< n (rfi _ 1 ) +  1 =  E o < i < n ^ “  

n and let X  =  \ Y^ai <  d}.

X  is partitioned into n +  1 sets, 5o =  { a  G X  : deg a  <  d — do} and Sk =  ( a  G 

x  \ Ui<i<fc S% '• a / xt  e  X }  for 1 < k <  n.
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The set of equations {a {z  — q) =  0 : a  € So} U { ( a / x f ) p i  =  0 : a  e  S i , l  <  i <  

n}  has (d*n) elements whose coefficients are the entries in the Macaulay resultant 

matrix.

P ro p o sitio n  16. Let S =  Y^i=o^i and L =  maxi{L(pi)}then if P(£) =  0 and

<7(0 ^  0

m \  >  \ { L { q )  +  1  Y A L - b  ( 6 . 2 )

where A =  (S~do) and B  =  — A

Proof. This is an application of Eq. 3.3. It is only necessary to show that if  So =  

(S~n°) and =  (^) and the same counting argument applies to both. It is 

convenient to homogenise X  by introducing a dummy variable Xq and making 

every monomial in X  have total degree d. The total number of monomials is the 

number of ways that d objects can be partitioned into n +  1 parts, i.e.

^d + n̂ j = ^Ei=0 d i - n  + nj = ^S'j 

The entries in So are those in which degXo >  d0 which gives A. □

Note that for n =  1 the above result reduces to Eq. 4.2.

In Example 1 . 2  pi =  X1X2 — X\ — 4, p 2 =  x\  — 9 — Ax\, q =  x 2 — 2x\ — 1

MOI S  ^5-6 14-4 «  8.3 x 1CT10

Clearly it would be possible to compute a bound of the form

i=l
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How do this bound and Canny’s compare? Canny uses D  the maximum total 

degree where Eq. 6 . 2  uses S,  the sum of the degrees. Since S  <  n D  and (n̂ ) <  

(eD)n a cruder bound would be

l 9 ( e ) l > ^ C P )  +  l ) - (cC,n (6-3)

This is close to Eq. 6.1 if L(P)  +  1 «  (3D H ) n. Each polynomial has <  (D̂ n) 

terms (the number of different monomials with total degree <  D,  so

L (P )  <  <  H (e(D  +  n ) /n )n <  H(5eD/4)n <  H (4 D )n

(assuming n > 2  and D  >  2 ). Thus

l?(OI >  \ @ H ) -(e£>)"(4D))~n(eD̂ " (6.4)

against Canny’s

|g(OI >  (3D H )~ {n+1)D"+1

which is exponentially worse as H  increases. Actually the performance of Eq. 6 . 2  

is usually considerably better than Eq. 6.4 since polynomials are generally sparse 

in the number of terms.

Extracting a characteristic equation from the Macaulay matrix would give much 

better bounds but for all but the simplest systems the size of the matrix is far 

larger than that produced by a Grobner basis computation.

In Example 1.3 pi =  x\  — 2 , p2 =  x\  — 1 8 x 3 +  49, q =  x2 — 2x\ — 1

d =  5 and so =  (5+2+1) needing a 28 x 28 matrix for only 2  equations. Since <  

P11P2 >  is a Gobner basis, an 8  x 8  matrix is sufficient.
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6.1.3 Root Separation

In counting roots in a box, a knowledge of the minimum root separation would 

provide a criteria for deciding when a box contains at most one root. The gap 

function above provides a natural though weak formula

P rop osition  17. If <  P  > is a O-dimensional ideal with P (a )  =  P(0)  =  0. Let 

S =  £ L i  degpi and L — maXi{L(pi)} then a  ^  (3 implies

Proof. This is a direct application of Eq. 6.2. Replace the system P  by P' — 

(pi , . . .  ,pn, Si , . . . ,  sn) where Si =  p*(t/i,.. •, yn), be. duplicate the pi in a new set 

of polynomials, and set q =  Xk — Vk arbitrary) and L(q) =  2. The degrees of

A cruder bound can be found by using A =  (^ ) <  (eS/n)2n and B  =  2s+i-in  ©  —

(6.5)

where A =  (“ ) and B  =  (“ +1) -  A

the polynomials in P' sum to 25. □

S—n
n (eS/n)2n

6.2 The M ultivariate Dixon  
Resultant

6.2.1 The D ixon R esultant

Dixon’s original idea was to generalise the Bezoutian of univariate polynomials 

to the general case. The resultant so defined is sometimes known as the Dixon
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resultant and sometimes as the multivariate Bezoutian; the former name is used 

here1.

The Dixon resultant (see e.g. [KSY94, KS97, KS95]) is less well known than 

some other formulations. It has advantages, including generally yielding a smaller 

matrix, and disadvantages: it does not always give a square matrix and even when 

it does the determinant may vanish identically. Fortunately for the application 

considered here the disadvantages can be overcome.

The starting point is to lift the polynomials to a larger space by considering them 

as elements Z[z][:Ei, . . . ,  xn, y i , . . . ,  yn]. We will use x for (x l 5 . . . ,  xn), and y for

(?/l j • • • , 2/n)-

D efin ition  1 1 . For p (z ,x )  € Z[z][xi, . . . ,  xn] and 0 <  a < n  define p ^  := 

p(yi,  • • •, 2/a, Za+1 , • • •, Xn)- The Dixon polynomial o / p i , . . .  ,pn+1 i s

V ( z , x , y )  =
1

n (xi - 2/i)
l<i<n

(0) (1) 
P i P i

(0) (1) 
P n + 1  P n l l

(n)
P i

(n)
Pn+1

(6.6)

It is easily seen that V ( z , x , y) is indeed a polynomial since substituting yi for 

Xi within the determinant causes it to vanish (two adjacent columns become 

identical). Further, if P(z* ,a )  =  0 then V ( z * ,a , y )  =  0 independently of the 

values of the yj.

1 Arguments about names are usually sterile, particularly so in this case. Dixon generalised 
the Bezoutian from the single variable case to three variables. Bezout’s supporters argue th a t 
Dixon didn’t consider the general n  variable case - though as far as we can discover, neither 
did Bezout. To add further obscurity, early text books (such as Burnside and Panton [BP81, 
pp322-331]) ascribe the Bezoutian concept to Euler and describe a different elimination m ethod 
as being due to Bezout!
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V {z  ,x ,y )  can be written in polynomial or matrix form as

V(z,  x ,y )  =  Y 2  co c , ^ y a 
a,pein

=  X t M ( z)Y

where y Q =  rii<i<n vTi  x/? =  IIi<i<n x î an<̂  X  0 0  a vect°r of the monomials 

'x? (ya) appearing in V (z ,x , y ) .

We will sometimes consider the polynomial V ( z , x , y) as a bilinear form in X  and 

Y.  For the bilinear form, we will write it as I ) ( z ,X ,Y ) .  It is also sometimes 

convenient to write A kp =  ( p ^  _  p k̂~^)/(xk — yn)-

6.2.2 Applying the D ixon Resultant

Consider the Dixon polynomial obtained from P  with pn+\ =  1 — zq.

V P(z ,x ,y )  =

1

(0)
P \ P l ]

(n)p\

n  ( x i — V i )
(0)

P n P n }
(n)

P n
1 < i < n

1 -  zqW 1 - z q M  .. . 1 — zq

=  X T MP(z)Y

In the sequel X (£)  will be the vector X  evaluated at £ and similarly for T(£)- 

The dimensions of Mp(z)  will be Nr x Nc. Thus the number of monomials in X  

is Nr, and the number of monomials in Y  is Nc.

The standard resultant argument would be to show that if q(£) ^  0 then 

V(1 /q(£), X ( £ ) ,Y )  =  0 and so, by evaluating det(M p(z)), find values for q(£). 

Unfortunately Mp(z)  is not necessarily square and so may have no determinant. 

Even when it is square, the determinant is often identically zero and so a more 

indirect approach is needed.
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We will show that there exists a sub-matrix H(z)  of Mp(z)  so that H (z)  is non 

singular for generic z, but is singular if q(£) ^  0  and z  =  l/q{(f). By finding a 

bound for \Hij\ we produce an upper bound for |l/g (£ )| and so a lower bound for 

k(01- Specifically, since H  is a sub-matrix of Mp(z)  we shall show:

P ro p o sitio n  18. If N  =  mm(Nr , Nc) and h =  maxij( \Mp(z)\)  (where 

max(|o +  bz |) =  max(|a|, |6 |))  then q(£) ^  0  implies

l«(0 l >  \ ( h V N ) - N

or equivalently

1̂ 2(19(61)1 < 1 + N\og2(hVN)
(6.7)

D efin ition  1 2 . We call a sub-matrix, H  of Mp(z)  maximal if it is square and 

its determinant does not vanish identically (i.e. for all z )  but that of any square 

sub-matrix of Mp(z)  containing 7i does vanish.

P ro p o sitio n  19. Let H(z) be any maximal sub-matrix of Mp(z) .  If q(£) ^  0 

then det(7^(l/g(£))) =  0.

Two preliminary result are required to prove the proposition.

L em m a 14. IfP(£)  =  0  thenVP(z, X { £ ) ,Y )  =  ( 1  - z q {£ ) )B {Y )  a n dV P(z, X ,Y {£ ) )  =  

(1  — zq(£))B'(X),  where B and B' are linear in Y  and X  respectively, with coef

ficients which are polynomials in £ and B ( Y (£)) =  B'(X(£)) =  det(Jp(f))-
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Proof. Since Pi(£) =  0,1 < i <  n

Vp{z ,Z ,y )  =
1

n (6-2/0
l < i < n

o P i \ 0  . . .  p T }(0
o .............................

0 Pn1}( 0  . . .  Pnn)( 0
1 - ^ ( 0  .............................

Pi1}( 0  ••• Pin ) ( 0

, (n ),

=  ( - 1)’
(1  -  *g(fl)n te-2/»)

l < i < n . . .  p H o
( « ) ,

=  (1 -  zq(t))B(Y)

'Dp{z,£,y) =  'Dp(z ,X(£) ,Y )  and so B (Y )  is linear in Y  with coefficients which 

are polynomials in £. For the second part, subtracting adjacent columns

A ipi . . .  A npi 

A iPn • . * A npn
B(Y)  =  ( - 1 ) 7

(since p f \ ^ )  =  0 ) but

71C?) _
lim A jp  =  —  -----------
f<7<; ~ Vi

lim B{Y)  =  det(JP(0 )
2/*-»& 
l < i < n

=  —dp/dxj  so

Exchanging the roles of x and y, the same argument gives T>p(z, X ,Y (£ ) )  =  

(1 -  z g ( 0 ) B ’(X).  □

Since, by hypothesis, Jp(£) 7  ̂ 0  it follows that Vp(z* ,£]£) =  0  iff 2:* — l/q(£).

L em m a 15. Assume q(f) 7  ̂ 0 . The rank of Mp(z) at z* =  1 /q(£) is at least 1 

less than at generic z.

Proof Let V =  (Vi, . . .  V/vc) be an Nc x N c matrix with columns V\ =  V (0  and 

V2 , . . . ,  VNc a basis spanning the space T =  {a  € C^c | B(a) =  0}. Since B  is not 

identically zero and is linear in a such a basis exists and has dimension Nc — 1.
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Further V\ is linearly independent of V2 , . . . ,  Vjvc since otherwise we should have 

Vi =  T(£) =  <i<Nc ciVi for some C; not all zero implying

M O  =  B ( Y ( 0 )

2<i <NC

=  * B (Vi)
2 <i<Nc 

=  0

contradicting Lemma 14. Thus V  is non-singular. V  is also independent of 0 .

Let U =  (Ui , . . .  Upjr) be an Nr x Nr matrix with U\ =  X {<£) and C/2, . . . ,  Unr con

structed in the same way as the V* but this time spanning T' =  {a  £ C Nr \ B'(a) =  

0}. U is non singular and independent of z.

Consider the matrix M* =  UTM p V  and let {w*} be the standard basis for CNr 

and {?;*} that for C^0. We have

u f U T M pVvj  =  U j M AVj

=  u j M ' v j  =  M ’j  (z)

By construction

M y =  U f  MpVj  

=  X t f f M p V j  

=  (1  -  z q i O m V j )

=  ( 1  — zq ( 0 )  det( Jp(f)) if j  — 1 and 0  otherwise 

and so the first row of M*(z) is zero apart from the first element. By the same 

argument M*x =  0  if i ^  1 , and so the first column is zero except for the first 

element.

The rank of M*(z) is the same as that of Mp(z), since they are related by non

singular transformations.
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All the entries of M*(z)  depend continuously on z. We suppose q(£) ^  0. Con

sider the point 2  =  1 /<?(£)• Suppose the rank of M  at this point is r. This 

means that there is an r  by r non singular sub-matrix, which does not include 

any entries from the first row or first column, since these are all zero at the point. 

If z  is moved slightly, this sub-matrix will still be non singular, but by append

ing appropriate entries from the first row and first column, a larger non singular 

sub-matrix can be constructed.

Thus any maximal sub-matrix of M*(z)  includes M-ĵ  (since if it didn’t we could 

append it and the appropriate entries from row/column 1 to get a larger sub

matrix.)

At 2 =  1 /q(£) the first row and column of M*(z)  become zero and thus its rank, 

and consequently that of M p ( z ), drops by at least one. □

This proves Prop. 19 since the last lemma implies that the rank of any maximal 

sub-matrix will drop at 2 * =  1 /q(£).

Proof of Prop. 18. For any z, Mp  has rank no greater than N  =  min(Nr ,N c). 

Thus a maximal sub-matrix Pi has rank at most N .

Expanding det(Ti) gives a polynomial in z, x ( z ) =  So<i<iva^ z lai| ^  

N N/2hN (using Hadamard’s bound). Applying the bound from Eq. 3.2 gives 

\z\ < 2 N N/2hN so q(£) ^  0  implies

l?(f)l  >  \(hVN)~N

□
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In Example 1.1 pi =  x \ — 2, p2 =  x \ — 9 — 4xi, q =  x2 — 2xi — 1

The resultant is

(1 +  z)x  i x 2 +  4 z x 2 — 9 zxi — Sz +  (2zxi^ 2 — +  (1 +  ^)x2 — 9z)yi

+  ( - z x i x 2 +  ( 1  +  z)x  1 +  4z)2/2 +  ( 1  -  zx 2 +  2 ^ !  +  z)y i2/2

giving h =  9, Nr =  Nc =  4 and a lower bound of «  9.0 x 10~ 6 (a bound within 

reach of hardware floating point arithmetic but not impressive considering the 

true lower bound is «  3.7).

One appeal of the Dixon resultant is that we wish to find a method to decide the 

sign of many polynomials from a given number field. The formula

V P{z ,x ,y )  =

1

Z  U q

(0)
P i

Z — U \  . . 

p [ 1]

. z  — U
(n)

P i

n  f a - v i )
1 < i < n (0)

P n P {n
(n)

P n

can, for small systems, be expanded and applied to different q by substituting

Ui =  q^.

6.2.3 A Lower Bound from Input 
Param eters

One of the advantages of the Dixon resultant is that its size is often considerably 

less than its theoretical maximum. If, however, worst case behaviour is assumed 

a lower bound can be found by finding upper bounds for N  and h directly from
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the heights and degrees of < p i , . . .  ,pn, q>. This gives, of course, a much worse 

estimate but does obviate the need to compute the resultant.

The following terms are used in what follows:

•  P  =  {pi, . . . ,pn,pn+l =  l ~  Zq},Pi £  Z[z][xi, . .

•  di =  the largest exponent of Xi in P , D  =  Ili<i<n

•  ti =  the number of distinct monomials in p*, T  =  rii<i<n+i ̂

•  For p =  E a,/3ez» ca , p ^ y a , Ibll =  max(|cQj/g|) where |a +  6 2 1 =  max(|a|, |6 |)

•  ̂= IIl<i<n+llbill
P ro p o sitio n  20. i) N  <  n\D and ii) h <  (n +  1 )\HT

Proof, i) In Eq. 6 .6 , Xi appears in the first i columns of the determinant and 

so its expansion contains no monomial with a power of Xi greater than 5i =  idi 

(a better bound would be to define Si as the sum of the i highest powers of Xi 

appearing in the different polynomials). Dividing the determinant by (X{ — ifo) 

reduces the degree by one and so the Dixon polynomial can include all monomials 

ril<t<n XT in the Xi with ai < 6' j. There are f l i c ic r ^  suc^ monomials and so 

N  < n \  r i 1<j<n di.

ii) Write p\ =  cm +  r where m  is an arbitrarily chosen monomial in p \ , c is its 

coefficient and r the rest of pi. The determinant in Eq. 6 . 6  can be written



Repeating this process for r and then for subsequent rows, the Dixon Polynomial 

can be written as

D r  ■ T T i^ i )  £  h D '
l<i<n l<i<T

where each hi is a product of n +  1 coefficients taken from the polynomials (i.e. 

\hi\ <  H)  and the Di are determinants following the Dixon pattern but with each 

entry a single monomial. If D  is one of the Di

A ittii .............  AnmiD
n fa-vi)

l<i<n

m (0)

A!m n+i .............  Anmn+i

Now A im — m'(xf — yf) /(x i  — yi) for some d <  di where ml is a monomial in

2 / i , , 2/i—i 5 %i+1 , • • • , xn. (xf -  yf) /(x i  - y^ =  X)j+fe=d-i and so has at most 

di terms.

To determine the height we have to decide how many of the monomials in the 

expansion can be the same. We claim that at most (n +  1)! can be identical. In 

case n =  1 we have a 2  x 2  determinant and the result is clearly true: each of 

the two powers of X\ in the first column can be multiplied by one term in column 

2 . Suppose it is true for k — 1 variables. In the k variable case, ?/jfc appears only 

in column k +  1 and could appear to the same power in each of the rows. To 

obtain identical monomials we take equal powers of y\~ and expand with respect 

to column k +  1. Each of the minors is a version of the k — 1 size case (except 

for a factor which is a power of Xk) and the result is proved by induction.

Combining these results, we conclude the height of the Dixon polynomial is h <  

(n +  1)\HT  □

For the example above this gives N  <  8 or N  <  6 (using the better bound) and 

h <  3888 (the true value being 9). With these, the lower bound for the example
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becomes «  0.4 x 10 32.

An obvious improvement here would be to take account of the fact that many 

of the monomial determinants will vanish as a result of having identical rows. A 

better value for T  would be the number of ways of choosing one monomial from 

each of the Pi without duplication. There is no closed formula for this though it 

is easy to compute. In the example, it would reduce T  from 18 to 10 (h <  2160) 

which is not a significant improvement.

6.2.4 The Univariate Case

In the case that p i  E  Z [xj\  with d i  the degree of p*, a slightly better bound can 

be obtained. We assume Pi(0) ^  0 but do not require the polynomials to be 

minimal. Let rii be the degree of q in xi: the highest degree in Xi of the Dixon 

polynomial is now n* +  — 1 and the matrix M z has rank N  <  rii<:i<n(ni +  *̂)-

Using the same expansion as before, row i consists of polynomials with at most 

di + 1 terms if 1 <  i <  n. If 1 — zq contains t monomials there will be T  =  

t Y l 1<i<n(di +  1 ) determinants of monomials (since t  <  rii<z<nW +  - 0  we could 

also use T  =  +  ! )2)-

Subtracting adjacent columns as before gives polynomials in which each column 

after the first contains only two non-zero entries and the same argument as used 

above gives at most 2 n identical monomials in the expansion of any one determi

nant. Thus h <  2nH t Y h <i<n(di +  1)
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6.2.5 The D ixon u-Resultant

Lemma 14 is specific to the particular use of Dixon resultants needed here: a 

non-singlar Jacobian at a point and an ‘(n +  l ) th’ polynomial of the form z  — q  or 

1 — z q .  Taking for q  the u-resultant polynomial U =  5^1<i<n UiXi  gives a Dixon 

polynomial:

1

n (xi-yi)
l<i<n

(0)
Pi

(0)Pn

P l ]

P n )

(n)p \

(n)
Pn

- U  z  - £ / ( ' ) -  {/<")

(0)
Pi

(0)Pn

A l P i  . . .  A npi

A \p n . . . A npn 
U iX i  U i  ... u n

Setting Uk =  1 and U i , . . . ,  Uk-i,Uk+i, . . . ,  un to zero gives a means of computing 

a matrix representation for any Xk.

In Example 1.2 p\ =  x ix 2 — X\ — 4, p2 =  x% — 9 — 4xi,  q =  x2 — 2x\ — 1

This gives a Dixon polynomial for U\ =  0, u2 =  1 of

(z -  x2)y\  +  ((1 +  z)x 2 — Axi — z  — 9)y2 -  7 +  4xiz  -  zx2

and determinant (removing a zero column):

2  - 1 0

- 2 - 9  1 +  2  4
— 7 —2  42

or 2 3 +  2 2 — 92 +  7 =  0 which has the polynomial for x2 as a factor
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Chapter 7

Closed Form Expressions

In scientific and technical programming, as much as in Computer Algebra, there 

is a need for ways of deciding equality and performing sign determination. The 

conventional approach in floating point arithmetic is to substitute \A — B\ <  e for 

some small e for A =  B. In effect, programmers are making use of an heuristic 

gap function. This chapter investigates what for a true gap function for this 

situation might be.

Blum, Shub and Smale in [BSS89, BCSS98] and other papers suggested a simple 

RAM model of scientific based on exact real arithmetic (here called the BSS 

model). Their aim could be described as modeling floating point computation 

as a perturbation of exact computation and as such they allowed the numbers 

in their system to take any real values (even non-computable ones) and assumed 

that comparison and arithmetic could be done exactly.

The BSS model also interested researchers with a different perspective. It sug

gested a new way of studying computation over other domains than the rationals, 

in particular the development of ways of extending complexity theory to other
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domains (a survey can be found in [MM97]).

Rather than allowing real inputs, we consider a slight variant of the BSS model. 

Inputs are restricted to integers but, in addition to field operations, other func

tions are allowed and all arithmetic is assumed to be done exactly with real values. 

If the extra functions are exp(-) and log(-) the values computed by a BSS style 

program include most relevant to scientific programming.

7.1 Closed Form Calculation

D efin ition  13. Let F  be a countable set of function names, and C  G C a count

able set of constants. E(F, C ) is the set of expressions in F  with over values in 

C and is defined as the smallest set such that C  C  E(F, C ) 1 and, if  f  G F is a 

function with arity n, then f ( e i , . . . ,  en) G E(F, C) for all e i , . . ., en G E(F, C).  

E (F,C) is a set of  closed form expressions.

D efin ition  14. For any e G E(F, C),  V(e) denotes the value of the expres

sion if it is defined. If e G C then V(c) is the constant represented by c and 

if e =  f { e i , . . . ,  en) V(e) is the result of evaluating / ( V ( e i ) , . . . ,  V(e„)) If v G

V(E(F, C)) then v will be called a closed form number [Cho99].

For particular cases a more precise definition of V is needed - for example inter

preting which branch to choose for complex valued functions.

With any e G E(F, C)  a integral weight W(e)  will be associated. Crudely, this

1E(F, C )  is a set of expressions, ‘piles of ink on paper’, rather than of numbers and as such 
it would be more accurate to replace C  by ‘representations of each constant’. However this 
seems to expand notation without any extra benefit to clarity. In general c G C  will be used to 
denote both names and values of constants. Similarly for /  G F , /  will be both ‘the function’ 
and its name.

107



could be the number of symbols needed to represent e. In some crude sense, very 

small or very large valued expressions are expected to have a large weight. The 

weights will always be chosen so that there are a finite number of expressions of 

a given weight, W,  and so there exists

B {W )  =  min {lei : V(e) is defined, V(e) ^  0, w(e) <  W }
eeE (F,C)

B  is a gap function for E(F, C),  for any defined expression, e, either V(e) =  0  or 

|V(e)| >  B(w(e)).

Unfortunately little is known about appropriate definitions of weights or the cor

responding gap functions for most useful classes of expression. Van der Hoeven 

[vdHOO] has discussed the forms some might have and in [SvdHOl] analyses the 

complexity of zero testing by using them.

Bounds for polynomial expressions have been the main topic of preceding chap

ters. A case closer to the spirit of this chapter is that of nested radical expres

sions which were considered in section §4.4 (and also below). Richardson [RicOO] 

proposes a particular gap function for expressions involving log(-) and exp(-) 

operations which is the basis of the work reported here.

In this chapter, several classes of expression are investigated. A simple gap func

tion can be found for rational expressions formed from natural numbers using 

field operations only. This gives an upper bound for a gap function for bigger 

classes of expression and suggests a possible structure for such functions.

Extending this to radical expressions by introducing an nth-root function gives 

a result equivalent to those given earlier. For expressions involving arbitrary 

algebraic numbers result is obtained which is similar to Liouville’s but an expo
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nentially better result is hypothesised.

Finally, the hardest case, that described by Richardson is considered. Very little 

is known but some empirical research is described and some structural properties 

suggested.

7.2 Gap Function Structures

It is convenient to consider expressions in E(F, C) as trees in the usual way. A 

tree may be an element of C  (a leaf or external node) or an (internal) node of 

the form f ( e i , . . . ,  en) where e i , . . . ,  en £ E(F, C) are sub-trees. In practice only 

binary and unary nodes will be used.

5 109 23 9

Figure 7.1: \/I09  a s a  tree

The depth d{e) of a tree (expression) is 0 if e £ c and if e =  f ( e i , . . . ,  en) it is 

1 +  m ax{d(ei),. . .  d ( e n ) } .  The number of internal nodes of e is written #e .

The value of any expression depends, in some way, on three factors: the size of 

the numbers appearing as leaves, the particular functions appearing at nodes, 

and the complexity of the tree structure.

D efinition 15. W  : E (F,C)  —> Z+ is a weight function if for  all e £ E(F, C)
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where V(e) is defined and non-zero

W(e) >  |e| >  W (e ) - 1 (7.1)

and further, for all f  G F  of arity n the weight function can be written as

W ( / ( e i , . . . ,  en) =  W f (W (e1) , . . . ,  W (en))

/or some function Wf  : Zn —> Z+ , i.e. £/ie weight of an expression depends on the 

weights of its sub-expressions, not necessarily on their values. W(e) will be called 

the weight of the expression.

For any class M(F,C) and any e G E (F,C), W (e)  =  where the Ci are

the constants appearing in e, will be called the constant weight. For n G Z+ it 

will be assumed that W (n) =  W in)  =  max(2 ,n)

The constant weight W(-) provides a way of separating the contribution to an 

expression of value of the numbers appearing in it from the complexity of the 

expression itself. Since a constant c will always have, in our definitions, W(c) =  

VV(c) >  2

The aim of this chapter will be to explore what weight functions might be ap

propriate for different sets of expressions. From here, the caveat that “V(e) is 

defined and non-zero” will be assumed.

7.3 Rational Expressions

D efinition 16. Define Eq =  E ({+ , —, x , —u, / ,  /„}, N) where — u  and / u  are the 

unary minus and inversion operators V(—Ux) =  —V(x) and V ( / Ux) =  1/V(x) .
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(The subscript will be dropped from the unary operators when the meaning is 

obvious.)

P ro p o sitio n  21. W , defined below, is a weight function for  Eq

(max(2, e) if e G N
W (a) W(b) if e =  a dr b, e =  a /b , e =  a *b

W (a) if e — /a , e =  —a

/.e. if e E Eq and V(e) is defined then either V(e) = 0  or

VV(e) - 1  <  |e| <  W (e)

Proof The proof is by induction on the number of (internal) nodes in the expres

sion tree.

The only trees with zero nodes correspond to some e G N for which the result is 

trivial. Assume it is true for trees involving <  k nodes and consider any expression 

e with k nodes.

If e has the form / /  or — /  then the result holds for /  and so for e.

If e =  /  x g then \e\ =  \f\\g\ and, by hypothesis,

W ( e ) - 1 =  W ( f ) - 1 W ( g ) - 1 <  |e| =  | / | | 9 | <  W ( f ) W ( g )  =  W(e)

If e =  f  +  g, \e\ <  | / |  +  \g\ <  W (/)  W(^) =  W (e) since W (/)  >  2 and so the

upper bound is correct. If either |V (/) | or |V(p)| >  1 the lower bound is trivial;
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this leaves only the case where both are < 1 . If V (/)  =  a/b  and V(g) =  c /d , then

|V ( / +  s)l =  \{a/b +  ulv)\ 

ad +  be
bv

>  y \ m \

i>
W ( f )  W(g)

since |6 | <  VV(/) and |d| <  W(g).

This covers all cases and completes the proof. □

This result shows that a simple gap function exists and that the number of decimal 

places needed to distinguish a rational expression e from zero is log10(VV(e)). 

Roughly this is the sum of number of decimal digits appearing in the leaves. It is 

convenient use N as the set of constants. The set of constants can also be taken 

to be Q with the weight of a constant c =  a/b  taken as max(2 , |a|, |6 |), indeed the 

set can be extended to Q[z] where the weight of a +  ib is W(a)  W (6 ).

Only unary minus and division functions were included in the definition of Eq. 

Clearly binary versions can be added without making any other changes since 

f ~ 9  =  f  +  ( - 9) and f / g  =  f x  (/g)  so W ( f / g )  =  W (/ x /g)  =  W (/)  W(g)  etc. 

In the proof above it is significant that only +  depended on the structure of the 

set of constants. The operations X j u j  and — u depend only on the magnitude 

of their operands for weight estimates. It is often convenient when bounds are 

considered to use a ±  b to refer to either a +  b or a — b.

Other functions yielding rational results can be added as long as they are suffi

ciently well-behaved:

L em m a 16. For a set of expressions E (F,C)  with a weight function W(-), let
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V =  V(E (F,C)) .  If for some arbitrary function g 0  F  with g : V n —► V  then 

E (F  U {g},  C) has a weight function iff there exists a function W  : V n —► V + 

such that given any e i , . . . ,  en G E(F, C) with Wi =  W(ej) and Vi =  V(e*) then

^  • • • ■'̂  ( 7 -2 )

Proof The lemma is little more than a re-statement of definitions. However its 

significance is that g is independent of the structure of the expressions appearing 

as its arguments. Note that there is no need to specify further properties of g, 

for example it need not be smooth, only that its values satisfy Eq. 7.2.

Necessity is clear since g(ei , . . . ,  en) G E (F  U {#}, C) for all e i , . . . ,  en G E(F, C ).

For sufficiency, consider any expression in E ( F U { g } , C )  having sub-expressions 

for the form g ( . . . ) .  At least one of these sub-expressions must have no arguments 

which themselves contain sub-expressions involving g. For such a sub-expression, 

since g : V n —> V, its value can be represented (in many ways) as an expression 

in E(F, C). By the hypothesis there must be a representation having least weight 

and it must satisfy Eq. 7.1. Thus sub-expressions in g can be successively removed 

from the expression structure to yield an expression in E(F, C) having the same 

value and satisfying the bounds. □

This lemma can be used in two ways, the simplest is when the new function 

is no more than an alternative expression whose structure includes skeletal leaf 

nodes which are to be filled with the expressions corresponding to arguments, 

for example starting from Eq a function f ( x )  =  2  x x could be defined (and 

given a constant weight 2 ). A different case would be an operation xn defined 

for n G Z \  {0} which returns V(x)n. There is no single expression corresponding
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to xn which can be built in Eq though some expression does exist for each n 

(and, as an aside, no algorithm is known which generates the ‘lightest’ expression 

[Knu81, pp443-462]). A suitable, though clumsy, weight function for xn would be 

W ( W { x \ W { n ) )  =  W (x)w (n) - 7 W(n).

7.4 Algebraic Expressions

Two different classes of algebraic expressions are considered:

Ea =  E ({+ , —, —u, x , / , / u}, A) the usual operators with constants being the 

algebraic numbers denoted by A, and the class of nested radical expressions, 

Er =  E ({+ , —, — u, x , / ,  / u, > /•},N) where the constants are natural numbers but 

nth roots may be taken.

7.4.1 General Algebraic Expressions

It is convenient to restrict the class Ea initially by interpreting A as comprising 

only algebraic integers, equivalently a simple transformation will convert an ex

pression, e in arbitrary algebraic numbers into e'/m  where m  is an integer and e' 

contains only algebraic integers.

The weight of an algebraic number a  can be defined in a number of be defined 

in a number of ways as long as it satisfies

<  W(q:) < max(|a~], 2 )
max([aT|, 2 )

where [a] is the maximum absolute value of a  and its conjugates. Any of the 

usual roots bounds, such as 1 +  H(a)  or max(2, M(a) )  can be used.
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Lemma 17. If e £ E({+, —, — x } 5 A) (i.e. expressions not involving division)

and \e\ ^  0 then

\e\ >  >V1_deg^

where

n if  e £ A with deg(e) =  n
deg(e) =   ̂deg(u) if  e =  —u

deg(u)deg(v) if  e =  u {+ , —, x}u

Proof. V(e) is an algebraic integer with deg(e) <  d say. From the definition of

weight W (e) >  [e]. If the minimal polynomial of V(e) is p  and it’s roots are 

r \ , . . . ,  d̂eg(e) with n  having smallest absolute value then

i  <  b ( o ) |  =  J J | n |  =  | n |  J J | n |  <  | n | [ e l d e g ( e ) _ 1
i>l

or |e| >  |n| >  fe]1_deg(c) >  W (c)1_deg(e)

□

In Example 1.3 pi =  x\  — 2, p 2 =  x\  — I8 X2 +  49, q =  x2 — 2x\ — 1

Set WOn) =  2, W ( x 2) =  4JS1 ~  3.82).

\q\ >  8~7 «  4.7 x 1CT7 

Liouville’s bound gives \q\ >  1.6-1 0

The result above applies only to division free expressions. It is a small step to 

extend it.
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P ro p o s itio n  22. If e G Ea (i.e. including division) then \e\ ^  0 implies

\e\ >  W (e)"des(e)

Proof. The expression e can be rewritten in the form f / g  where /  and g are 

division free and each is an algebraic integer with weight <  W (e). Thus \g\ <  

VV(<7) <  and | / |  >  W ( f y ~ ^ ( f )  >  W (e ) l~deg(e\  Multiplying the bounds

gives the result. □

The result above is very crude for practical use where it would be better to obtain 

individual bounds for /  and g by a recursive traversal of the expression.

It is interesting to note that the size of the bound depends on the number of 

occurrences of each algebraic number in the expression being tested.

Using the same example as Eq. 4.3

Pi =  x3 +  l l x 2 +  17x — 44

P2 =  3a:4 +  21x3 — 35a;2 — 14a; +  22 

with W{x)  =  8  where the best lower bound was P2 > ~  1 .2  * 1 0 - 9

P2 as written: W (p2) ~  729 x 1 0 12

|P2(0I > 1-8 x 10-30

However writing P2 =  2 2  +  x( —14 +  x{—35 +  x(21 +  3a;))) reduces the weight to 

278 x 107 and gives

|p2(OI >  1 .2  x 1 0
- 1 9
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7.4.2 N ested  Radical Expressions

To some extent this section re-presents results given earlier but in terms of ‘ex

pressions’ rather than polynomial maps.

Radical expressions are obtained by augmenting the usual field operations with 

y/~-, i.e. computing nih roots. From a practical point of view even adding only a 

square root operator is valuable. Many problems in graphics involve the distance 

between rationally given points, square roots are naturally needed in calculations 

where there is a need to decide if lines cross or points coincide.

Perhaps because of its utility several methods exist for finding lower bounds of 

radical expressions using an argument similar to that above for more general 

algebraic expressions (see, eg, [LiOl] or [BFMSOO]; for a different approach see 

[SchOO]). The method seems to be frequently rediscovered (including by the 

author of this paper - though we are not aware of it being described elsewhere 

for general algebraic numbers).

To extend Prop. 22 to include radical expressions it is only necessary to define 

W (>/e) =  max(2, y/w(e)  and add deg(y/e)  =  ndeg(e).

7.4.3 Conjectures and N on-constructive Results

The difference between the algebraic and rational case is the introduction of the 

degree into the lower bound. There is clear evidence to suggest that the form 

taken by the exponent is much too large. Prop. 2 2  can be proved by induction on 

the form of the expression as in the rational case. If this is done, the bound for
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expressions in the operators Ui X , / ,  / u does not depend on the degree of their 

operands. The degree is only introduced in considering lower bounds for a ±  b. 

This reduces to finding lower bounds of \ a±b \  where at least one of the terms is 

algebraic. This is a difficult and much studied problem.

For the case of rational b =  p/q  the strongest result is the Thue-Siegel-Roth 

theorem [WalOO, p8 ] which states that, for any real number e, there exists a 

constant K  =  K(a,  e) >  0 such that

\ a ~ p / q \  >  K / q 2+e (7.3)

Unfortunately the constant K  is not constructive. Nevertheless the power 2 +  e 

doesn’t depend on the degree of a (unlike the more familiar result due to Liouville 

[WalOO, p82]).

For the case where a and b are both algebraic even less is known. [WalOO] gives 

a number of Liouville type inequalities in which degrees appear explicitly, while 

Evertse [EveOOb] gives a summary of the current state of knowledge of the equiv

alent, for this case, of the Thue-Siegel-Roth theorem. The strongest ‘result’ is 

the unproved conjecture by Schmidt, given at Eq. 4.4 that for every S >  0 all but 

finitely many pairs of algebraic numbers a  and (3 satisfy

\ot — P \ >  l/(m a x ( M ( a ) , M(/3)))2+5

where M (a)  is the Mahler measure of a. This suggests that there might be a 

stronger result for the lower bound of algebraic expressions of the form based on 

defining >V(a±/?) =  max(W(a;), W(/3))k for some universal constant k. Unfortu

nately W cannot then be based solely on the Mahler measure, since M ( y/2) =  2 

and so y/2 — y/2 would have a weight (and thus a lower bound) independent of 

n and m.
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From this point on there are only very partial results and some linked conjectures. 

There, as here, the problem is in finding lower bounds for expressions a ±  b. This 

suggests that it is the key to bounding small expressions.

7.5 Exp-Log Expressions

7.5.1 The Uniform ity Conjecture

The original motivation for this paper was work by Richardson on the Uniformity 

Conjecture ([RicOO], [Ric99b]). He considers the set of expanded expressions, 

Ex =  E ({+ , —, —u, x , / ,  In, e x p ,-^ } , Z) where exp(rr) =  ex if |x| <  1 and is 

undefined elsewhere, ln(x) has its usual definition and yfm  =  m 1/ 71 for integer 

n >  1. Where values are complex they are chosen so that the imaginary part is 

in (—7r, 7r].

Expanded expressions are so called because general exponentiation has to be ‘ex

panded’ into repeated multiplication. A general exponentiation operation would 

allow very large and very small expressions to be created by its repeated appli

cation, requiring in turn a large weight function to bound expressions.

The conjecture states:

C on jectu re  2 (U n iform ity  C onjecture (U C )) . Fore  G Ex with V(e) defined 

and non-zero

lel >  A - C{e)
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where A < 1 1  is a universal constant and C(e) is defined as

[  |k>g10(e)J + 1  ife  €  N
C(e) =  < C(a)  +  C(b) +  1 i fe  =  a ± b , a  x b, a/b or \ /b

[£ (a )  +  1 i fe =  ln(a), exp(a), or — a

7.5.2 Counting Expressions

With hindsight the value A  <  17 is suspect. The original formulation of the 

conjecture (in, among others, [RL02]) had |e| >  1 /N(C(e))  where N(k)  is the 

number of expressions of length <  k and it was claimed that N(k)  <  17k - 

unfortunately the argument used was incorrect. A weaker, but justifiable, claim 

is: N(k)  <  18^3fc-1)/2-l.

Consider an expression of length k where the expression is written in prefix form, 

e.g. 1 +  22 x 3 is written +1 x 22 3. The original argument was that all expression 

were built from 17 symbols, 0 . . .  9, + , —, x , / ,  exp, log, and thus there were at 

most l l k possibilities. This is clearly false since a) it refers to expressions of length 

exactly k and b) different expressions may be indistinguishable if we ignore the 

’spaces’ between different numbers, for example +1 x 2 23 is not the same as 

+ 1  x 2 2  3. Thus the number of ‘symbols’ needs to be increased to indicate the 

dividing points between numbers. An expression of length k includes at most 

[(A: — l) /2 j  +  1 numbers (when there are d internal binary nodes, no unary nodes 

and d +  1 one digit numbers, A; =  2 * d + 1 ). If a symbol is introduced to 

make separate adjacent numbers, the length of the expression, including at most 

L(fc — l) /2 j  separators, becomes k +  [(A; — 1)/2J =  [(3/c — l ) / 2 j. Thus the number 

of expressions is less than I8 ^3fc-1)/2J. However, introducing an extra symbol 

allows it also to be used as ‘padding’ in shorter expressions and thus the estimate 

is large enough to include all expressions of length <  k.
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A better estimate is easy to obtain implicitly by considering the generating func

tion T ( z ) =  where tk is the number of expressions of length k. Since

the result has (as far as we have been able to see) no closed form it is worth 

simplifying the bound by treating as a binary operation with operands which 

can both be arbitrary expressions. The N(i)  can be obtained from T(z) / (1  — z) =  

]Ci>0 N( i ) z l . T(z)  is obtained in the way commonly used to enumerate binary 

trees (c.f. [SF96, p224])

T(z)  =  9 z / ( l  — 19z) +  5 z T 2 ( z ) +  3 zT(z )  or

T(z)  =
1 - 3 z ±  a / (3z -  l ) 2 -  180^2/(1  -  10z)

10 z

(9z / ( l  — lOz) is the generating function for integers >  10 and without leading ze

ros, the 5 and 3 for the number of binary and unary operators respectively.) Since 

T(0) =  0 (the number of expressions with length 0), application of Hopitale’s rule 

indicated that ±  should be — giving

1 - 3 z -  y/ {3z  -  l ) 2 -  180z2/ ( l  -  10z)
T( z ) / (  1 - z )  =

10z(l -  z)
(1 -  3 z )(l -  10z) -  y/999zA +  1020z3 +  A9z2 -  26z +  1

10z(l -  z){  1 -  lOz)

The first few terms are:

k i 2 3 4 5 6 7 8VI 9 126 1782 26280 407259 6592536 110810817 1921572900

(and N{29) >  1720!).

How good a predictor is the Uniformity Conjecture? Applying it to the two small 

but nonzero expressions and one identity gives (using A =  17)

Expression Predicted Lower Bound Actual Value

$ 2 -  494/453 >  10"12 6.4 x 10“9

^ 3 2 /5  -  ^ 2 7 /5  
- ( i  +  ^ 5 -

>  10-29 0

3 ln(640320) /  \/163 — it

o(M1oAl 2.2 x 10"16
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A similar conjecture is given by Joris van der Hoeven for the set of expressions 

8  =  E ({+ , x , / ,  exp, log}, (0 ,1 })

C onjecture 3 ([vdHOO]). Given a rational number N  >  3 denote by 8 n  the 

set of x £ 8  such that, for any subexpression x' of x, N ~ l <  \x'\ <  N . If a tree 

representation of x has a nodes then there exists a function u  having one of the 

forms uJ(cr) =  Kcr orcJ(cr) =  K a (K  >  1 depends on N )  such that |x| >

Richardson’s conjecture is more obviously close to the forms used earlier in this 

chapter. C{e) can be written as +  Cicf) where k is the number of operators in 

the expression and the Cf are the constants. This allows the bound to be rewritten 

as

|e| > A - kA ~ ^ c{Ci)

+ 1 ) - 5 

fa A~k W(e)~s

where S =  log10(J4 ) <  1.24. This suggests the first form of the conjecture used 

here

Conjecture 4. For e € Ex with V(e) defined and non-zero

\e\ >  W(e)~s or 

\e\ >  W(e)~sA~k

where 1 < 5 <  1.24 is a universal constant, k is the number of operators appearing 

in the expression, all of which have a constant weight of A

A  more general conjecture would be that

1
~  V\?(e)5s(ri)

where n is the number of nodes in the tree representing the expression and s(n) is 

the maximum contribution to weight of any structure with n nodes. It is tempting
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to revisit the original form of the conjecture (§7.5.2 above) and wonder if s(n) 

might be replaced by the number of 2-restricted trees (see e.g. [SF96, p289]) with 

n nodes with internal nodes labelled by operator names.

The set of expanded expressions is a suitable basis for modeling scientific pro

gramming. As before in Lemma 16 new functions and constants can be added 

as short hand for values which can already be computed in other ways. In par

ticular, since i =  yf—A G Ex, z can be used in expressions as a constant with 

W(z) =  =  4A 2. Lengths for additional elementary functions and con

stants, defined in terms of their definitions, can also be introduced. For example 

7r =  ln(—l) /z  giving >V(7r) =  8A5, and so on. Obviously these are ‘upper bounds’ 

for weights and mathematical criteria might suggest better ones.

A proof of any of these conjectures seems remote. It is known that the original 

formulation by Richardson is false and ways of finding counterexamples have been 

identified.

As counterexamples are found it is tempting to ‘fix’ the formula to take account of 

their properties. Instead, the following sections attempt to explore the “natural 

history” of such numbers and identify interesting properties.

A natural question to ask about Ex is, “Among expressions with a given weight, 

what is the form of the smallest expression?”. For example, for all weights above 

some value W, it may be that the smallest expression of a given weight always 

has the form a ±  b or log(a). A priori there is no reason to suppose that this 

is the case but some possibilities can be eliminated. If the conjecture is false it 

would be useful to know how and when it fails. We use C C Ex for the set of 

counterexamples to the conjecture, i.e e G C iff \e\ <  W{e)~5 or \e\ >  W (e ) 5.
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D efinition 17. Writing # e  for the number of interior nodes in the expression 

tree of any e e E ^  then a minimal counterexample to the Uniformity Conjecture 

is an element c £ C such that for all e G C, W(c) <  W (e) and # c  <  # e . Note 

that there may be no minimal counterexample and even, if there is, it need not be 

unique.

P roposition  23. If a minimal counterexample exists it has one of the forms a±6  

or log(a) and further it is in C because it is smaller than the lower bound.

Proof. Suppose that a minimal counterexample c exists. Then

i) c £  N by the definition of expression weight.

ii) c 7  ̂ exp (a) since by the definition of a valid expression, |a| <  1 and so 

exp(—1 ) <  |c| <  exp(l).

iii) c 7  ̂ a x b and a/b  since if it were one of a and b would be in C.

iv) c ^  —a and /a  trivially.

v) e 7  ̂ yfa since for the upper bound, if |a| >  1 and |a| <  W (a) then \tfa\ <  

W (a) <  W (a) W(n)A =  W (e). Since W(e) > 1 the upper bound is trivial if 

|a| <  1. This only leaves the possibility that \e\ <  1 / VV(e) but this would require 

I \ f z | <  |e| which is impossible.

vi) \e\ =  |log(a)| <  |a| <  W (a) <  W (log(a)).

vii) \a ±  b\ <  W (a) W(b)  as in the rational case.
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This only leaves lower bounds of expressions a ±  b or log(a) as candidates. □

Thus any short/low-weight counterexample to the Uniformity Conjecture (in any 

of its forms) will be an expression of the form a +  b or log(a) whose absolute value 

is small. Even small values which are not counterexamples are of interest as they 

may give more evidence of the form of expressions with least value.

7.6 Empirical Research

Various experiments have been made to learn more about the nature of small 

expressions and their properties. The experiments have included ‘brute force’ 

searches of various forms and statistical sampling to identify distribution proper

ties of Ex. These are summarised in this section. For the ‘length based’ model, 

Richardson suggested p(e) =  |logio|e| | /  C{e) as a measure of smallness. p(e) > A  

implies e € C but none of the experiments produced even an expression with 

p(e) > 1 . In the course of the experiments tens of millions of random expres

sions and every potential counterexample for all expressions lengths up to 1 2  have 

been generated. There are counterexamples, described below, but only for long 

expressions.

7.6.1 Continued Fractions

It can be shown2 that if a  is a real irrational closed form number, and there are 

arbitrarily large partial quotients in the continued fraction expansion for a, then 

there is an expression e of the form a  — p /q  for which p(e) >  1. For example,

2Discussion with Dr Richardson.
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we could take a  — exp (1/9). The expressions constructed in this way are very 

large, of length at least a million in all cases we know, and are never, as far 

as has been determined, counterexamples. Although such expressions exist, none 

have actually been constructed, one of the problems being the very high precision 

floating point arithmetic which would be needed.

A smaller scale search has been done for a  =  n1//m, a  =  en/m and also for 

a  =  log(n/m ) with n and m  ranging over all natural numbers between 2  and 1 0 0  

and the first 50 partial quotients in the continued fraction approximation being 

computed. The results are reported in [Ric99b]. No counterexample was found 

but some small numbers are reported, for example, 2 1/ 8 — 494/453. An expression 

that was just missed is 1091/5 — 23/9, found by Reyssat and mentioned in [Nit96] 

which discusses the relationship between this kind of approximation and the ‘abc’ 

Conjecture.

A natural extension of continued fractions would be to search among linear forms

a \a i  + ----- 1- ana n where a1?. . . ,  an take integer values, and au, . . . ,  a n are closed

form numbers which are linearly independent over <Q>. The LLL algorithm or 

PSLQ could be used for this. See [FBA99], [Weg87]. Some trials of this kind 

have been done by Richardson, but no counterexamples have been found. In the 

case of linear forms in logarithms, there is, again, a relationship with the ‘abc’ 

Conjecture. See [Phi99], [PhiOO].

7.6.2 Exhaustive Search

This depends on having an algorithm for enumerating all expressions of a given 

length. The following recurrences relations were used where £{n)  is the number

126



of expressions of length n, J\f(n) is the number of positive integers (base b) of 

length n and U(n ), B(n) and 7Z(n) are the number of expressions of length n 

in which the outer most operator is unary (one of exp, log or —), binary (one of 

, x , / )  or a root ( f̂-) respectively.

Af(ri) =

U{n) =  

B(n) =  

H(n)  =

0  if n =  0

(b — l ) 6n _1  otherwise

0  if n <  2

3£(n — 1) otherwise

0 if 77, < 3
m- 24]C ™=1 £( i )£(n  — 1 — z) otherwise 

0 if n <  3
(b — 2 )£(n — 2 ) +  ^ r= 22 A/Xz)£(n -  1 -  z)

The slightly different form of 7Z(n) reflects the requirement that in i/e , s >  1 and 

so there are (b — 2 ) single digit roots. Combining these gives

£(n) =  N ( n )  +  U{n)  +  B(n) +  7Z{n)

The formula makes use of only syntactic information. Many expressions will be 

undefined or fail to be ‘expanded’ (i.e. in exp(a), |a| ^ [0,1]. However it is easy to 

compute the total number of expressions of a given type and map each expression 

of length n to an integer between 1 and £(n).  Even for quite small n the number 

of expressions is very large, 0 (1 8 n), and the program includes extensive checks: 

expressions containing sub-expressions which could be written in a shorter form 

are abandoned as soon as they are detected, as are expressions which trivially 

cause an undefined result.

Currently the program detects and discards any expression containing

1 . integer only sub-expressions i.e. elements of E ({—u, + , —, x } , N) \  N.
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2. log(exp(a)), exp(log(a)), ex p (-lo g (e )), exp(log(e)), exp(O), log(O) andlog(l). 

Also no integer expression other than 1 and -1  is allowed as argument to 

exp.

3. —a © —6 , —(—a © b) and —(a © —b) for 0  E {+ , —, x , / }  as well a s  a,

— log(a/b), —a +  6 , a H— b and a  b.

4. a +  a (always at least as long as 2 x a), a — a and a/a.

5. ^1.

6 . a x 1 , 1 x a, a/1 (since 0  is never generated as an integer value, expressions 

such as a +  0  and so on are never produced).

If the final expression is explicitly wholly rational (i.e. it contains no applications 

of log(-), exp(-) or y/~-) it is also discarded.

An attempt is made to evaluate each expression using quad-precision floating 

point interval arithmetic (adequate for the accuracy needed here). Those ex

pressions which appear to be zero or very small are output for checking using a 

computer algebra system (MuPAD). The standard expression simplification has 

always succeeded in identifying zeros. There have been no surprises and very few 

small expressions.

Richardson (using a diffent program) has reported results in [Ric99b] for k =  4,5.  

We have extended it up to k =  10 for expressions of the form a ±  b and log(a). 

With k =  10 the program ran for several days (on a 1 GHz home PC).
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7.6.3 Statistical Information

Exhaustive generation of all expressions, is feasible only for very short expres

sion lengths. A second approach is generate many random expressions (typically 

1 0 6 /run) and investigate any interesting features of the distribution.

Generating expressions at random was done using the recurrence relations above 

to choose an expression number and map it to an actual expression. The resulting 

expressions were evaluated as above and three different distributions produced.

For lengths in the range 10 - 30, a typical run would produce 1,000,000 expressions 

in a few seconds. Usually about a quarter of these would contain subexpressions 

with form a/b  or log(6) where V(b) =  0 or fail to be in expanded form (i.e. 

including exp(e) where |V(e)| >  1).

Double precision complex numbers were used to evaluate the expressions and no 

attempt was made to adjust for rounding errors. Given the number of expressions 

generated it was assumed that any errors would be as randomly distributed as 

the values themselves.

There is a possibility that very small values will be just the points where floating 

point errors become significant. Also though double precision floating point values 

can be as small as ~  1 0 -3O°, the machine-e (the smallest x such that 1 +  x ^  1 ) 

is only «  1 0 “ 16 so computing values mod 1 is suspect.

To check the significance of this, several tens of thousand of expressions which 

were small mod 1 were fed into MuPAD and symbolically simplified. No anoma

lies were found. Expressions with a floating point value of zero or close to
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machine-e were always found via MuPAD to be identically zero.

In developing and testing the program hundreds of small or probably zero expres

sions were checked manually. This is an un-exciting activity. Very few expressions 

required even pencil and paper to check and no even slightly interesting identities 

were found, a factor of (1  — 1 ) in an expression probably accounts for most zeros.

7 .6 .3 .1  R esu lts

All experiments used numbers in base 10 and generated random sample expres

sions of length 7, 11, 13, 17, 19, and 23. Each run produced 106 expressions of 

which about 7 x 105 appeared to be valid (in expanded form and not contain

ing subexpressions equivalent to either 1/0 or log(0)). (The percentage of valid 

expressions appears remarkably consistent, one sequence of six runs produced 

700616, 700560, 700905, 700054, 700484 and 700053 valid expressions. This ini

tially lead to doubt about the randomness of the expression generator but further 

statistical checks revealed no faults.) The results are similar for all sizes can be 

illustrated with a single example.

Fig. 7.2 shows the percentage of values mod 1 in each percentile for about 6  x 105 

expressions (i.e. 1 % on the Y scale is about 6000 values) of length 17.

This particular run produced an identity which was slightly less trivial than most: 

log(4) +  lo g (l / ( 6  x exp (log (1 x 2 /v ^ )))) =  0.

This plot is typical (though, as the expression size increases, the number of ‘spikes’ 

increases while their relative height decreases). For very short expression lengths
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Figure 7.2: Distribution of values mod 1

(say < 5) there are zero height sections between the spikes.

The overall shape is not surprising. Consider the possible mod 1 values for ex

pressions of length 3. You can form fractions (with single digit denominators), 

roots (from 2  to 9) of single digit values, log of two digit numbers, — exp(l) and 

exp(—1 ). These correspond to visible spikes on the graph. Now consider ex

pressions of length 17 which can be written in the form A ±  B  where C(B) =  

3 ,C(A) =  13 and V(A)  € Z. There are >  1313 integer expressions obtained by 

using only the operators {+ , —, x }, all divisions integers by their factors, num

bers with exact roots, expressions of the form exp(log(e)) or log(exp(e)) where 

V(e) G Z and so on.

The spikes blot out other information which might be of interest. There are many 

ways of getting the value 0.5 - does the spike correspond to values equal to 0.5 

or are many different values clustered nearby? From the sample we extracted 

all values between 0.45 and 0.55 and eliminated all duplicates (strictly, rational 

duplicates were removed and floating point values which differed by less than 

10-50). This left 530 numbers. The plot in Fig. 7.3 shows their distribution with 

the Y scale being percentage frequency (1% represents about 5 numbers).
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Figure 7.3: Distribution near 0.5 with duplicates removed
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Figure 7.4: Intervals between values

The central peak still appears significant but statistical analysis is required to 

decide if the rest of the graph is random.

If the Uniformity Conjecture is correct, the difference of two values correspond

ing to expressions with length 17 should be >  io -L 2 4 x 3 5  ps 10~44. Using the 

first 1 0 ,0 0 0  expressions from the same data, sorted by expression value and with 

obvious duplicates removed, the differences between adjacent expressions were 

re-computed (to 50 decimal digit precision).

The smallest gap found was «  5 x 10-2 0  and all differences after that were >  10~14. 

About 5% of differences lay in the range [10-14,2 x 10-6], larger gaps tail off 

rapidly after this (Fig. 7.4).
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It seems that some more empirical investigation of the distribution of values might 

help to direct the search.

7.7 Refining the Uniform ity Conjecture

7.7.1 Counterexam ples

None of the searches found any counterexample to the Uniformity Conjecture. 

However a possible way of finding counterexamples is to adapt a traditional 

method of transcendental and algebraic number theory: construct a function 

F(x)  with a zero of high multiplicity at 0, F(x)  is then very small when x is 

close to zero. For example, one of the proofs of Lindemann’s theorem begins by

setting F(x) =  pi (x)eaiX + p 2(x)ea2XH (-pm(x)eamX, where P i ( x ) , . . . ,pm(x) are

polynomials with unknown integral coefficients with degree bounded by n . Some 

method is used to determine integral values of these coefficients so that F(x)  is 

not identically zero but has a zero of multiplicity approximately nm/ 2  at zero. 

F{q) for q E Q with q small is a fational form in exponential with small absolute 

value. Richardson and van der Hoeven have used this (in [RE03]) as a starting 

point to disprove the Uniformity Conjecture. They used a length measure, £ , 

which has here been converted to weight, W. The argument is unaffected.

Consider F =  E ({+ , —, — u, x , / ,  In, exp, y/~'}, ZU{ x} )  where x is an indeterminate 

value. /  € F can be thought of as a function in x over E i.e. /  : Ex —> Ex.

If /  contains k occurrences of x then / ( / )  is a function with k2 occurrences of x . 

In general, defining f i  =  f  and f n =  f ( f n~ 1), f n has kn occurrences of x.
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The weight of /  now becomes a function which can be written W (f ( x ) )  =  

W f W ( x ) k where Wf corresponds to the part of the weight contributed by nodes 

in the expression other than the xs and W ( x ) k reflects the k occurrences of the 

indeterminate. It follows that W (/n) =  tuj W ( x ) kn where r  =  5Zo<i<n

If / ,  viewed as a function of x , has a zero at zero of multiplicity m, then | / n| =  

0 ( x mn). This suggests a way of finding a counterexample: chose an integer q >  1 

and consider the behavior of / n(l/g )  as n —> oo. If the Uniformity Conjecture 

were true we should expect that

=  0 (<rra")

where K  reflects the extra weight introduced by 1/. But if k <  m  then, for some 

n, the inequality cannot be true since the wrj  factor also grows at <  0 ( w kn+1). 

Joris Van Der Hoeven produced the first counterexample generator:

/  =  log(l +  x ) - 2  log(l +  log(l +  | ) )

This has only two occurrences of x , but is 0 ( x 3) at zero. This means that if 

x =  10~N, then f n(x) has weight approximately 2nN, but | / n(^)| is approximately 

1 0 - 3nw

[RE03] shows how such expressions can be constructed, including differences of 

logarithms, exponentials, and radicals. Three more examples are

R  25 21

25
111132

7 2  / n L
5 _ 5 v _  v 21

x 5 +  0 ( x 6)

ln(l +  x )+ 3  In ( 1 — i l n f l  +  l n f l  +  ^

1

1215'
■x'- + O (x6)
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^ exp (exp ( e x p ( - | )  +  2 )  -  l )  -  ^ -  exp(a;)

1 -x5 +  0 { x 6)
1215

Though not discussed in [RE03] it is obvious that the construction can also pro

duce counterexamples of other forms, for example ln (l +  f n) where f n is a coun

terexample for the form above. From this it follows that there are counterexam

ples of the form log(e) for all forms of expression e, e.g. log(a * b) where a is any 

non-zero expression and b =  (1 +  / n)/a . There is still no evidence for a minimal 

counterexample of the form log(e) as identified in Prop. 23.

7.8 An A lternative Uniform ity Conjecture

The results quoted above led Richardson to a new conjecture 

C onjecture 5 (R ev ised  U n iform ity  C on jectu re). For all e G E*,

|V (£ )| >  m ax(W ,2)-C2d

where W  is the maximum of the absolute values of the integers which occur in 

e, d is the depth of the expression representing e, and C  is a universal constant 

independent of E.

Even with C =  1 , no counterexamples have been found. As an example, and 

taking C =  1, this would give a bound of H ~s for \2l n̂ — p /q \ , where H  =  

max{n, |p|, |g|}. For large n this is stronger than the Liouville inequality, but 

weaker than the Thue-Siegel-Roth theorem.

The decision taken here is slightly different: strengthen the conjecture to reflect 

the the special role of a ±  b and log(a) and, at the same time, extend the range
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of constants to Q[z]. The latter choice is only to allow i to be used in expressions 

without the circumlocution of writing W{i)  =

P ro p o sitio n  24. Fore  G E*, letd(e) be the depth of an expression, let s : N 

be an unknown function and let the weight for any e be

R

W (e) =  <

max(|e|, 2 )
W (o) W(6)
(W (a) W (6 ))s(d(c)) 
W (a) W (n)
W (a)
2W (o)
2 W (a)a(d(c))

i / e G N

if e — a x b or e — a/b  
if  e =  a ± b  
if  e =  yfa
if  e =  —a or e =  /a  
if  e =  exp (a) 
if  e =  log(a)

If s(n)  >  1 and monotonically increasing and if for every a,b E Ea

|a +  b\ >  W (a +  6 )- l

/̂ien /or all e e E x

W (e) > |e| >  W(e) - l

Proof The proof is by induction on the number of nodes in the expression and the 

argument is as used for rational expressions in Prop. 21 for the cases e G Q[i], a x 6, 

a / 6 , —a, /a  and the upper bound to a ±  6 (since by hypothesis s(d(a ±  6 )) >  1 ).

For exp(a), we require |a| <  1 and since W (a) >  2 for all expressions the result 

follows.

The argument in Prop. 23 can be used for yfa. It might be tempting to use 

W (tfc) =  W (e), however no dependence on n would imply \y/2 — 1 | >  2~s^  

for all n. The Thue-Siegel-Roth Theorem and the symmetric Liouville conjecture 

suggest that dependence on degree in algebraic expressions is weak. It may be 

that W (a) +  flogn] is an adequate weight but nothing is definitely known.
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For V(a) =  |a| exp(z0) with |a| >  1

|log(a)| =  |log|a| + 19\ <  |a| +  \0\

<  2 W(a) < 2W (fl)i(d(a))

For the lower bound ln (l) =  0 is the only zero of In, so if ln(a) ^  0 how close 

to 1 can an expression of a given weight be? Since all expressions have weight 

>  2  and the expressions ‘2 ’ and ‘/ 2 ’ have exactly that weight it can be assumed 

that if ln(a) is small then 1/2 <  |a| <  2. Expanding ln(a) about 1 in the annulus 

D =  { z \z  e  C, 1 / 2  <  \z\ <  2 }

M /  M  W  ~~ 1| \0> ~  1|ln(a) >  — 1------- r-r >  -̂-------!■
maxQG£)|a| 2

However, by hypothesis,

l“- 1| s >v<rrT)-w(“r “*'w’
or

|ln(a)| >  ^ -------

□

Of course there may be no function s with the required qualities. Assuming 

that s exists what properties must it have? For example, using W(«) = =  2 and 

W(tt) =  W ( - z lo g ( - l ) )  =  2  W (lo g (- l))  =  2 S(2)+1

Expression Actual Value Implied Bound

$ 2 -  494/453 6.4 x lO" 9 s(3) >  44

^109 -  23/9 1 .6  x 1 0 “ 6 s(3) >  56

31n(640320)/V l63-7r 2.3 x  lO” 16 s(10)s(2 ) 2 >  56204

More importantly how does s perform with respect to the counterexamples above? 

The weakest form that s could take would be a constant value, S  say; is this 

sufficient to preserve the conjecture?
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As before assume /  contains k occurrences of x and has the form a±b. W (f(x ) )  >  

(w fW (x )k)s  where Wf reflects the weight of the unchanging part of the expres

sion and it has been assumed that only one ±  is present in the expression and no 

log(-) sub-expressions (alternatively they are subsumed under W f ) .  VV(/2 (x))

is a product of terms including (W (x )k2)k2s2 =  W (x)(Sk2}2. Repeating this
2

>  W(a:) for any x. Though the analysis is crude it is clear that 

M / „  (x)) 1 is smaller than 0 ( k n2) near zero and so the counterexamples fail.

7.9 Conclusions

The title of [RL0 2 ] is “Some Observations on Familiar Numbers” , chosen to sug

gest the ‘natural history’ status of our current knowledge of bounds for exp-log 

expressions. All we really know at the moment is that very small valued ex

pressions seem to be rare and are ‘long’ or ‘weighty’ depending on the model 

used.

No significant results have been proved. If any of the conjectures are true no 

proof is in sight. This is hardly surprising given the enormous effort expended in 

Diophantine approximation to prove results for much more restricted classes of 

expression. The ease with which the Uniformity Conjecture gives similar results 

suggests we shouldn’t be too optimistic about proving it.

Nevertheless, if a bound could be found there would be a simple, quick (and 

entirely arithmetic) way of deciding if expressions are zero. The operators used in 

exp-log expressions can be implemented efficiently for arbitrary precision floating 

point calculation. Even where lower bounds are very small, computing sufficient 

decimal places to decide if an expression is zero would be much more effective

138



that algorithmic methods.

The existence of counterexamples to the earlier conjectures has led to modifica

tions. Such tinkering is unsatisfactory in some ways but has produced conjectures 

which cannot be broken by any method we have been able to imagine. It is known 

that any counterexample must either be of the form log(a) or a ±  b (unless it con

tains a counterexample sub-expression). Whether there are any true log-type 

counterexamples (i.e. not containing counterexample sub-expressions) to even 

the original conjecture remains unknown.

It may of course be that all the conjectures are false. One way of disproving them  

would be to show that they contradict some result from Diophantine approxima

tion. So far none have been found though this is hardly surprising as most such 

results depend on detailed understanding of properties of very restricted sub

classes of expression - the Uniformity Conjectures are much weaker in general.
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Chapter 8

Conclusion

The initial aim of this project was to develop, if possible, usable algorithms 

for lazy exact real computation. As discussed in the introduction there are at 

least three facets to this: selecting subsets of the reals for which it is possi

ble/practicable; using ‘lazy’ (i.e. general, non-canonical) representations of num

ber fields; and, using ‘lazy’ arithmetic (i.e symbolic manipulation without reduc

tion to canonical forms combined with numeric zero/sign testing).

8.1 Interval Arithm etic for Exact A rithm etic

8.1.1 Practical Issues

Interval arithmetic is only one way among many of obtaining guaranteed accuracy 

in calculations. However no other technique we have discovered has the maturity 

or breadth of users. This may not be of mathematical significance, but from the 

perspective of an implementer it is a great strength. Most of the corpus of interval 

arithmetic assumes hardware floating point arithmetic. A minor disadvantage is
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that though many computer algebra packages provide arbitrary precision floating 

point, few are concerned with rounding issues and most provide a ‘closest value’ 

result. There is now an interval package available for GMP which is valuable 

for those using compiled languages. Even without GMP we have successfully 

implemented interval libraries in several packages (including Maple and MuPAD) 

where the rounding behaviour of floating point numbers is largely undocumented.

8.1.2 Validating Functions

Separating roots in a box has been a standard process in interval numerical meth

ods for some time. Several products exist, some using much more sophisticated 

methods than described here. Though they can manipulate a wider range of func

tions, they have less power in one respect at least. In general they use hardware 

floating point, but even where they do not, they are not guaranteed to find all 

roots, but to return a list of boxes containing roots plus a list of (small) boxes 

which may or may not contain roots. By restricting our domain to boxes and 

restricting the allowable classes of function, the algorithm here does guarantee to 

decide if there is exactly 0 , 1 or more roots and if there are a finite number, it 

can be adapted to count and/or separate them.

As shown in Propositions 6  and 7, the method can be extended to a wider range of 

functions. It is not clear whether it can be extended to, for example, elementary 

numbers (see §8.3) which can include terms of the form ee*.
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8.2 Transforming Equations to Univariate Form

The complexities introduced by the use of multivariate systems of equations are 

immense compared with univariate systems. No doubt to a ‘real’ mathematician 

this increases the challenge and the interest but for a middle aged programmer 

like the author, the instinctive reaction is to do the one off conversion to an easier 

structure and carry out only the sign determination lazily but making use of the 

better bounds available for univariate systems (and since the Mahler measure is 

easy to compute in this case and only needs to be done once, Liouville’s bound 

can be used).

Gap functions generally vastly under estimate the smallest size of roots. Few very 

small values encountered in the course of calculations are other than zero. When 

they appear to be zero it is often the case that a slight increase in precision will 

dispose of them. This suggest that one practical approach is to use the Schmidt 

conjecture from Eq. 4.4

\a — (3\>  l/(m ax(M (a), M(f3)))2+5

q(£) could be written as a  — (3 and a bound found for the Mahler measures and 

degrees of a  and j3. Lioville’s bound would give #(£) ^  0 implies

\q(£)\ =  \ a - 0 \ >  2 - dad<3M (a ) -^ M {P )~ da

however choosing a small random number for S there is a probability 1 that the 

previous equation holds. It is well worth checking since q(£) may be shown to be 

non-zero by interval evaluation at the larger size.

Converting a general system to univariate form can be done in a number of 

ways. Two methods have been suggested, algebraically using w-resultants and
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numerically using lattice reduction algorithms. In either if the estimated Bezout 

number of a system is D  the computation will involve matrices of size D  x D.

The PSLQ algorithm requires floating point precision of order m D  digits to de

tect a polynomial having coefficients of size <  10m [D B97]. The root bound 

from Eq. 6.4 also provides a bound for coefficients, implying m  =  0 ( D n log H  +  

(nD)n log D ). The polynomial in the Ramanujan example Eq. 5.1 has n — 5, D  =  

1874 and H  — 2000 which makes it impractical to solve in this way. Even if pre

cision were not a problem, [FBA99] gives a bound for the number of iterations 

necessary to find a relation which in this case reduces to 0 { D n \og(nHDn)).

Of course, similar problems occur with Grobner or resultant methods. If a 

Grobner basis already exists, a companion matrix of a variable can be constructed 

in 0 {n D )  polynomial divisions from which the polynomal can be extracted in 

0 ( D 3) integer operations. However we have no figure for the cost of a division 

which seems reliable, while the cost of producing a Grobner basistends to make 

the method impracticable for all but the smallest systems.

8.3 Elementary Numbers

Our initial interest came from Dr Richardson’s work on elementary numbers (in 

e.g. [Ric97, Ric96a, Ric96b]). His starting point is a set of equations S  =  P  U E  

comprising where

P  — {Pi £ Z[rci,. . . ,  xn\ : 1 <  i <  k} and 

E  =  {wi -  exp(^) : 1 <  i <  s, { C { z i , . . . ,  z n} }  

which define a point £ (i.e. 5 (f)  =  0  is the only zero of S  in some B  and 

J ( 5 ,0  7^0).
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To decide if q(£) =  0  for some q £ Z [x i,. . . ,  xn] has two stages: decide if P(£) =  0  

implies q(£) =  0  (i.e. this is essentially an algebraic problem); if not eliminate 

one variable and repeat.

The first step might plausibly be seen as amenable to the methods of this thesis. 

Unfortunately it fails for two reasons. Firstly, all the algebraic methods depend 

on having finite sets of solutions. Secondly, even if that condition is met, they 

reduce to determining the coefficients (or bounds on them) of x (z ) =  det M (z)  

where by construction, has integral coefficients. In the elementary case the 

coefficients will be polynomials in the eXi for which, in general we have no lower 

bounds.

8.4 Grobner and Resultant M ethods

Since the original material for Chapter 5 was written about eight years ago the 

method described has become much more well known. The problem with Grobner 

methods has always been the cost of producing the basis but faster methods are 

now available for zero-dimensional ideals [GVOO].

The new bound from the Macaulay Resultant is an improvement on Canny result 

but still impractically small. Possibly using the Dixon resultant, at least as 

far as finding the Dixon polynomial and then using its size to estimate bounds 

may be more practical. The main alternative would be using one of the newer 

Grobner basis algorithms (which offer the possibility of singly exponential time 

complexity) followed by esimation of the norm of the matrix representing the 

polynomial being tested.
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8.5 The Uniform ity Conjecture

The Uniformity Conjecture is an intriguingly different way of looking at gap 

functions. Unfortunately, despite many experiments and some rethinking of the 

conjecture, no proof of the conjecture is in sight. A paper, [RL02], on the con

jecture by Dr Richardson and the the author of this report was entitled “Some 

Observations on Familiar Numbers” with the slightly whimsical aim of suggest

ing a slight offering by an 18th Century naturalist. It is certainly the case that 

expanded expressions are a plausible model for scientific computing, and the title  

hoped to convey something of how little known such familiar objects are.

8.6 Finally

When Dr Richardson proposed finding algorithms for ‘Lazy Exact Real Compu

tation’ he commented that, if any were found, ’’Several people would be quite 

interested” after a pause he added ’’Maybe a dozen, worldwide” and after an

other pause ” Including you and me of course”. What has been described in the 

preceding chapters are a range of algorithms, all of which are usable in theory 

though none are tractable and none are realistic for systems with more than sin

gle digit numbers of variables. It is unlikely that any of the putative dozen will 

be surprised by the outcome. Whether any of the other eleven will find results of 

interest is not for the twelfth to say - though he does retain some slight interest 

in the topic!
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A ppendix A

Pseudo-C ode N otation

The algorithms are written in pseudo-code with:

1. Nesting indicated by indenting as in Python, or by use of explicit end key

words. I.e.

1 i f  a > b
2 c <—  d
3 x <—  y

is equivalent to

1 i f  a > b
2 c <—  d
3 end i f
4 x <—  y

Single statements blocks are often written on the same line as the test.

1 i f  a > b c <—  d
2 x <—  y

2 . loop is an endless loop which must be terminated by return or e x i t  loop.
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next loop jumps to beginning of the loop.

1 loop
2  i f  a > b
3 next loop
4 end loop
5 x <—  y

3 . f a i l  is equivalent to throw/raise and terminates all levels of the algorithm.

1 tr y
2  i f  x =  0  f a i l
3  y  <—  1
4 on f a i l
5
6  e ls e
7

4. Y (i : a) =  ( y i , . . . ,  y i_ i, a, y i+i , . . . ,  y n).

5. If X  is a variable in an algorithm, X  is its initial value, X  and X  are its
in it pre p ost

values at the beginning (end) of a section of code. X  is used if the meaning 

is clear.
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A ppendix B

A lgorithm s

The Validate  algorithms are repeated here for convenience.

1 Algorithm Validate
2 Input: Y  t> box to be validated/approximated
3 W <—  volY
4 n <—  {Y }
5 T<—  0
6  w hile TZ /  0
7 S  «—  0 >  new fores which may contain roots
8  fo r  Y e l l
9 i f  dim Y  =  0

10 i f  F (Y ) =  0 T<— T U { Y }
1 1  next loop
1 2  end i f
13 V  <—  F{Y )
14 i f  0 ^ V  next loop >  Cannot contain a zero
15 X<—  Y
16 C <—  an approximation to J _1(F, m (X))
17 U  <—  C  J(F, X ) -  /
18 Y  <—  (m (X) -  CVn(V) -  U (X  -  m (X ))) fl X
19 i f  Y  =  0 next loop >  can’t contain a zero
20 i f  Y  C int(X) >  exactly one root in Y
21 T  <— T U { Y }
2 2  e ls e  i f  \\U\\ < 2  >  at most one root
23 i f  vo lY  < 6  >  very small box
24 t> does it lie on the boundary?
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3

Z <—  Boundary (Y , X)
i f  Z =  0 [> no root on boundary

S  <—  S  U Bisect(Y , true) 
e ls e

T  <—  T U { Z }  >  one root on boundary
end i f  

e ls e
S  <—  S  U Bisect(Y , true) 

end i f  
e ls e

S  <—  S  U Bisect(Y , fa lse)
end i f

end fo r
i f  # T  > 1 f a i l >  at least two roots
1 l <— <S

end w hile
i f  f t  =  0

return 0

e ls e  i f  1Z =  {X }
i f  vo lX  > X < -— BisecbfX ., true)
return X

Algorithm Boundary >  at most one root on boundary
Input: Y >  Krawczyk operator applied to X
Input: X >  Y C X
>  At most one root, check boundary
fo r  i from 1 to  n >  all possible dimensions

i f  w(xi) 7  ̂ 0 >  ignore point dimensions
i f  Xi =  yi >  coincident boundary

U  <—  V alida te(Y (i  : [yi,yt])) 
i f  U  7  ̂ 0 return  U

e ls e  i f  Xi =  yi
U  <—  V alidate{Y (i  : [yl,yi])) 
i f  U  7  ̂ 0 return U  

end i f  
end i f  

end fo r  
return  0

Algorithm Bisect
Input: Y  >  Box
In p u t: singleRoot >  boolean - true =  max of one root
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4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3
4
5
6
7

m <—  w(Y ) / 2

z <—  index of widest dim of Y  >  bisect box
a\ <—  yi +  m  >  first try at about 1 /2  length
Zi <—  V alidate(Y(i : [ai,ai])) 
i f  Zi =  0

return {Y(z : Y(z : [au yi])}
e ls e  i f  singleRoot 

return Zi 
end i f
>  Try again near first division
a2 <—  Oi i  + e / 2
Z 2 <—  Valida te(Y(i  : [0 2 , 0 2 ]))
i f  Z2 /  0 f a i l  >  More than one root
return {Y(z : [^ ,o 2]), Y(z : [a2lyl])}

Algorithm Approximate
In pu t: X  >  validated box
In pu t: W  >  find approx. with width < W
w hile io(X) > =  W  

X  <—  Validate(X)  
end w hile  
return X
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