14,950 research outputs found

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor

    Lossless Linear Analog Compression

    Get PDF
    We establish the fundamental limits of lossless linear analog compression by considering the recovery of random vectors x∈Rm{\boldsymbol{\mathsf{x}}}\in{\mathbb R}^m from the noiseless linear measurements y=Ax{\boldsymbol{\mathsf{y}}}=\boldsymbol{A}{\boldsymbol{\mathsf{x}}} with measurement matrix A∈Rn×m\boldsymbol{A}\in{\mathbb R}^{n\times m}. Specifically, for a random vector x∈Rm{\boldsymbol{\mathsf{x}}}\in{\mathbb R}^m of arbitrary distribution we show that x{\boldsymbol{\mathsf{x}}} can be recovered with zero error probability from n>inf⁥dimâĄâ€ŸMB(U)n>\inf\underline{\operatorname{dim}}_\mathrm{MB}(U) linear measurements, where dimâĄâ€ŸMB(⋅)\underline{\operatorname{dim}}_\mathrm{MB}(\cdot) denotes the lower modified Minkowski dimension and the infimum is over all sets U⊆RmU\subseteq{\mathbb R}^{m} with P[x∈U]=1\mathbb{P}[{\boldsymbol{\mathsf{x}}}\in U]=1. This achievability statement holds for Lebesgue almost all measurement matrices A\boldsymbol{A}. We then show that ss-rectifiable random vectors---a stochastic generalization of ss-sparse vectors---can be recovered with zero error probability from n>sn>s linear measurements. From classical compressed sensing theory we would expect n≄sn\geq s to be necessary for successful recovery of x{\boldsymbol{\mathsf{x}}}. Surprisingly, certain classes of ss-rectifiable random vectors can be recovered from fewer than ss measurements. Imposing an additional regularity condition on the distribution of ss-rectifiable random vectors x{\boldsymbol{\mathsf{x}}}, we do get the expected converse result of ss measurements being necessary. The resulting class of random vectors appears to be new and will be referred to as ss-analytic random vectors

    Support Recovery with Sparsely Sampled Free Random Matrices

    Full text link
    Consider a Bernoulli-Gaussian complex nn-vector whose components are Vi=XiBiV_i = X_i B_i, with X_i \sim \Cc\Nc(0,\Pc_x) and binary BiB_i mutually independent and iid across ii. This random qq-sparse vector is multiplied by a square random matrix \Um, and a randomly chosen subset, of average size npn p, p∈[0,1]p \in [0,1], of the resulting vector components is then observed in additive Gaussian noise. We extend the scope of conventional noisy compressive sampling models where \Um is typically %A16 the identity or a matrix with iid components, to allow \Um satisfying a certain freeness condition. This class of matrices encompasses Haar matrices and other unitarily invariant matrices. We use the replica method and the decoupling principle of Guo and Verd\'u, as well as a number of information theoretic bounds, to study the input-output mutual information and the support recovery error rate in the limit of n→∞n \to \infty. We also extend the scope of the large deviation approach of Rangan, Fletcher and Goyal and characterize the performance of a class of estimators encompassing thresholded linear MMSE and ℓ1\ell_1 relaxation

    Polarization of the Renyi Information Dimension with Applications to Compressed Sensing

    Full text link
    In this paper, we show that the Hadamard matrix acts as an extractor over the reals of the Renyi information dimension (RID), in an analogous way to how it acts as an extractor of the discrete entropy over finite fields. More precisely, we prove that the RID of an i.i.d. sequence of mixture random variables polarizes to the extremal values of 0 and 1 (corresponding to discrete and continuous distributions) when transformed by a Hadamard matrix. Further, we prove that the polarization pattern of the RID admits a closed form expression and follows exactly the Binary Erasure Channel (BEC) polarization pattern in the discrete setting. We also extend the results from the single- to the multi-terminal setting, obtaining a Slepian-Wolf counterpart of the RID polarization. We discuss applications of the RID polarization to Compressed Sensing of i.i.d. sources. In particular, we use the RID polarization to construct a family of deterministic ±1\pm 1-valued sensing matrices for Compressed Sensing. We run numerical simulations to compare the performance of the resulting matrices with that of random Gaussian and random Hadamard matrices. The results indicate that the proposed matrices afford competitive performances while being explicitly constructed.Comment: 12 pages, 2 figure

    The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing

    Full text link
    Recovery of the sparsity pattern (or support) of an unknown sparse vector from a limited number of noisy linear measurements is an important problem in compressed sensing. In the high-dimensional setting, it is known that recovery with a vanishing fraction of errors is impossible if the measurement rate and the per-sample signal-to-noise ratio (SNR) are finite constants, independent of the vector length. In this paper, it is shown that recovery with an arbitrarily small but constant fraction of errors is, however, possible, and that in some cases computationally simple estimators are near-optimal. Bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector for several different recovery algorithms. The tightness of the bounds, in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing information-theoretic necessary bounds. Near optimality is shown for a wide variety of practically motivated signal models

    Low-complexity Multiclass Encryption by Compressed Sensing

    Get PDF
    The idea that compressed sensing may be used to encrypt information from unauthorised receivers has already been envisioned, but never explored in depth since its security may seem compromised by the linearity of its encoding process. In this paper we apply this simple encoding to define a general private-key encryption scheme in which a transmitter distributes the same encoded measurements to receivers of different classes, which are provided partially corrupted encoding matrices and are thus allowed to decode the acquired signal at provably different levels of recovery quality. The security properties of this scheme are thoroughly analysed: firstly, the properties of our multiclass encryption are theoretically investigated by deriving performance bounds on the recovery quality attained by lower-class receivers with respect to high-class ones. Then we perform a statistical analysis of the measurements to show that, although not perfectly secure, compressed sensing grants some level of security that comes at almost-zero cost and thus may benefit resource-limited applications. In addition to this we report some exemplary applications of multiclass encryption by compressed sensing of speech signals, electrocardiographic tracks and images, in which quality degradation is quantified as the impossibility of some feature extraction algorithms to obtain sensitive information from suitably degraded signal recoveries.Comment: IEEE Transactions on Signal Processing, accepted for publication. Article in pres
    • 

    corecore