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Abstract—We establish the fundamental limits of lossless linear
analog compression by considering the recovery of random
vectors x ∈ Rm from the noiseless linear measurements y = Ax
with measurement matrix A ∈ Rn×m. Specifically, for a random
vector x ∈ Rm of arbitrary distribution we show that x can be
recovered with zero error probability from n > inf dimMB(U)
linear measurements, where dimMB(·) denotes the lower modified
Minkowski dimension and the infimum is over all sets U ⊆ Rm

with P[x ∈ U ] = 1. This achievability statement holds for
Lebesgue almost all measurement matrices A. We then show
that s-rectifiable random vectors—a stochastic generalization of
s-sparse vectors—can be recovered with zero error probability
from n > s linear measurements. From classical compressed
sensing theory, where x is deterministic, we would expect n ≥ s
to be necessary for recovery with zero error probability. Sur-
prisingly, certain classes of s-rectifiable random vectors can
be recovered from fewer than s measurements. Imposing an
additional regularity condition on the distribution of s-rectifiable
random vectors x, we do get the expected converse result of s
measurements being necessary. The resulting class of random
vectors appears to be new and will be referred to as s-analytic
random vectors. Finally, we show that, even for analytic random
vectors, the sparsity level in terms of the number of non-zero
entries of the realizations of x can be larger than the analyticity-
parameter s.

I. INTRODUCTION

Compressed sensing [1]–[3] deals with the recovery of
unknown sparse vectors x ∈ Rm from a small (relative to
m) number, n, of linear measurements of the form y = Ax,
where A ∈ Rn×m is referred to as the measurement matrix.
Wu and Verdú [4], [5] developed an information-theoretic
framework for compressed sensing, fashioned as an almost
lossless analog compression problem. Specifically, [4] presents
asymptotic achievability bounds, which show that for almost
all (a.a.) measurement matrices A a random i.i.d. vector x
can be recovered with arbitrarily small probability of error
from n = bRmc linear measurements, provided that R > RB,
where RB denotes the Minkowski dimension compression
rate [4] of x. For the special case of the i.i.d. components
in x having a discrete-continuous mixture distribution, this
threshold is tight in the sense of R ≥ RB being necessary
for the existence of a measurement matrix A such that x can
be recovered with probability of error strictly smaller than 1
for m sufficiently large.

Discrete-continuous mixture distributions ρµc + (1 − ρ)µd

are relevant as bρmc—by the law of large numbers—can be
interpreted as the sparsity level of x and RB = ρ. A more
direct and non-asymptotic (i.e., fixed-m) statement in [4] says

that a.a (with respect to a σ-finite Borel measure) s-sparse
random vectors can be recovered with zero probability of error
provided that m > s. Again, this result holds for Lebesgue a.a.
measurement matrices A ∈ Rn×m. A corresponding converse
does, however, not seem to be available.

Contributions. We establish the fundamental limits of loss-
less (i.e., zero probability of error) linear analog compression
in the non-asymptotic (i.e., fixed-m) regime for random vec-
tors x of arbitrary distribution. In particular, x need not be
i.i.d. or supported on unions of subspaces (as in classical com-
pressed sensing theory). The formal statement of the problem
we consider is as follows. Suppose we have n (noiseless) linear
measurements of the random vector x ∈ Rm in the form of
y = Ax. For a given ε ∈ [0, 1), we want to determine whether
a decoder, i.e., a Borel measurable map gA : Rn → Rm exists
such that

P
[
gA
(
Ax
)
6= x
]
≤ ε. (1)

Specifically, we shall be interested in statements of the fol-
lowing form:
Property P1: For Lebesgue a.a. measurement matrices A ∈
Rn×m, there exists a decoder gA satisfying (1) almost surely,
i.e., with ε = 0.
Property P2: There exists an ε ∈ [0, 1), an A ∈ Rn×m, and

a decoder gA satisfying (1).

Our main achievability result is as follows. For x ∈ Rm
of arbitrary distribution, we show that P1 holds for n >
inf dimMB(U), where dimMB(·) denotes the lower modified
Minkowski dimension (see Definition 2) and the infimum is
over all sets U ⊆ Rm with P[x ∈ U ] = 1. We emphasize that it
is the usage of modified Minkowski dimension, as opposed to
Minkowski dimension, that allows us to obtain an achievability
result for ε = 0. The central conceptual element in its proof
is a slightly modified version of the probabilistic null-space
property first reported in [6]. The asymptotic achievability
bounds in [4] can be recovered in our framework.

We make the connection of our results to classical com-
pressed sensing explicit by considering random vectors x ∈
Rm that consist of s i.i.d. Gaussian entries at positions drawn
uniformly at random and that have all other entries equal to
zero. This class can be considered a stochastic analogon of
s-sparse vectors and belongs to the more general class of
s-rectifiable random vectors, originally introduced in [7] to
derive a new concept of entropy that goes beyond classical
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entropy and differential entropy. An s-rectifiable random vec-
tor has a distribution that is supported on an s-rectifiable set
[8, Def. 4.1] and is absolutely continuous with respect to the s-
dimensional Hausdorff measure.1 Our achievability result par-
ticularized to s-rectifiable random vectors shows that P1 holds
for n > s. From classical compressed sensing theory, where
x is deterministic, we would expect n ≥ s to be necessary for
recovery with zero error probability. Our information-theoretic
framework reveals, however, that this is not the case for certain
classes of s-rectifiable random vectors. This will be illustrated
by way of an example, which constructs a 2-rectifiable set
G ⊆ R3 of positive 2-dimensional Hausdorff measure that
can be compressed linearly in a one-to-one fashion into R.
Operationally, this implies that zero error probability recovery
from n = 1 < s = 2 measurement is possible. What renders
this result particularly surprising is that G contains the image—
under a continuous differentiable mapping—of a set in R2

of positive Lebesgue measure. We then show that imposing
a regularity condition on the distribution of x, we do get the
expected converse result in the sense of n ≥ s being necessary
for P2 to hold. The resulting class of random vectors appears
to be new and will be referred to as s-analytic random vectors.
Finally, we show that, even for analytic random vectors, the
sparsity level in terms of the number of non-zero entries of the
realizations of x can be larger than the analyticity-parameter
s.

Notation. Capital boldface letters A,B, . . . designate de-
terministic matrices and lower-case boldface letters a, b, . . .
stand for deterministic vectors. We use sans-serif letters,
e.g. x, for random quantities and roman letters, e.g. x, for
deterministic quantities. For measures µ and ν on the same
measure space, we write µ� ν to express that µ is absolutely
continuous with respect to ν (i.e., for every measurable set A,
ν(A) = 0 implies µ(A) = 0). The product measure of µ and ν
is denoted by µ×ν. The superscript T stands for transposition.
‖x‖2 =

√
xTx is the Euclidean norm of x and ‖x‖0 denotes

the number of non-zero entries of x. For the Euclidean space
(Rk, ‖ · ‖2), we let the open ball of radius ρ centered at
u ∈ Rk be Bk(u, ρ), and V (k, ρ) refers to its volume. L n

denotes the Lebesgue measure on Rn. If f : Rk → Rl is
differentiable, we write Df(v) for the differential of f at
v ∈ Rk and we define the min(k, l)-dimensional Jacobian
Jf(v) at v ∈ Rk by Jf(v) =

√
det(Df(v)(Df(v))T), if

l < k, and Jf(v) =
√

det((Df(v))TDf(v)), if l ≥ k. For
a mapping f , f 6≡ 0 means that f is not identically zero. For
f : Rk → Rl and A ⊆ Rk, f |A denotes the restriction of f
to A. A mapping is said to be C1 if its derivative exists and
is continuous. ker(f) stands for the kernel of f .

The definitions of the fractal quantities used in this paper are
standard and can be found, along with their basic properties
in, e.g., [9], [10]. Throughout the paper, we omit proofs due

1Note that the classical Lebesgue decomposition of measures into con-
tinuous, discrete, and singular parts is not useful for s-rectifiable random
vectors as their distributions are always singular (except for the trivial cases
s = m and s = 0). We therefore use the s-dimensional Hausdorff measure
as reference measure for the ambient space.

to space limitations.

II. ACHIEVABILITY

We quantify the description complexity of random vectors
x ∈ Rm of general distribution through the infimum over
the lower modified Minkowski dimensions of sets U ⊆ Rm
with P[x ∈ U ] = 1 (referred to as support sets of x in the
following). We start by defining Minkowski dimension.

Definition 1. (Minkowski dimension2) Let U be a non-empty
bounded set in Rm. The lower Minkowski dimension of U is
defined as

dimB(U) = lim inf
ρ→0

logNU (ρ)

log 1
ρ

and the upper Minkowski dimension as

dimB(U) = lim sup
ρ→0

logNU (ρ)

log 1
ρ

,

where

NU (ρ) = min
{
k ∈ N : U ⊆

⋃
i∈{1,...,k}

Bm(ui, ρ), ui ∈ Rm
}

is the covering number of U for radius ρ. If dimB(U) =
dimB(U) =: dimB(U), we say that dimB(U) is the
Minkowski dimension of U .

Minkowski dimension is a useful measure only for (non-
empty) bounded sets, as it equals infinity for unbounded sets.
Support sets of random vectors are, however, not bounded
in general (see, e.g., the support sets in Examples 1 and 4
below). A measure of description complexity that applies to
unbounded sets as well is modified Minkowski dimension.

Definition 2. (Modified Minkowski dimension) Let U ⊆ Rm
be a non-empty set. The lower modified Minkowski dimension
of U is defined as

dimMB(U) = inf

{
sup
i∈I

dimB(Ui) : U ⊆
⋃
i∈I
Ui

}
,

where the infimum is over all countable covers of U by non-
empty bounded Borel sets.3 The upper modified Minkowski
dimension of U is

dimMB(U) = inf

{
sup
i∈I

dimB(Ui) : U ⊆
⋃
i∈I
Ui

}
,

where, again, the infimum is over all countable covers of
U by non-empty bounded Borel sets. If dimMB(U) =
dimMB(U) =: dimMB(U), we say that dimMB(U) is the
modified Minkowski dimension of U .

2Minkowski dimension is sometimes also referred to as box-counting
dimension, which is the origin of the subscript B in the notation dimB(·)
used below.

3The assumption of the sets in the covers being Borel is for technical
convenience, as for a non-empty set U ⊆ Rm its closure Ū is a Borel set
of the same lower and upper Minkowski dimension as U [9, Prop. 3.4], a
property needed in the proof of our main achievability result.



Upper modified Minkowski dimension, in addition, has the
advantage of being countably stable [9, Sec. 3.4], whereas
upper Minkowski dimension is only finitely stable. This aspect
will turn out to be of key importance in particularizing
our achievability result, stated next, for s-rectifiable random
vectors.

Theorem 1. For x ∈ Rm of arbitrary distribution, n >
inf dimMB(U) is sufficient for Property P1 to hold, where the
infimum is over all support sets U ⊆ Rm of x.

This theorem generalizes the achievability result of [4] to
random vectors x ∈ Rm of arbitrary distribution. Specifically,
neither do the entries of x have to be i.i.d. nor does x have to be
generated according to the finite unions of subspaces model.
Finally, perhaps most importantly, the result is non-asymptotic
(i.e., for finite m) and pertains to zero error probability.

The central conceptual element in the derivation of Theo-
rem 1 is the following probabilistic null-space property, first
reported in [6] for (non-empty) bounded sets and expressed in
terms of lower Minkowski dimension. If the lower modified
Minkowski dimension of a non-empty (possibly unbounded)
set U is smaller than n, then, for a.a. measurement matrices
A, the set U intersects the (m− n)-dimensional kernel of A
at most trivially. What is remarkable here is that the notions
of Euclidean dimension (for the kernel of the mapping) and of
lower modified Minkowski dimension (for U) are compatible.
The formal statement is as follows.

Proposition 1. Let s > 0 and A = (a1 . . . am) with inde-
pendent columns that are uniformly distributed on Bn(0, s).
Suppose that U ⊆ Rm with dimMB(U) < n. Then, we have

P[ker(A) ∩ U\{0} 6= ∅] = 0.

A. Rectifiable random vectors

We next particularize our achievability result for s-
rectifiable random vectors x—defined below—and start by
introducing the central concepts needed, namely, Hausdorff
measures, Hausdorff dimension, and (locally) Lipschitz map-
pings.

Definition 3. (Hausdorff measure) Let s ∈ [0,∞) and U ⊆
Rm. The s-dimensional Hausdorff measure of U is given by

H s(U) = lim
δ→0

H s
δ (U)

where, for 0 < δ ≤ ∞,

H s
δ (U)

=
V (s, 1)

2s
inf

{∑
i∈I

diam(Ui)s : diam(Ui) < δ,U ⊆
⋃
i∈I
Ui

}

for countable covers {Ui}i∈I and the diameter of U ⊆ Rn is
defined as

diam(U) =

{
sup{‖u− v‖2 : u,v ∈ U}, for U 6= ∅
0, for U = ∅.

H s(U)

s

∞

0
dimH(U) m

Fig. 1. ([9, Fig. 2.3]) Graph of H s(U) as a function of s ∈ [0,m] for a set
U ⊆ Rm.

Definition 4. (Hausdorff dimension) The Hausdorff dimension
of U ⊆ Rm is

dimH(U) = sup{s ≥ 0 : H s(U) =∞}
= inf{s ≥ 0 : H s(U) = 0},

i.e., dimH(U) is the value of s for which the sharp transition
from ∞ to 0 occurs in Figure 1.

Definition 5. (Locally Lipschitz mapping) We call
(i) a mapping f : U → Rl, where U ⊆ Rk, Lipschitz if

there exists a constant L ≥ 0 such that

‖f(u)− f(v)‖2 ≤ L‖u− v‖2, (2)

for all u,v ∈ U . The smallest constant L for which (2)
holds is called the Lipschitz constant of f ;

(ii) a mapping f : Rk → Rl locally Lipschitz if, for each
compact set K ⊆ Rk, the mapping f |K : K → Rl is
Lipschitz.

We are now ready to define the notion of s-rectifiable sets
and s-rectifiable random vectors.

Definition 6. An H s-measurable set U ⊆ Rm is called s-
rectifiable if there exist a countable set I, bounded Borel sets
Ai ⊆ Rs, i ∈ I, and Lipschitz mappings ϕi : Ai → Rm,
i ∈ I such that

H s
(
U \

⋃
i∈I

ϕi(Ai)
)
= 0.

Definition 7. The random vector x ∈ Rm is called s-rectifiable
if it has an s-rectifiable support set and µx �H s.

The following example speaks to the relevance of the notion
of s-rectifiable random vectors as it shows that a stochastic
analogon of the union of subspaces model—used pervasively
in classical compressed sensing—is s-rectifiable.

Example 1. Suppose that x ∈ Rm has s i.i.d. Gaussian entries
at positions drawn uniformly at random and all other entries
are equal to zero. Then, the s-rectifiable set

U = {x ∈ Rm : ‖x‖0 = s}, (3)

is a support set of x. We show in Example 3 that µx �H s,
which implies s-rectifiability of x.



A ⊆ Rs, L s(A) > 0

U ⊆ Rm

h(A)

h

Fig. 2. The set U ⊆ Rm contains the image of a set A ⊆ Rs with
positive Lebesgue measure L s(A) > 0. The mapping h is one-to-
one on A.

We next establish an important uniqueness property of s-
rectifiable random vectors.

Lemma 1. If x is s-rectifiable and t-rectifiable, then s = t.

Roughly speaking the reason for this uniqueness is the
following. If s is too small, then there exists no s-rectifiable
support set for x. If s is too large, then µx �H s is violated
as a consequence of the sharp transition behavior of Hausdorff
measure depicted in Figure 1.

We next particularize our achievability result, Theorem 1,
to s-rectifiable random vectors. To this end, we first establish
an upper bound on dimMB(U) for s-rectifiable sets U .

Lemma 2. For U ⊆ Rm s-rectifiable we have dimMB(U) ≤ s.

Combining Lemma 2 and Theorem 1 yields the following
achievability result for s-rectifiable random vectors.

Corollary 1. For x ∈ Rm s-rectifiable, n > s is sufficient for
P1 to hold.

III. CONVERSE

Our achievability result particularized to s-rectifiable ran-
dom vectors shows that P1 holds for n > s. From classical
compressed sensing theory, where x is deterministic, we
would expect n ≥ s to be necessary for recovery with zero
error probability. Our information-theoretic framework reveals,
however, that this is not the case for certain classes of s-
rectifiable random vectors. This surprising phenomenon will
be illustrated through the following example. We construct a
2-rectifiable set G ⊆ R3 of positive 2-dimensional Hausdorff
measure that can be compressed linearly in a one-to-one
fashion into R. What renders this result surprising is that
all this is possible although G contains the image—under a
continuous differentiable mapping—of a set in R2 of positive
Lebesgue measure (see Figure 2). Operationally, this shows
that 2-rectifiable random vectors x with support set G can be
recovered from n = 1 < s = 2 linear measurement almost
surely.

Example 2. We construct a 2-rectifiable set G ⊆ R3 with
H 2(G) > 0 and a corresponding linear mapping f : R3 → R
such that f is one-to-one on G = h(A), where h : R2 → R3

is C1, A ⊆ R2 has L 2(A) > 0, and h is one-to-one on A.

Construction of G: It can be shown that there exist a C1-
mapping κ : R2 → R and a bounded Borel set A ⊆ R2

with 0 < L 2(A) < ∞ such that κ is one-to-one on A. Let
G = {(z κ(z))T | z ∈ A} ⊆ R3. Since κ is a C1-mapping,

h : R2 → R3

z 7→ (z κ(z))T

is also C1. It follows from the mean value theorem [11, Thm.
4.1] applied component-wise that h is also locally Lipschitz.
We then cover R2 by compact sets Ki, i ∈ I, with I countable.
The local Lipschitz property of h implies that the mappings
ϕi = h |Ki , i ∈ I, are Lipschitz. Therefore, by Definition 6,

G =
⋃
i∈I

ϕi(Ki ∩ A)

is 2-rectifiable.
H 2(G) > 0: Let π : R3 → R2, (x1 x2 x3)T → (x1 x2)

T.
Clearly, π is a Lipschitz mapping with Lipschitz constant equal
to one. Using [10, Prop. 2.49, Property (iv)] and [10, Thm.
2.53] we get H 2(G) ≥ H 2(π(G)) = H 2(A) = L 2(A) >
0.

Construction of f : The mapping

f : R3 → R
(x1 x2 x3)

T 7→ x3

is linear and one-to-one on G.

The structure theorem in geometric measure theory [10,
Thm. 2.65] implies that the 2-rectifiable set G we just con-
structed is “visible” from almost any direction, in the sense
of the projection of G onto a 2-dimensional linear subspace in
general position having positive Lebesgue measure. However,
there is not a single 2-dimensional linear subspace whose
intersection with G has positive Lebesgue measure. For if
there was such a subspace T , the Steinhaus theorem [4], [12]
would imply that G 	 G = {u − v | u,v ∈ G} contains a 2-
dimensional ball centered at zero, which would in turn imply
that ker(f) ∩ (G 	 G) 6= {0}. Therefore, the linear mapping
f would fail to be one-to-one on G.

A. Analytic random vectors

We just demonstrated that, for s-rectifiable random vectors,
s is not a recovery threshold in general and additional require-
ments on x are needed to get converse statements of the form
of what we would expect from classical compressed sensing
theory. This leads us to the new concept of s-analytic measures
and s-analytic random vectors. We start with the definition of
real analytic mappings.

Definition 8. We call

(i) a function f : Rk → R real analytic if, for each x ∈ Rk,
f may be represented by a convergent power series in
some neighborhood of x;

(ii) a mapping f : Rk → Rl, x 7→ (f1(x) . . . fl(x))
T real

analytic if each component fi, i = 1, . . . , l, is a real
analytic function.



We are now ready to define the notion of s-analytic mea-
sures and s-analytic random vectors.
Definition 9. We call a Borel measure µ on Rm s-analytic if
for each U ⊆ Rm with µ(U) > 0 we can find a real analytic
mapping h : Rs → Rm of s-dimensional Jacobian Jh 6≡ 0
and a set A ⊆ Rs of positive Lebesgue measure such that
h(A) ⊆ U .
Definition 10. The random vector x ∈ Rm is called s-analytic
if µx is s-analytic.

It is instructive to compare s-analytic sets U with µ(U) > 0
to the set G in Example 2. Both U and G contain the image of
a set with positive Lebesgue measure under a certain mapping.
However, the mapping in Example 2 is C1, whereas the
mapping in Definition 9 is real-analytic (with Jh 6≡ 0). It
turns out that real analyticity is strong enough to prevent U
from being mapped linearly in a one-to-one fashion into Rt for
t < s. Since this holds for every set U with µ(U) > 0, n ≥ s
is necessary for P2 to hold for s-analytic x. For if there exists
an ε ∈ [0, 1), an A ∈ Rn×m, and a decoder gA satisfying (1),
there must be a set U ⊆ Rm with P[x ∈ U ] ≥ 1 − ε such
that A is one-to-one on U , which is not possible for n < s
because of the analyticity of µ.

We are now ready to state our converse result for s-analytic
random vectors.

Theorem 2. Let f : Rm → Rn be a linear mapping, h :
Rs → Rm a real analytic mapping of s-dimensional Jacobian
Jh 6≡ 0, and A ⊆ Rs of positive Lebesgue measure. Suppose
that f is one-to-one on h(A). Then n ≥ s.

Corollary 2. For x ∈ Rm s-analytic, n ≥ s is necessary for
P2 to hold.

We close this section by establishing important properties
of s-analytic measures and s-analytic random vectors, which
will be used in the examples in the next section.

Lemma 3. Let x be s-analytic. Then, x is
(i) t-analytic for all t ∈ {1, . . . , s};

(ii) s-rectifiable if it has an s-rectifiable support set.

Lemma 4. Suppose that µ is s-analytic. Then µ�H s.

IV. EXAMPLES

Example 3. Let x ∈ Rm be as in Example 1. Using the prop-
erties of the Gaussian distribution, a straightforward analysis
reveals that x is s-analytic. Furthermore, the s-rectifiable set
U in (3) is a support set of x. Therefore, by (ii) in Lemma
3, x is s-rectifiable. It follows from Corollary 1 that n > s is
sufficient for P1 to hold and from Corollary 2 that n ≥ s is
necessary for P2 to hold. The information-theoretic limit we
obtain here is best possible in the sense of showing that not
knowing the support set a priori does not have an impact on
the recovery threshold. Classical compressed sensing recovery
thresholds suffer either from the square-root bottleneck or from
a log(m)-factor. We hasten to add, however, that we do not
specify decoders that achieve our threshold, rather we only
prove the existence of such decoders.

In the second example, we construct an (r+s−1)-rectifiable
and (r + s − 1)-analytic random vector with sparsity level—
in terms of the number of non-zero entries of the vector’s
realizations—rs� (r + s− 1).
Example 4. Let x = a⊗b ∈ Rkl, where a ∈ Rk, b ∈ Rl, and a
and b are statistically independent. Suppose that a has r i.i.d.
Gaussian entries at positions drawn uniformly at random and
all other entries equal to zero and b has t i.i.d. Gaussian entries
at positions drawn uniformly at random and all other entries
equal to zero. Lemma 5 below shows that x is (r + t − 1)-
analytic. Furthermore, a straightforward analysis reveals that
x has the (r + t− 1)-rectifiable support set

U = {a⊗ b : a ∈ Ãr, b ∈ Bt}

with

Ãr = {a ∈ Rk : ‖a‖0 = r, anz = 1}
Bt = {b ∈ Rl : ‖b‖0 = t},

where anz denotes the first non-zero entry of a. By (ii) in
Lemma 3, x is (r+ t−1)-rectifiable. It therefore follows from
Corollary 1 that n > (r+t−1) is sufficient for P1 to hold and
from Corollary 2 that n ≥ (r + t− 1) is necessary for P2 to
hold. Note that, for r, t large, we have (r+ t−1)� rt. What
is interesting here is that the sparsity level of x—as quantified
by the number of non-zero entries of the realizations of x—is
rt, yet r+t linear measurements suffice for recovery of x with
zero probability of error.

Lemma 5. Let x = a ⊗ b ∈ Rkl, where a ∈ Rk and b ∈ Rl
are random vectors such that µa × µb � L k+l. Then, x is
(k + l − 1)-analytic.
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