4,907 research outputs found

    Discrete Scale Invariance in Scale Free Graphs

    Full text link
    In this work we introduce an energy function in order to study finite scale free graphs generated with different models. The energy distribution has a fractal pattern and presents log periodic oscillations for high energies. This oscillations are related to a discrete scale invariance of certain graphs, that is, there are preferred scaling ratios suggesting a hierarchical distribution of node degrees. On the other hand, small energies correspond to graphs with evenly distributed degrees.Comment: 13 pages, 12 figure

    Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    Full text link
    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\it multiple} q=2,3,4q=2,3,4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1c>1.Comment: 9 page

    Metric characterization of cluster dynamics on the Sierpinski gasket

    Full text link
    We develop and implement an algorithm for the quantitative characterization of cluster dynamics occurring on cellular automata defined on an arbitrary structure. As a prototype for such systems we focus on the Ising model on a finite Sierpsinski Gasket, which is known to possess a complex thermodynamic behavior. Our algorithm requires the projection of evolving configurations into an appropriate partition space, where an information-based metrics (Rohlin distance) can be naturally defined and worked out in order to detect the changing and the stable components of clusters. The analysis highlights the existence of different temperature regimes according to the size and the rate of change of clusters. Such regimes are, in turn, related to the correlation length and the emerging "critical" fluctuations, in agreement with previous thermodynamic analysis, hence providing a non-trivial geometric description of the peculiar critical-like behavior exhibited by the system. Moreover, at high temperatures, we highlight the existence of different time scales controlling the evolution towards chaos.Comment: 20 pages, 8 figure
    corecore