39,362 research outputs found

    Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation

    Get PDF
    Whether functional magnetic resonance imaging (fMRI) allows the identification of neural drivers remains an open question of particular importance to refine physiological and neuropsychological models of the brain, and/or to understand neurophysiopathology. Here, in a rat model of absence epilepsy showing spontaneous spike-and-wave discharges originating from the first somatosensory cortex (S1BF), we performed simultaneous electroencephalographic (EEG) and fMRI measurements, and subsequent intracerebral EEG (iEEG) recordings in regions strongly activated in fMRI (S1BF, thalamus, and striatum). fMRI connectivity was determined from fMRI time series directly and from hidden state variables using a measure of Granger causality and Dynamic Causal Modelling that relates synaptic activity to fMRI. fMRI connectivity was compared to directed functional coupling estimated from iEEG using asymmetry in generalised synchronisation metrics. The neural driver of spike-and-wave discharges was estimated in S1BF from iEEG, and from fMRI only when hemodynamic effects were explicitly removed. Functional connectivity analysis applied directly on fMRI signals failed because hemodynamics varied between regions, rendering temporal precedence irrelevant. This paper provides the first experimental substantiation of the theoretical possibility to improve interregional coupling estimation from hidden neural states of fMRI. As such, it has important implications for future studies on brain connectivity using functional neuroimaging

    Association between resting-state functional connectivity, glucose metabolism and task-related activity of neural networks

    Get PDF
    The brain is organized into several large-scale functional networks. Such networks are primarily characterized by intrinsic functional connectivity, i.e. temporally synchronous activity between the different brain regions of a network. The functional connectivity of networks can be identified via functional MRI during resting state, i.e. without engaging the subject in a particular task. Resting-state fMRI is thus less demanding on the subject and therefore of particular interest from a clinical point of view to detect alterations in brain function. Applied to neurodegenerative disease including Alzheimer’s disease, resting-state fMRI has shown alterations in several resting-state networks, suggesting that basic network function is altered in AD. However, the interpretation of alterations in resting-state fMRI connectivity is inherently limited since no cognitive states are explicitly expressed during fMRI. In this regard, we aimed to elucidate how resting-state fMRI connectivity relates to 1) cognition-related brain activity and 2) markers of pathologically altered brain function in AD. In order to understand at a more basic level the association between resting-state and task-related fMRI, we first examined, in a group of elderly healthy subjects, the association between functional connectivity of major networks assessed during resting-state fMRI with those acquired during memory-task related fMRI, in the same individuals. Secondly, in order to assess whether alterations in AD are associated with already well-established markers of pathological brain function in AD, we compared resting-state fMRI functional network connectivity with that in FDG-PET metabolism in AD. Project 1: We investigated the association between functional connectivity acquired during rest and the level of activation obtained during an episodic memory task that included the encoding and forced-choice recognition of face-name pairs in elderly cognitively normal subjects. Independent component analysis (ICA) was used to identify major resting-state networks in the brain. Next, we applied ICA to the task-fMRI data to determine the components (networks) that were significantly associated with the task regressors of successful vs unsuccessful learning or recognition trials. Spatial correlation analysis between the resulting extracted resting-state and task-related fMRI components showed a spatial match in several components such as medial temporal lobe centered components and posterior components. However, apart from the spatial correspondence, the level of resting state functional connectivity did not predict the level of task-related functional connectivity in spatially matching components. Together these results suggested that particular resting-state networks are activated during a memory task, however, the level of baseline connectivity does not predict to what extent a network becomes activated during a task. Future studies may assess whether pathological resting-state connectivity predicts altered task-related connectivity in the same networks in AD. Project 2: We examined the association between resting-state fMRI functional connectivity within major functional networks and FDG-PET metabolism in those networks, assessed in elderly healthy controls, subjects with prodromal AD (mild cognitive impairment and amyloid PET biomarker confirmed AD etiology) and AD dementia. We found that FDG-PET was generally reduced in all networks in the course of AD. The main finding was that lower network functional connectivity was associated with lower FDG-PET uptake in the Default mode network and fronto-parietal attention network across the whole group and specifically in prodromal AD, suggesting that both modalities are associated in higher networks affected in the course of AD. These results provide insightful comprehension of the hypometabolism patterns that are typically found in AD

    Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults.

    Get PDF
    Structural connections between brain regions are thought to influence neural processing within those regions. It follows that alterations to the quality of structural connections should influence the magnitude of neural activity. The quality of structural connections may also be expected to differentially influence activity in directly versus indirectly connected brain regions. To test these predictions, we reviewed studies that combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) in younger and older adults. By surveying studies that examined relationships between DTI measures of white matter integrity and fMRI measures of neural activity, we identified variables that accounted for variability in these relationships. Results revealed that relationships between white matter integrity and neural activity varied with (1) aging (i.e., positive and negative DTI-fMRI relationships in younger and older adults, respectively) and (2) spatial proximity of the neural measures (i.e., positive and negative DTI-fMRI relationships when neural measures were extracted from adjacent and non-adjacent brain regions, respectively). Together, the studies reviewed here provided support for both of our predictions

    Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes

    Get PDF
    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover shamcontrolled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future

    Estimating Time-Varying Effective Connectivity in High-Dimensional fMRI Data Using Regime-Switching Factor Models

    Full text link
    Recent studies on analyzing dynamic brain connectivity rely on sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously. Emerging evidence suggests state-related changes in brain connectivity where dependence structure alternates between a finite number of latent states or regimes. Another challenge is inference of full-brain networks with large number of nodes. We employ a Markov-switching dynamic factor model in which the state-driven time-varying connectivity regimes of high-dimensional fMRI data are characterized by lower-dimensional common latent factors, following a regime-switching process. It enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We consider the switching VAR to quantity the dynamic effective connectivity. We propose a three-step estimation procedure: (1) extracting the factors using principal component analysis (PCA) and (2) identifying dynamic connectivity states using the factor-based switching vector autoregressive (VAR) models in a state-space formulation using Kalman filter and expectation-maximization (EM) algorithm, and (3) constructing the high-dimensional connectivity metrics for each state based on subspace estimates. Simulation results show that our proposed estimator outperforms the K-means clustering of time-windowed coefficients, providing more accurate estimation of regime dynamics and connectivity metrics in high-dimensional settings. Applications to analyzing resting-state fMRI data identify dynamic changes in brain states during rest, and reveal distinct directed connectivity patterns and modular organization in resting-state networks across different states.Comment: 21 page

    Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity.

    Get PDF
    In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal from different brain regions is used to assess functional connectivity. However, because the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic nature can complicate the interpretation of differences in connectivity that are observed across conditions or subjects. For example, prior studies have shown that caffeine leads to widespread reductions in BOLD connectivity but were not able to determine if neural or vascular factors were primarily responsible for the observed decrease. In this study, we used source-localized magnetoencephalography (MEG) in conjunction with fMRI to further examine the origins of the caffeine-induced changes in BOLD connectivity. We observed widespread and significant (p < 0.01) reductions in both MEG and fMRI connectivity measures, suggesting that decreases in the connectivity of resting-state neuro-electric power fluctuations were primarily responsible for the observed BOLD connectivity changes. The MEG connectivity decreases were most pronounced in the beta band. By demonstrating the similarity in MEG and fMRI based connectivity changes, these results provide evidence for the neural basis of resting-state fMRI networks and further support the potential of MEG as a tool to characterize resting-state connectivity
    • …
    corecore