2,259 research outputs found

    The fixed-mesh ALE approach for the numerical approximation of flows in moving domains

    Get PDF
    In this paper we propose a method to approximate flow problems in moving domains using always a given grid for the spatial discretization, and therefore the formulation to be presented falls within the category of fixed-grid methods. Even though the imposition of boundary conditions is a key ingredient that is very often used to classify the fixed-grid method, our approach can be applied together with any technique to impose approximately boundary conditions, although we also describe the one we actually favor. Our main concern is to properly account for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian–Eulerian framework, the distinctive feature being that at each time step results are projected onto a fixed, background mesh, that is where the problem is actually solved

    The Fixed-Mesh ALE approach for the numerical approximation of flows in moving domains

    Get PDF
    In this paper we propose a method to approximate flow problems in moving domains using always a given grid for the spatial discretization, and therefore the formulation to be presented falls within the category of fixed-grid methods. Even though the imposition of boundary conditions is a key ingredient that is very often used to classify the fixed-grid method, our approach can be applied together with any technique to impose approximately boundary conditions, although we also describe the one we actually favor. Our main concern is to properly account for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian- Eulerian framework, the distinctive feature being that at each time step results are projected onto a fixed, background mesh, that is where the problem is actually solved

    A partition of unity approach to fluid mechanics and fluid-structure interaction

    Get PDF
    For problems involving large deformations of thin structures, simulating fluid-structure interaction (FSI) remains challenging largely due to the need to balance computational feasibility, efficiency, and solution accuracy. Overlapping domain techniques have been introduced as a way to combine the fluid-solid mesh conformity, seen in moving-mesh methods, without the need for mesh smoothing or re-meshing, which is a core characteristic of fixed mesh approaches. In this work, we introduce a novel overlapping domain method based on a partition of unity approach. Unified function spaces are defined as a weighted sum of fields given on two overlapping meshes. The method is shown to achieve optimal convergence rates and to be stable for steady-state Stokes, Navier-Stokes, and ALE Navier-Stokes problems. Finally, we present results for FSI in the case of a 2D mock aortic valve simulation. These initial results point to the potential applicability of the method to a wide range of FSI applications, enabling boundary layer refinement and large deformations without the need for re-meshing or user-defined stabilization.Comment: 34 pages, 15 figur

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    A stabilized finite element method for the mixed wave equation in an ALE framework with application to diphthong production

    Get PDF
    The archived file is not the final published version of the article. © (2016) S. Hirzel Verlag/European Acoustics Association The definitive publisher-authenticated version is available online at http://www.ingentaconnect.com/contentone/dav/aaua/2016/00000102/00000001/art00012 Readers must contact the publisher for reprint or permission to use the material in any form.Working with the wave equation in mixed rather than irreducible form allows one to directly account for both, the acoustic pressure field and the acoustic particle velocity field. Indeed, this becomes the natural option in many problems, such as those involving waves propagating in moving domains, because the equations can easily be set in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Yet, when attempting a standard Galerkin finite element solution (FEM) for them, it turns out that an inf-sup compatibility constraint has to be satisfied, which prevents from using equal interpolations for the approximated acoustic pressure and velocity fields. In this work it is proposed to resort to a subgrid scale stabilization strategy to circumvent this condition and thus facilitate code implementation. As a possible application, we address the generation of diphthongs in voice production.Peer ReviewedPostprint (author's final draft
    corecore