393 research outputs found

    Distributive Lattices, Polyhedra, and Generalized Flow

    Full text link
    A D-polyhedron is a polyhedron PP such that if x,yx,y are in PP then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact every D-polyhedron corresponds to a directed graph with arc-parameters, such that every point in the polyhedron corresponds to a vertex potential on the graph. Alternatively, an edge-based description of the point set can be given. The objects in this model are dual to generalized flows, i.e., dual to flows with gains and losses. These models can be specialized to yield some cases of distributive lattices that have been studied previously. Particular specializations are: lattices of flows of planar digraphs (Khuller, Naor and Klein), of α\alpha-orientations of planar graphs (Felsner), of c-orientations (Propp) and of Δ\Delta-bonds of digraphs (Felsner and Knauer). As an additional application we exhibit a distributive lattice structure on generalized flow of breakeven planar digraphs.Comment: 17 pages, 3 figure

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Cuts and flows of cell complexes

    Get PDF
    We study the vector spaces and integer lattices of cuts and flows associated with an arbitrary finite CW complex, and their relationships to group invariants including the critical group of a complex. Our results extend to higher dimension the theory of cuts and flows in graphs, most notably the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces, interpret their coefficients topologically, and give sufficient conditions for them to be integral bases of the cut and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and flow lattices and the higher critical and cocritical groups with error terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give bounds for the complexity, girth, and connectivity of a complex in terms of Hermite's constant.Comment: 30 pages. Final version, to appear in Journal of Algebraic Combinatoric

    Positively oriented matroids are realizable

    Full text link
    We prove da Silva's 1987 conjecture that any positively oriented matroid is a positroid; that is, it can be realized by a set of vectors in a real vector space. It follows from this result and a result of the third author that the positive matroid Grassmannian (or positive MacPhersonian) is homeomorphic to a closed ball.Comment: 20 pages, 3 figures, references adde

    Flows on Simplicial Complexes

    Get PDF
    Given a graph GG, the number of nowhere-zero \ZZ_q-flows ϕG(q)\phi_G(q) is known to be a polynomial in qq. We extend the definition of nowhere-zero \ZZ_q-flows to simplicial complexes Δ\Delta of dimension greater than one, and prove the polynomiality of the corresponding function ϕΔ(q)\phi_{\Delta}(q) for certain qq and certain subclasses of simplicial complexes.Comment: 10 pages, to appear in Discrete Mathematics and Theoretical Computer Science (proceedings of FPSAC'12

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement
    • …
    corecore