6 research outputs found

    The f-vector of the descent polytope

    Full text link
    For a positive integer n and a subset S of [n-1], the descent polytope DP_S is the set of points x_1, ..., x_n in the n-dimensional unit cube [0,1]^n such that x_i >= x_{i+1} for i in S and x_i <= x_{i+1} otherwise. First, we express the f-vector of DP_S as a sum over all subsets of [n-1]. Second, we use certain factorizations of the associated word over a two-letter alphabet to describe the f-vector. We show that the f-vector is maximized when the set S is the alternating set {1,3,5, ...}. We derive a generating function for the f-polynomial F_S(t) of DP_S, written as a formal power series in two non-commuting variables with coefficients in Z[t]. We also obtain the generating function for the Ehrhart polynomials of the descent polytopes.Comment: 14 pages; to appear in Discrete & Computational Geometr

    A Survey of Alternating Permutations

    Get PDF
    This survey of alternating permutations and Euler numbers includes refinements of Euler numbers, other occurrences of Euler numbers, longest alternating subsequences, umbral enumeration of classes of alternating permutations, and the cd-index of the symmetric group.Comment: 32 pages, 7 figure

    A Combinatorial Miscellany: Antipodes, Parking Cars, and Descent Set Powers

    Get PDF
    In this dissertation we first introduce an extension of the notion of parking functions to cars of different sizes. We prove a product formula for the number of such sequences and provide a refinement using a multi-parameter extension of the Abel--Rothe polynomial. Next, we study the incidence Hopf algebra on the noncrossing partition lattice. We demonstrate a bijection between the terms in the canceled chain decomposition of its antipode and noncrossing hypertrees. Thirdly, we analyze the sum of the th powers of the descent set statistic on permutations and how many small prime factors occur in these numbers. These results depend upon the base expansion of both the dimension and the power of these statistics. Finally, we inspect the ƒ-vector of the descent polytope DPv, proving a maximization result using an analogue of the boustrophedon transform

    Polytopes, generating functions, and new statistics related to descents and inversions in permutations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2008.Includes bibliographical references (p. 75-76).We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation [sigma] = [sigma] 1 [sigma] 2 an defined as the set of indices i such that either i is odd and ai > ui+l, or i is even and au < au+l. We show that this statistic is equidistributed with the 3-descent set statistic on permutations [sigma] = [sigma] 1 [sigma] 2 ... [sigma] n+1 with al = 1, defined to be the set of indices i such that the triple [sigma] i [sigma] i + [sigma] i +2 forms an odd permutation of size 3. We then introduce Mahonian inversion statistics corresponding to the two new variations of descents and show that the joint distributions of the resulting descent-inversion pairs are the same. We examine the generating functions involving alternating Eulerian polynomials, defined by analogy with the classical Eulerian polynomials ... using alternating descents. By looking at the number of alternating inversions in alternating (down-up) permutations, we obtain a new qanalog of the Euler number En and show how it emerges in a q-analog of an identity expressing E, as a weighted sum of Dyck paths. Other parts of this thesis are devoted to polytopes relevant to the descent statistic. One such polytope is a "signed" version of the Pitman-Stanley parking function polytope, which can be viewed as a generalization of the chain polytope of the zigzag poset. We also discuss the family of descent polytopes, also known as order polytopes of ribbon posets, giving ways to compute their f-vectors and looking further into their combinatorial structure.by Denis Chebikin.Ph.D
    corecore