68,271 research outputs found

    Magneto-Optical Stern-Gerlach Effect in Atomic Ensemble

    Full text link
    We study the birefringence of the quantized polarized light in a magneto-optically manipulated atomic ensemble as a generalized Stern-Gerlach Effect of light. To explain this engineered birefringence microscopically, we derive an effective Shr\"odinger equation for the spatial motion of two orthogonally polarized components, which behave as a spin with an effective magnetic moment leading to a Stern-Gerlach split in an nonuniform magnetic field. We show that electromagnetic induced transparency (EIT) mechanism can enhance the magneto-optical Stern-Gerlach effect of light in the presence of a control field with a transverse spatial profile and a inhomogeneous magnetic field.Comment: 7 pages, 5 figure

    Wavelet Trees Meet Suffix Trees

    Full text link
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression.Comment: 33 pages, 5 figures; preliminary version published at SODA 201

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Security of differential phase shift quantum key distribution against individual attacks

    Full text link
    We derive a proof of security for the Differential Phase Shift Quantum Key Distribution (DPSQKD) protocol under the assumption that Eve is restricted to individual attacks. The security proof is derived by bounding the average collision probability, which leads directly to a bound on Eve's mutual information on the final key. The security proof applies to realistic sources based on pulsed coherent light. We then compare individual attacks to sequential attacks and show that individual attacks are more powerful

    Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers

    Get PDF
    Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconstruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.Comment: 23 page

    The Barrier Method: A Technique for Calculating Very Long Transition Times

    Full text link
    In many dynamical systems there is a large separation of time scales between typical events and "rare" events which can be the cases of interest. Rare-event rates are quite difficult to compute numerically, but they are of considerable practical importance in many fields: for example transition times in chemical physics and extinction times in epidemiology can be very long, but are quite important. We present a very fast numerical technique that can be used to find long transition times (very small rates) in low-dimensional systems, even if they lack detailed balance. We illustrate the method for a bistable non-equilibrium system introduced by Maier and Stein and a two-dimensional (in parameter space) epidemiology model.Comment: 20 pages, 8 figure
    corecore