1,792 research outputs found

    Complexity in surfaces of densest packings for families of polyhedra

    Full text link
    Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we explore packing as a function of shape. By combining simulations and analytic calculations, we study three 2-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest packings of more than 55,000 convex shapes. The three families have the symmetries of triangle groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic, Archimedean, Catalan). We find that optimal (maximum) packing density surfaces that reveal unexpected richness and complexity, containing as many as 130 different structures within a single family. Our results demonstrate the utility of thinking of shape not as a static property of an object in the context of packings, but rather as but one point in a higher dimensional shape space whose neighbors in that space may have identical or markedly different packings. Finally, we present and interpret our packing results in a consistent and generally applicable way by proposing a method to distinguish regions of packings and classify types of transitions between them.Comment: 16 pages, 8 figure

    Suppression of Octahedral Tilts and Associated Changes of Electronic Properties at Epitaxial Oxide Heterostructure Interfaces

    Get PDF
    Epitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO3-La0.7Sr0.3MnO3 interface to elucidate how the change of crystal symmetry is accommodated. Combined with low-loss electron energy loss spectroscopy imaging, we demonstrate a mesoscopic antiferrodistortive phase transition and elucidate associated changes in electronic properties in a thin layer directly adjacent to the interface
    • …
    corecore