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A Combinatorial Miscellany: Antipodes, Parking Cars, and Descent Set Powers

In this dissertation we first introduce an extension of the notion of parking func-
tions to cars of different sizes. We prove a product formula for the number of such
sequences and provide a refinement using a multi-parameter extension of the Abel–
Rothe polynomial. Next, we study the incidence Hopf algebra on the noncrossing
partition lattice. We demonstrate a bijection between the terms in the canceled
chain decomposition of its antipode and noncrossing hypertrees. Thirdly, we analyze
the sum of the rth powers of the descent set statistic on permutations and how many
small prime factors occur in these numbers. These results depend upon the base p
expansion of both the dimension and the power of these statistics. Finally, we inspect
the f -vector of the descent polytope DPv, proving a maximization result using an
analogue of the boustrophedon transform.
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Chapter 1 Introduction

A Miscellany is a collection
without a natural ordering
relation; I shall not attempt a
spurious unity by imposing
artificial ones.

J. E. Littlewood
A Mathematician’s Miscellany

Before we commence an analysis of each of the topics of our combinatorial mis-
cellany in turn, it will be useful to review certain preliminary concepts. This is the
purpose of Chapter 1.

In Chapter 2, we provide a generalization on the classical notion of parking func-
tions introduced by Konheim and Weiss in 1966. Our generalization of parking se-
quences departs from the theme of prior generalizations in allowing the size of the
cars themselves to vary. We provide an enumeration of parking sequences and prove
it using a generalization of the elegant proof for classical parking functions commonly
attributed to Pollak. We also discuss a refinement of these parking sequences involv-
ing parking the cars after a trailer, whose multi-parameter enumeration we show to
be related to the classical Abel–Rothe polynomials.

Chapter 3 concerns the reduced incidence Hopf algebra on posets. We focus on
the noncrossing partition lattice in particular and use a map between chains in the
noncrossing partition lattice and noncrossing hypertrees to prove a cancellation-free
expression for its antipode. The fibers of this map are shown to collapse to a single
element by both a geometric argument on the Euler characteristic of the permutahe-
dron and a sign-reversing involution. The latter argument actually provides a Morse
matching on the subposet of the order complex of the noncrossing partition lattice
given by each fiber, which elicits questions concerning its topology.

Chapter 4 shifts the focus to a study of permutations and a commonly-studied
statistic on them involving descents. Namely, we study sums of powers of these
descent set statistics and how many small prime factors arise in them. The results,
somewhat surprisingly, depend on the sum of the digits in the base p expansions of
both the dimension n of the permutations and the power r of the sum. Tables 4.1
and 4.2 provide a summary of the results of this chapter.

Finally, Chapter 5 studies a polytope defined using these same descent set statis-
tics on permutations. We extend the so-called boustrophedon transform used for
computing descent set statistics to the face numbers of descent polytopes. We demon-
strate the utility of this transform by proving a maximization result with relative ease.

1



1 2 3 4 5

C3 C5 C1 C2 C4 X

Figure 1.1: The final positions of the cars C1, . . . , C5 after successfully parking accord-
ing to the preferences (3, 4, 1, 3, 1). Hence, this sequence of preferences is a parking
function.

1 2 3 4 5

C1

C
4

C3 C2 ×

Figure 1.2: The final positions of the cars C1, . . . , C5 after attempting to park ac-
cording to the preferences (1, 5, 4, 4, 2). This sequence of preferences is therefore not
a parking function.

1.1 Parking functions

Parking functions were first introduced by Konheim and Weiss in 1966 [27]. The
original definition was a colorful reformulation of a computer storage problem in
terms of n cars parking in a linear parking lot of n labeled spaces. Each car would
have a preferred spot in mind and would, in order, enter the parking lot and attempt
to park in its preferred spot. If this spot was occupied, the car would move to the
next available spot. A parking function, then, was a sequence of parking preferences
that would allow all n cars to park according to this rule without leaving the parking
lot. See Figures 1.1 and 1.2 for examples. It turns out this definition is equivalent
to the following definition, which strips away these colorful roots while retaining the
name.

Definition 1.1.1. Let ~a = (a1, a2, . . . , an) be a sequence of positive integers, and
let b1 ≤ b2 ≤ · · · ≤ bn be the increasing rearrangement of ~a. Then the sequence ~a is a
parking function if and only if bi ≤ i for all indices i.

This immediately tells us that any permutation of the entries in a parking function
is also a parking function, an observation that is not immediately clear using the
original definition.

Theorem 1.1.2 (Foata and Riordan [19]). The number of parking functions with n
cars is (n+ 1)n−1.

It will be worth our while to review the following elegant proof of this fact, com-
monly attributed to Pollak; see [39].

Proof of Theorem 1.1.2. Add an additional space n+1 to the parking lot, and arrange
the spaces in a circle. Allow n+ 1 also as a preferred space.

2
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Figure 1.3: The Hasse diagram of the noncrossing partition lattice on 4 ele-
ments, NC4. Reading the labels of the edges as one ascends any maximal chain
in the diagram gives a parking function.

Now all cars will be able to park, and since there are still only n cars, there will
be one empty space. The sequence ~a = (a1, a2, . . . , an) is a parking function in the
original sense if and only if the empty space in this arrangement is n+ 1.

If ~a leads to car Ci parking in space pi, then (a1+j, a2+j, . . . , an+j) (mod n+1)
will lead to car Ci parking in space pi + j. Hence, exactly one of the vectors

(a1 + i, a2 + i, . . . , an + i) (mod n+ 1)

for 0 ≤ i ≤ n is a parking function, and the total number of parking functions is
given by

(n+ 1)n

n+ 1
= (n+ 1)n−1.

The reader may notice that this is Cayley’s formula for the number of labeled
trees on n+ 1 nodes. Foata and Riordan found a bijection between parking functions
on n cars and labeled trees on n+1 nodes using Prüfer codes [19]. Stanley discovered
that parking functions could be used for an EL-labeling of the noncrossing partition
lattice [46]; see Figure 1.3. For more on the noncrossing partition lattice, see Sec-
tion 1.4. Further connections have been found to other structures, such as priority
queues [21], Gončarov polynomials [32], and hyperplane arrangements [47].

The notion of a parking function has been generalized in myriad ways; see the
sequence of papers [5, 30, 31, 32, 54]. Most generalizations use the increasing rear-
rangement formulation of Definition 1.1.1.

1.2 Permutations and descents

We let Sn denote the symmetric group on n elements. That is, Sn is the group of per-
mutations on the elements [n] = {1, 2, . . . , n} under the operation of composition. We

3



use one-line notation to refer to a permutation. For σ ∈ Sn, we write σ = σ1σ2 · · ·σn,
where σ(i) = σi. For example, the permutation 3142 ∈ S4 represents the map with
the assignments 1 7→ 3, 2 7→ 1, 3 7→ 4, and 4 7→ 2.

A permutation statistic is a map from the symmetric group to the nonnegative
integers. Permutation statistics were first studied at length by Major Percy MacMa-
hon [34] in the early 20th century, and they have since earned quite a bit of attention.
Some very commonly studied permutation statistics are descents, excedances, inver-
sions, and the major index. For more on permutation statistics, see [34] or [49,
Sections 1.3 through 1.6]. We will be largely concerned with descents.

For a permutation σ in the symmetric group Sn, we define the descent set of σ
to be the subset of [n− 1] = {1, 2, . . . , n− 1} given by

Des(σ) = {i ∈ [n− 1] : σi > σi+1}.

For example, our permutation from above has descent set Des(3142) = {1, 3}.
The descent set statistics βn(S) are defined for subsets S of [n− 1] by

βn(S) = |{π ∈ Sn : Des(π) = S}| .

Further, define αn(S) by the sum

αn(S) =
∑
T⊆S

βn(T ).

Observe that αn(S) enumerates the number of permutations in Sn with descent set
contained in the set S. It is straightforward, then, using inclusion-exclusion to invert
this relation to get

βn(S) =
∑
T⊆S

(−1)|S−T | · αn(T ).

Let us define a bijection co from subsets of the set [n−1] to compositions of n by send-
ing the set S = {s1 < s2 < · · · < sk−1} to the composition co(S) = (c1, c2, . . . , ck),
where ci = si−si−1 with s0 = 0 and sk = n. See, for instance, [4] or [48, Section 7.19].
It is now straightforward to observe that αn(S) is given by the multinomial coefficient(

n

co(S)

)
=

(
n

c1, c2, . . . , ck

)
.

These αn(S) and βn(S) may equivalently be thought of as the flag f -vector and
h-vector of the Boolean algebra Bn; see [49, Section 3.13].

Another commonly used method for computing the value of βn(S) is through the
use of a triangular array, originally developed by de Bruijn [6] and later generalized
first by Millar, Sloane, and Young [36] to the boustrophedon transform, then again by
Ehrenborg and Mahajan [14]. The triangular array for some subset S of the positive
integers and sequence of numbers a = (a0, a1, a2 . . .) has entries ti,j for 0 ≤ i ≤ n
and 0 ≤ j ≤ i. The first row of the triangle is initialized as t0,0 = a0, and the first

4



1

0 1

1 1 0

2 1 0 0

0 2 3 3 3

11 11 9 6 3 0

Figure 1.4: The triangular array of the boustrophedon transform for the set
S = {2, 3, 5} ⊆ [5] and sequence a = (1, 0, 0, . . .). Hence, β6({2, 3, 5}) = 11 + 11 + 9 +
6 + 3 + 0 = 40.

element of each subsequent row is ti,0 = ai. The remainder of the triangle is computed
recursively via

ti,j =

{
ti,j−1 + ti−1,j−1 if i− 1, i ∈ S or i− 1, i /∈ S,
ti,j−1 + ti−1,i−j otherwise.

Taking the sequence a = (1, 0, 0, . . .) and considering S a subset of [n − 1], it turns
out that this process computes exactly the descent set statistic βn(S). Namely, it is
exactly the sum of the entries in the last row of the array

βn(S) =
n∑
k=0

tn,k.

With some reversal of the order of entries in a row, we can picture the recursion
for this transform so that the ith row is created by adding along its own and the
previous row, where we add from left to right if i /∈ S and from right to left if i ∈ S.
An example is given in Figure 1.2.

In fact, when computing the descent set statistics with the boustrophedon trans-
form where ~a = (1, 0, 0, . . .), the transform can be simplified to consist merely of the
repeated application of two linear operators Nk −→ Nk+1 of consecutive partial sums
defined by

(p1, p2, . . . , pk) 7−→ (0, p1, p1 + p2, . . . , p1 + p2 + · · ·+ pk) and

(p1, p2, . . . , pk) 7−→ (p1 + p2 + · · ·+ pk, p2 + p3 + · · ·+ pk, . . . , pk, 0),

applied to the initial sequence (1). This lends itself readily to an efficient method of
dynamic computation for the descent set statistic.

It is a classical result that the descent set statistic is maximized on the sets

Sodd = {1, 3, 5, . . .} ∩ {1, . . . , n} and

Seven = {2, 4, 6, . . .} ∩ {1, . . . , n},

5



∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.5: The Hasse diagram of the Boolean algebra B3.

producing the so-called alternating permutations; see [37] or [6]. It is notable that
βn(Sodd) = βn(Seven) = En where En is the nth Euler number.

Ehrenborg and Mahajan [14] used this transform to prove a number of inequalities
for descent set statistics according to the sets S.

1.3 Posets

A partially ordered set P , often called a poset for short, is a set along with a binary
relation ≤ satisfying

Reflexivity: For each p ∈ P , we have p ≤ p,

Antisymmetry: If p ≤ q and q ≤ p, then p = q,

Transitivity: If p ≤ q and q ≤ r, then p ≤ r.

If p ≤ q and p 6= q, we write p < q. We say that q covers p, denoted p ≺ q, if p < q
and there exists no element x ∈ P such that p < x < q. The relation between p and
q in this case is known as a cover relation. We can visualize a poset P as a graph
where the vertices are the elements of P , and the edges are the cover relations. We
typically draw the graph so that if p < q, then q appears above p in the picture. We
call such a diagram the Hasse diagram of P .

The standard example of a poset is the Boolean algebra Bn whose elements are
the subsets of [n], ordered so that A ≤ B if A is a subset of B. See Figure 1.5 for the
Hasse diagram of the Boolean algebra B3.

It is worth noting that the relation ≤ need not be a total order. That is,
for p, q ∈ P , it need not be the case that p ≤ q or q ≤ p. For example, the ele-
ments {2} and {3} in the Boolean algebra B3 can be seen in Figure 1.5 to have no
relation. We call such elements incomparable.

We use 0̂ to denote the minimal element of P , that is, the unique element such
that 0̂ ≤ p for all p ∈ P , if such an element exists. Similarly, we let 1̂ denote the
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maximal element of P , if it exists. In the Boolean algebra Bn, the minimal element
is 0̂ = ∅, and the maximal element is 1̂ = [n].

The interval [p, q] is defined to be the set [p, q] = {x ∈ P : p ≤ x ≤ q},
which can be viewed as a subposet of P with the order on the elements induced
from P . A chain c in the poset P is a set of distinct, totally ordered elements in P ,
that is, c = {p0 < p1 < · · · < pk}. If each of these relations is a cover relation,
and c = {p = p0 ≺ p1 ≺ · · · ≺ pk = q}, then we say c is a saturated chain in the
interval [p, q]. We say the length of c is `(c) = k. If every saturated chain of P from
a minimal element to a maximal element is of the same length n, we say the poset P
is of rank n. In such a poset, we may define a rank function ρ : P −→ [n] so that,
for p ∈ P , the rank of p, denoted ρ(p), is the length of any saturated chain from a
minimal element of P to p. We often extend this definition to ρ(p, q) = ρ(p)− ρ(q),
called the rank difference of p and q. A ranked poset that has a unique minimal and
maximal element 0̂ and 1̂ is called a graded poset. A poset P with a finite number of
elements is said to be finite, whereas a poset P whose intervals are all finite is said
to be locally finite.

Given two posets P and Q, we define the Cartesian product poset P × Q to be
the set of pairs (p, q) for p ∈ P and q ∈ Q ordered so that (p1, q1) ≤ (p2, q2) if and
only if p1 ≤P p2 and q1 ≤Q q2. We define the dual of a poset P to be the poset P ∗

with all order relations reversed. That is, p ≤P q if and only if q ≤P ∗ p.
For two elements p, q ∈ P , we define the meet of p and q, denoted p ∧ q, to be

the greatest lower bound of both p and q. That is, p ∧ q is the unique element x (if
it exists) such that x ≤ p and x ≤ q, but for any other element y ≤ p and y ≤ q, we
have y ≤ x. We define the join of p and q (if it exists), denoted p∨ q, to be the least
upper bound of both p and q in a similar way. A lattice is a poset in which the meet
and join of each pair of elements exists. In Figure 1.5, one can see that the meet and
join in a Boolean algebra correspond to intersections and unions of sets, respectively.

For more basic terminology and examples of posets, see [49, Chapter 3].
We will now introduce the incidence algebra on posets. Let P be a locally finite

poset, and let I denote the set of all closed intervals of P . For a K a field, we will
consider the collection I(P ) of all functions f : I −→ K, for which we write f(p, q)
to mean f([p, q]).

We define addition and subtraction in I(P ) pointwise and define the algebra mul-
tiplication to be given by convolution. That is, if f, g ∈ I(P ), then f ∗ g is defined
by

f ∗ g(p, q) =
∑
p≤x≤q

f(p, x)g(x, q).

The identity in the incidence algebra, denoted δ, is defined by

δ(p, q) =

{
1 if p = q,

0 if p 6= q.

A useful function in the incidence algebra is the zeta function ζ, which takes the
value 1 on all intervals of P . While interesting in its own right, we will be concerned
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mostly with its convolutional inverse, called the Möbius function µ. It can be shown
that the relation µ ∗ ζ = δ is equivalent to

µ(p, p) = 1, for all p ∈ P,

µ(p, q) = −
∑
p≤x<q

µ(p, x), for all p < q in P.

We take this as our definition of µ, though it is not the most efficient means of
computation. If P has extremal elements 0̂ and 1̂, we let µ(P ) indicate the value
of µ([0̂, 1̂]) in P .

The Möbius function is closely related to the number theoretic Möbius function.
Namely, consider the divisor lattice Dn, whose elements are the positive integer divi-
sors of n ordered so that i ≤ j if i divides j. Then µ(p, q) for p, q ∈ Dn corresponds
exactly to the number theoretic Möbius function µ(q/p).

An important method of computation for the Möbius function is due to Philip
Hall’s theorem. We will make reference to this theorem multiple times throughout
the dissertation.

Theorem 1.3.1 (Philip Hall’s theorem). Let P be a finite poset, and let P̂ denote P
with a 0̂ and 1̂ adjoined. Let ci be the number of chains 0̂ = p0 < p1 < · · · < pi = 1̂
of length i between 0̂ and 1̂. (Thus, c0 = 0 and c1 = 1). Then

µP̂ (0̂, 1̂) = c0 − c1 + c2 − c3 + · · · .

For more on the Möbius function, see [49, Sections 3.7 through 3.10]

1.4 Partitions

We will consider multiple types of partitions. First, an integer partition λ of a positive
integer n is a sequence (λ1, λ2, . . . , λk) of positive integers such that λ1 ≥ λ2 ≥ · · · ≥
λk ≥ 1 and λ1 + λ2 + · · ·+ λk = n. The length of the partition λ is given by `(λ) = k.

A set partition π of [n] is a collection of subsets B1, B2, . . . , Bk of [n], called blocks,
such that

· For each index i, we have Bi 6= ∅,

· For all pairs of distinct indices i and j, we have Bi ∩Bj = ∅,

· The union
⋃k
i=1Bi is the entire set [n].

We write π = B1|B2| · · · |Bk, and we often omit commas between elements in a block
when this will not cause confusion. Let |π| denote the number of blocks in the
partition π.

The set of all set partitions of [n] forms a graded lattice called the partition lattice,
denoted Πn, with the partial order that π ≤ τ if every block of π is contained in a
block of τ . In this case, we say π is a refinement of τ . The unique minimal element 0̂
is the partition consisting of all singleton blocks 1|2| · · · |n, and the unique maximal
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Figure 1.6: The partition lattice Π4.
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Figure 1.7: The noncrossing partition 14|2|3|589|67 and its complement,
123|49|57|6|8.

element 1̂ is the partition containing a single block 123 · · ·n. See Figure 1.6 for the
Hasse diagram of the partition lattice Π4 on four elements.

A partition σ of [n] is noncrossing if it has the property that if a < b < c < d and
some block B of σ contains both a and c, while some block B′ of σ contains both b
and d, then B and B′ are the same block, that is, B = B′. Geometrically, σ is a
partition of the vertices of a regular n-gon (labeled by the set [n]) with the property
that the convex hulls of its blocks are pairwise disjoint.

The set of noncrossing partitions on [n] comprises a sublattice of Πn, known as the
noncrossing partition lattice, NCn. See Figure 1.3 for an example of the noncrossing
partition lattice NC4, and notice that the partition 13|24 is the only partition from Π4

that is not included. The noncrossing partition lattice was originally studied by
Kreweras [28].

An interesting property of the noncrossing partition lattice NCn is that it is self-
dual. In fact, there is a classical complementation map due to Kreweras [28] that
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1-23 12-3 13-2 2-13 23-13-12
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Figure 1.8: The poset Q3 of ordered set partitions on 3 elements.

involves viewing the partition geometrically and swapping blocks with empty regions;
see Figure 1.7 for an example. While this map is not itself an involution, there is a
slight tweak of it due to Simion and Ullman [45] that is an order-reversing involution.

One final variant on set partitions we will consider are ordered set partitions. An
ordered set partition is a partition where the blocks are given a linear order. That
is, (C1, C2, . . . , Cr) is an ordered set partition if {C1, C2, . . . , Cr} is a set partition. We
will often write C1-C2-· · · -Cr for an ordered set partition as opposed to C1|C2| · · · |Cr
for a set partition. Let Qk denote the set of all ordered set partitions on the set [k].
We make Qk into a poset by joining adjacent blocks, that is, the cover relation is

(C1, . . . , Ci−1, Ci, Ci+1, Ci+2, . . . , Cr) ≺ (C1, . . . , Ci−1, Ci ∪ Ci+1, Ci+2, . . . , Cr).

Note that Qk has one maximal element ([k]) but k! minimal elements. See Figure 1.8
for an example of the poset Q3. In fact, if we join a minimal element 0̂ to Qk, we
obtain the face lattice of the permutahedron; see Section 1.7.

The dual of this polytope is simplicial, and it may be realized geometrically as a
subdivision of the (k−2)-dimensional sphere, where we embed the sphere Sk−2 in Rk

by

Sk−2 = {(x1, x2, . . . , xk) ∈ Rk : x21 + x22 + · · ·+ x2k = 1, x1 + x2 + · · ·+ xk = 0}.

The result is a (k − 2)-dimensional sphere cut by
(
k
2

)
hyperplanes xi = xj for

1 ≤ i < j ≤ k. A picture for k = 4 is given in Figure 1.9.

1.5 Noncrossing hypertrees

A graph is a set V of vertices along with a set E of edges, which are 2-element subsets
of V . We will consider only undirected simple graphs, meaning that the edges have
no orientation, there can be at most edge between any two given vertices, and these
two vertices must be distinct. If we allow the edges to consist of subsets of V of
cardinality 2 or more, then we call this a hypergraph, and the edges become hyperedges.
A hypergraph is connected if for all vertices x and y in the vertex set [n] there exists
a sequence of vertices x = x0, x1, . . . , xk = y and a sequence of edges E1, E2, . . . , Ek
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Figure 1.9: A geometric realization of the dual of the permutahedron of order 4 as a
subdivision of the 2-sphere. Compare with Figure 1.10.

such that xi−1, xi ∈ Ei for all 1 ≤ i ≤ k. A hypertree H on [n], then, is a connected
hypergraph such that

∑
E∈H(|E| − 1) = n− 1.

We will primarily be considering a smaller class of hypergraphs satisfying a non-
crossing property. Namely, take n points on a circle labeled counterclockwise from 1
to n, and consider graphs whose vertices are the given points and whose edges are
rectilinear and do not cross. We call these noncrossing graphs. If we allow the edges
to consist of more than just two vertices, then these become noncrossing hypergraphs.
Then we may consider trees of this same type, called noncrossing hypertrees. We
denote the set of noncrossing hypertrees on n vertices as NCHTn. While hypertrees
and the noncrossing property have received substantial attention individually, their
union has received relatively little. For more on noncrossing hypertrees, see [35].

1.6 The reduced incidence Hopf algebra of posets

In this section, we will hearken back to Section 1.3 and our introduction of the
incidence algebra of posets. Joni and Rota in [25] established that it is often more
convenient and natural to consider incidence coalgebras than algebras, and, in fact,
the reduced incidence coalgebra naturally extends to a bialgebra. Schmitt [42] later
showed that the reduced incidence bialgebra of posets could be further extended to
a Hopf algebra structure.

Let us be a bit more precise. Let P be a locally finite poset. Recall that [p, q]
for p, q ∈ P denotes the subposet of P on all elements x such that p ≤ x and x ≤ q.
Then we can define the coalgebra C(P ) over the fieldK to be the vector space spanned
by all intervals [p, q] in P with a comultiplication ∆ : C(P ) −→ C(P )⊗C(P ) defined
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by

∆([p, q]) =
∑
x∈[p,q]

[p, x]⊗ [x, q],

and the counit ε : C(P ) −→ K defined by

ε([p, q]) =

{
1, if p = q,

0, otherwise.

The necessary properties of coassociativity and cocommutativity follow nicely. We
should notice now that the algebra dual to C(P ) is Hom(C(P ), K), which is isomor-
phic to I(P ), the incidence algebra from Section 1.3.

At this point, if we want to extend to a bialgebra, we first need to restrict ourselves
to a reduced incidence coalgebra by considering only isomorphism classes of intervals.
In particular, we define the equivalence relation ∼ so that [p, q] ∼ [r, s] if and only
if [p, q] is isomorphic to [r, s], and we form the quotient space C∼(P ) = C(P )/ ∼. We
let [p, q] denote the isomorphism class of the interval [p, q]. If we take the Cartesian
product as our multiplication of classes of intervals and the isomorphism class of
the single-element interval as the unit 1, this extends to a bialgebra. Further, this
bialgebra is endowed with a linear map S : C∼(P ) −→ C∼(P ) called the antipode,
satisfying the relation

ε([p, q]) · 1 =
∑
x∈[p,q]

S([p, x]) · [x, q].

The antipode can be thought of as a generalization of the Möbius function in the
following way. If we define the linear function ζ : C∼(P ) −→ K so that ζ([p, q]) = 1
for any interval [p, q] as in Section 1.3, then it satisfies µ([p, q]) = ζ(S([p, q])).

Schmitt [42] provided an expression for the antipode S(P ) of a poset P with
unique minimal element 0̂ and unique maximal element 1̂ that sums over all chains
in P ; see [42, Theorem 6.1]. See also [24, Theorem 1].

Theorem 1.6.1 (Schmitt). The antipode of a poset P in the reduced incidence Hopf
algebra of posets is given by

S(P ) =
∑
c

(−1)k · [x0, x1] · [x1, x2] · · · [xk−1, xk], (1.6.1)

where the sum is over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} in the poset P .

This can be thought of as an extension of Hall’s formula for the Möbius function,
and in general, there will be mass cancellation in this formula. Very few posets
have had their antipode determined in an explicit, cancellation-free form. Haiman
and Schmitt computed the antipode of the partition lattice [24, Corollary 1], and
Einziger in her dissertation computed the antipode of the noncrossing partition lattice
in terms of polygon dissections where each region has an even number of sides; see [17,
Theorem 8.7]. For more on the reduced incidence Hopf algebra, see [25] or [42], and
for other Hopf algebras appearing in combinatorics, see [2].
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1.7 Polytopes

A convex polytope P ⊂ Rd may be defined in two equivalent ways: as the bounded
intersection of finitely many closed halfspaces, or as the convex hull of finitely many
points in Rd. The equivalence of these definitions is a fundamental result of the
study of polytopes. While we may gain intuition about these objects from those
in R3, it is often the case that this intuition is proven false in higher dimensions,
and polytope theory has provided a number of useful tools for visualizing higher-
dimensional polytopes; see [22] or [55].

For any d-dimensional polytope P ⊂ Rd, the empty set and P itself are the
improper faces of P . Every subset F of P is a proper face of P if F = P ∩ H for
some supporting hyperplane H of P . Faces of dimension 0 we call vertices, those
of dimension 1 are edges, and those of dimension d − 1 are facets. We let fi(P )
denote the number of faces of dimension i in P , and the f -polynomial is the (finite)
sum f(P ) =

∑
i≥0 fi(P ) · ti. Another way to express the f -polynomial is as the

sum
∑

F t
dim(F ), where the sum is over all nonempty faces F .

The face lattice of a convex polytope P is the poset L(P ) of all faces of P , partially
ordered by inclusion. The dual of P , denoted P ∗, is the dual of the face lattice of P .
For more on posets, see Section 1.3.

The simplest family of polytopes are the simplices. We define a d-simplex as the
convex hull of any d + 1 affinely independent points in some Rn with n ≥ d. The
triangle and the tetrahedron are the familiar members of this family from 2 and 3
dimensions. We say a d-dimensional polytope P is simplicial when every one of its
faces is a simplex. We call it simple, on the other hand, if every one of its vertices
is adjacent to exactly d facets. An important relationship between these definitions
is that they are dual to one another. That is, the dual of a simplicial polytope is
simple, and the dual of a simple polytope is simplicial.

Another family of polytopes we will be interested in are the so-called permuta-
hedra. First investigated by Schoute [43] in 1911, the permutahedron of order d is
defined to be the convex hull of all permutations π in Sd taken as points ~x in Rd

via πi 7→ xi. One should note that every such point ~x sits inside the hyperplane

x1 + x2 + · · ·+ xn = 1 + 2 + · · ·+ n,

so the permutahedron of order d is itself (d− 1)-dimensional. The permutahedron of
order 3 is a hexagon, and the permutahedron of order 4 is a truncated octahedron;
see Figure 1.10.

Another family of polytopes we will consider that have not been as widely studied
are the descent polytopes. For a word v = v1v2 · · ·vn−1 of length n−1 in the letters x
and y, we define the descent polytope DPv to be the n-dimensional polytope

DPv = {(x1, x2, . . . , xn) ∈ [0, 1]n : xi ≤ xi+1 if vi = x, and xi ≥ xi+1 if vi = y}.

Descent polytopes briefly appeared in [13, Subsection 4.2], but it was in the paper [3]
they were first studied for their own sake. See Figure 1.11 for an example of the
descent polytopes in dimension 3.
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Figure 1.10: The permutahedron of order 4. Compare with its dual in Figure 1.9.

x1

x2

x3

DPxx

DPxy
DPyx

DPyy

Figure 1.11: The four descent polytopes of dimension 3 sitting inside the unit cube.
Note that DPxx and DPyy are tetrahedra, while DPxy and DPyx are square pyramids.
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1.8 The order complex and discrete Morse theory

An abstract simplicial complex ∆ is a finite collection of sets that is closed under
subsets. That is, if X ∈ ∆ and Y ≤ X, then we must have Y ∈ ∆. The elements
in ∆ are called faces, and maximal faces are called facets. The dimension of a
face X ∈ ∆ is given by |X| − 1. Faces of dimension d are referred to as d-faces.

To every abstract simplicial complex ∆ there is a closely related topological space
called the geometric realization of ∆. In this way, we are able to talk about various
topological properties of a simplicial complex. To take this one step further, there is
also a common technique for associating any poset with a simplicial complex. Namely,
given a poset P , we define the order complex of P , denoted ∆(P ), to be the simplicial
complex whose i-faces are the chains of size i+ 1 in P .

We may conversely encode the structure of an abstract simplicial complex ∆ in a
poset P (∆), called the face poset of ∆ and defined to be the poset of nonempty faces
of ∆ ordered by inclusion. This notion of face poset is compatible with the notion of
the order complex in that for any simplicial complex ∆, we get the homeomorphism
(of geometric realizations) ∆ ∼= ∆(P (∆)). For more details on the interplay between
simplicial complexes and posets, see Wachs’ overview article [53].

We now explain the rudiments of discrete Morse theory, developed by Forman [20].
First, a partial matching M of a poset P is a collection of edges from the Hasse
diagram of P such that each element in P is in at most one edge of the matching M .
One way we may define a matching on a poset is with a function u along with its
inverse d so that if u(a) = b or d(b) = a for a ≺ b, then the edge between a and b is
included in the matching M . If we think of the Hasse diagram as a graph, then this
coincides with the graph theoretic notion of matching.

Let us further consider the edges in the Hasse diagram of P to be initially oriented
down so that a ≺ b means that the edge between a and b is directed from b to a. Flip
the orientation of every edge contained in M so that it is now oriented up. If, at this
point, there are no directed cycles in the Hasse diagram, we call this matching M of
P a discrete Morse matching. Any unmatched elements of P are called critical cells.
Then we have the following theorem from Forman [20].

Theorem 1.8.1 (Forman). Let ∆ be an abstract simplicial complex. If the face
poset P (∆) has a discrete Morse matching, then the geometric realization of ∆ is
homotopy equivalent to a CW complex with exactly one cell of dimension p for each
critical cell of dimension p.

Hence, a discrete Morse matching on a face poset can dramatically simplify the
computation of homotopy type for a simplicial complex.

1.9 Euler characteristics

The Euler characteristic χ was classically defined for the surfaces of polyhedra, which
Euler found to satisfy χ(P ) = f0 − f1 + f2 = 2, where f0, f1, and f2 are the number
of vertices, edges, and faces in a 2-dimensional convex polyhedron P . This idea can
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generalize to convex polytopes (or simplicial complexes) of any dimension so that

χ(P ) = f0 − f1 + f2 − f3 + · · · .

Often, it is convenient to consider the reduced Euler characteristic χ̃(P ), which in-
cludes the empty set in the sum as f−1 = 1. That is, the reduced Euler characteristic
is given by the sum

χ̃(P ) = −f−1 + f0 − f1 + f2 − f3 + · · · .

In general, the Euler-Poincaré formula gives the Euler characteristic in terms of an
alternating sum of the Betti numbers, where the ith Betti number, denoted bi, is the
dimension of the ith homology group of the space.

Using the notions of the Euler characteristic and the order complex of a poset, we
can rephrase Philip Hall’s theorem on the Möbius function.

Theorem 1.9.1 (Philip Hall). Let P be a bounded poset, and let P denote the poset P
with the elements 0̂ and 1̂ removed. Then the Möbius function of P is given by

µ(P ) = χ̃(∆(P )).

The most useful feature of the Euler characteristic is its homotopy invariance, and
it turns out to be one of the simplest methods for distinguishing topological spaces
up to homotopy. However, this definition of the Euler characteristic is not additive.
That is, for M and N two subspaces of a topological space X, the Euler characteristic
does not necessarily satisfy that

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

Klain and Rota [26] developed the theory of the Euler characteristic as a valuation
satisfying this additive property on various classes of objects, including polytopes.
In general, for a topological space X, one may define the Euler characteristic on
compact support to be the alternating sum of the dimensions of the cohomology groups
on compact support of X. Using this alternative definition, one trades homotopy
invariance for this additive property. One consequence of this definition that we will
make use of in Chapter 3 is that the Euler characteristic on compact support of an
open ball of dimension k is (−1)k.

The results of Chapter 2 have appeared in the two papers [10, 12], and the results
of Chapter 4 have appeared in [11].

Copyright c© Alexander Thomas Happ, 2018.
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Chapter 2 Parking cars of different sizes

2.1 Introduction

Recall from Section 1.1 that classical parking functions were first introduced by Kon-
heim and Weiss [27]. The original concept was that of a linear parking lot with n
available spaces, and n cars with a stated parking preference. Each car would, in
order, attempt to park in its preferred spot. If the car found its preferred spot occu-
pied, it would move to the next available slot. A parking function is a sequence of
parking preferences that would allow all n cars to park according to this rule. This
definition is equivalent to the following formal definition:

Definition 2.1.1. Let ~a = (a1, a2, . . . , an) be a sequence of positive integers, and
let b1 ≤ b2 ≤ · · · ≤ bn be the increasing rearrangement of ~a. Then the sequence ~a is a
parking function if and only if bi ≤ i for all indices i.

It is well known that the number of such parking functions is (n+ 1)n−1. This is
Cayley’s formula for the number of labeled trees on n+1 nodes and Foata and Riordan
found a bijective proof [19] using Prüfer codes. Stanley discovered the relationship
between parking functions and noncrossing partitions [46]. Further connections have
been found to other structures, such as priority queues [21], Gončarov polynomials [32]
and hyperplane arrangements [47].

The notion of a parking function has been generalized in myriad ways; see the
sequence of papers [5, 30, 31, 32, 54]. We present here a different generalization,
returning to the original idea of parking cars. This time the cars have different sizes,
and each takes up a number of adjacent parking spaces.

Definition 2.1.2. Let there be n cars C1, . . . , Cn of sizes y1, . . . , yn, where y1, . . . , yn
are positive integers. Assume there are

∑n
i=1 yi spaces in a row. Furthermore, let

car Ci have the preferred spot ci. Now let the cars in the order C1 through Cn park
according to the following rule:

Starting at position ci, car Ci looks for the first empty spot j ≥ ci. If the
spaces j through j + yi− 1 are empty, then car Ci parks in these spots. If
any of the spots j + 1 through j + yi − 1 is already occupied, then there
will be a collision, and the result is not a parking sequence.

Iterate this rule for all the cars C1, C2, . . . , Cn. We call (c1, . . . , cn) a parking sequence
for ~y = (y1, . . . , yn) if all n cars can park without any collisions and without leaving
the

∑n
i=1 yi parking spaces.

As an example, consider three cars of sizes ~y = (2, 2, 1) with preferences ~c = (2, 3, 1).
Then there are 2 + 2 + 1 = 5 available parking spaces, and the final configuration of
the cars is

1 2 3 4 5

C3 C1 C2
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All cars are able to park, so this yields a parking sequence.
There are two ways in which a sequence can fail to be a parking sequence. Either

a collision occurs, or a car passes the end of the parking lot. As an example, consider
three cars with ~y = (2, 2, 2) and preferences ~c = (3, 2, 1). Then we have 2 + 2 + 2 = 6
parking spots, and the first car parks in its desired spot:

1 2 3 4 5 6

C1

However, the second car prefers spot 2, and since spot 2 is open, he tries to take
spots 2 and 3, but collides with C1 in the process. Hence, this is not a parking
sequence.

If, instead, we had ~y = (2, 2, 2) and ~c = (2, 5, 5), then again the first two cars are
able to park with no difficulty:

1 2 3 4 5 6

C1 C2

But car C3 will pass by all the parking spots after his preferred spot without seeing
an empty spot. Hence, this also fails to be a parking sequence.

The classical notion of parking function is obtained when all the cars have size 1,
that is, ~y = (1, 1, . . . , 1). Note in this case that there are no possible collisions.

In the classical case, any permutation of a parking function is again a parking
function. This is not true for cars of larger size. As an example, note for ~y = (2, 2)
that ~c = (1, 2) is a parking sequence. However, the rearrangement ~c ′ = (2, 1) is not
a parking sequence. This shows that the notion of parking sequence differs from the
notion of parking function in the papers [5, 30, 31, 32, 54].

The classical result is that the number of parking functions is given by (n+1)n−1;
see [27]. For cars of bigger sizes we have the following result:

Theorem 2.1.3. The number of parking sequences f(~y) for car sizes ~y = (y1, . . . , yn)
is given by the product

f(~y) = (y1 + n) · (y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2). (2.1.1)

2.2 Circular parking arrangements

Consider M = y1 + y2 + · · · + yn + 1 parking spaces arranged in a circle. We will
consider parking cars on this circular arrangement, without a cliff for cars to fall off.
Observe that when all the cars have parked, there will be one empty spot left over.
We claim that there are

M · f(~y) = (y1 + n) · (y1 + y2 + n− 1) · · · (y1 + · · ·+ yn + 1). (2.2.1)
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such circular parking sequences. The first car C1 has M ways to choose its parking
spot.

The next step is counterintuitive. After car C1 has parked, erase the markings
for the remaining y2 + · · · + yn + 1 spots and put in n + 1 dividers. These dividers
create n+1 intervals on the circle, where one interval is taken up by C1. Furthermore,
these dividers are on wheels and can freely move along the circle. Each interval
will accept one (and only one) car. For example, consider the case where n = 5
and ~y = (2, 5, 1, 3, 2) so that M = 2 + 5 + 1 + 3 + 2 + 1 = 14, and c1 = 5.

1 2
3

4

5

6
789

10

11

12

13
14

C
1

• •

•
••

•

• •

•

•

• •

C
1

We will now create a circular parking sequence, but only at the end do we obtain
the exact positions of cars C2 through Cn+1. That is, instead of focusing on the
number of specific spot preferences each car could have, we keep track of the order
the cars park in, which will then determine the exact locations of the cars.

The second car has two options. The first is that it has a desired position already
taken by C1. In this case, it will cruise until the next empty spot. This can happen
in y1 ways, and then car C2 obtains the next open interval after the interval C1 is in.
Otherwise, the car C2 has a preferred spot not already taken. In this case C2 has n
open intervals to choose from. The total number of options for C2 is y1 + n.

The third car C3 has the same options. First, it may desire a spot that is already
taken, in which case it will have to cruise until the next open interval. This can
happen in y1 + y2 ways. Note that this count applies to both the case when C1

and C2 are parked next to each other, and when C1 and C2 have open intervals
between them. Otherwise, C3 has n− 1 open intervals to pick from.

In general, car Ci has y1 + · · · + yi−1 + n + 2− i choices. This pattern continues
up to Cn, which has y1 + · · ·+ yn−1 + 2 possibilities. For example, suppose C2 and C3

in our above example have parked as below:
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Then C4 may either cruise on C1 and C3 (in y1 + y3 ways), it may cruise on C2

(in y2 ways), or it can pick one of the three available intervals directly. In total, C4

has (y1 + y3) + y2 + 3 = 11 ways to park.
One can imagine that when we park a car, we do not set the parking brake, but

put the car in neutral, so that the car and the dividers can move as necessary to make
room for future cars.

Thus the total number of circular parking arrangements of this type is

M · (y1 + n) · (y1 + y2 + n− 1) · · · (y1 + · · ·+ yn−1 + 2),

where the ith factor is the number of options for the car Ci. This proves the claim
about the number of circular parking sequences in (2.2.1).

Hence, to prove Theorem 2.1.3 we need only observe that the circular parking
sequences with spot M empty are the same as our parking sequences. This follows
from the observation that no car in the circular arrangement has preference M , since
otherwise this spot would not be empty. Furthermore, no car would cruise by this
empty spot.

Observe that the set of circular parking sequences is invariant under rotation.
That is, if (c1, c2, . . . , cn) is a parking sequence, then so is the sequence (c1 + a, c2 +
a, . . . , cn + a), where all the additions are modulo M . In particular, the number of
circular parking sequences with spot M empty is given by 1/M ·M · f(~y) = f(~y).

2.3 Parking cars after a trailer

We now introduce a refinement of the result by adding a trailer.

Definition 2.3.1. Let there be n cars C1, . . . , Cn of sizes y1, . . . , yn, where y1, . . . , yn
are positive integers. Assume there are z − 1 +

∑n
i=1 yi spaces in a row, where the

trailer occupies the z − 1 first spaces. Furthermore, let car Ci have the preferred
spot ci. Now let the cars in the order C1 through Cn park according to the following
rule:

Starting at position ci, car Ci looks for the first empty spot j ≥ ci. If the
spaces j through j + yi− 1 are empty, then car Ci parks in these spots. If
any of the spots j + 1 through j + yi − 1 is already occupied, then there
will be a collision, and the result is not a parking sequence.
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Iterate this rule for all the cars C1, C2, . . . , Cn. We call (c1, . . . , cn) a parking sequence
for ~y = (y1, . . . , yn) if all n cars can park without any collisions and without leaving
the z − 1 +

∑n
i=1 yi parking spaces.

As an example, consider three cars of sizes ~y = (2, 2, 1), a trailer of size 3, that
is z = 4, and the preferences ~c = (5, 6, 2). Then there are 2 + 2 + 1 = 5 available
parking spaces after the trailer, and the final configuration of the cars is

1 2 3 4 5 6 7 8

T C3 C1 C2

All cars are able to park, so this yields a parking sequence.

2.4 The result

We now have the main result. Observe that when setting z = 1, this expression
reduces to equation (2.1.1).

Theorem 2.4.1. The number of parking sequences f(~y; z) for car sizes ~y = (y1, . . . , yn)
and a trailer of length z − 1 is given by the product

f(~y; z) = z · (z + y1 + n− 1) · (z + y1 + y2 + n− 2) · · · (z + y1 + · · ·+ yn−1 + 1).

The first part of our proof comes from the following identity. Let
�
∪ denote disjoint

union of sets.

Lemma 2.4.2. The number of parking sequences for car sizes (y1, . . . , yn, yn+1) and
a trailer of length z − 1 satisfies the recurrence

f(~y, yn+1; z) =
∑

L
�
∪R={1,...,n}

(
z +

∑
l∈L

yl

)
· f(~yL; z) · f(~yR; 1),

where ~yS = (ys1 , . . . , ysk) for S = {s1 < s2 < · · · < sk} ⊆ {1, . . . , n}.

Proof. Consider the situation required for the last car Cn+1 to park successfully:

– Car Cn+1 must see, to the left of its vacant spot, the trailer along with a subset
of the cars labeled with indices L occupying the first z − 1 +

∑
l∈L yl spots.

Hence, the restriction ~cL of ~c = (c1, c2, . . . , cn+1) to the indices in L must be a
parking sequence for ~yL and trailer of length z−1. This can be done in f(~yL; z)
possible ways.

– Car Cn+1 must have a preference cn+1 that lies in the range [1, z +
∑

l∈L yl].
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– Car Cn+1 must see, to the right of its vacant spot, the complementary subset
of cars labeled with indices R = {1, 2, . . . , n} − L occupying the last

∑
r∈R yr

spots. These cars must have parked successfully with preferences ~cR and no
trailer, that is, z = 1. This is enumerated by f(~yR; 1).

Now summing over all decompositions L
�
∪R = {1, 2, . . . , n}, the recursion follows.

The next piece of the proof of Theorem 2.4.1 utilizes a multi-parameter convolu-
tion identity due to Strehl [50]. Let x = (xi,j)1≤i<j and y = (yj)1≤j be two infinite
sets of parameters. For a finite subset A of the positive integers, define the two sums

xA>a =
∑

j∈A,j>a

xa,j and yA≤a =
∑

j∈A,j≤a

yj.

Define the polynomials tA(x,y; z) and sA(x,y; z) by

tA(x,y; z) = z ·
∏

a∈A−max(A)

(z + yA≤a + xA>a),

sA(x,y; z) =
∏
a∈A

(z + yA≤a + xA>a).

Note that, when A is the empty set, we set tA(x,y; z) to be 1. We directly have that

(z + yA≤max(A)) · tA(x,y; z) = z · sA(x,y; z). (2.4.1)

Now Theorem 1, equation (6) in [50] states:

Theorem 2.4.3 (Strehl). The polynomials sL(x,y; z) and tR(x,y;w) satisfy the fol-
lowing convolution identity:

sA(x,y; z + w) =
∑

L
�
∪R=A

sL(x,y; z) · tR(x,y;w). (2.4.2)

Strehl first interprets sA(x,y; z) and tA(x,y; z) as sums of weights on functions,
then translates these via a bijection to sums of weights on rooted, labeled trees where
the xi,j’s record ascents, and the yj’s record descents. The proof of (2.4.2) then follows
from the structure inherent in splitting a tree into two. A similar result using the
same bijection was discovered by Eǧecioǧlu and Remmel in [7].
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Proof of Theorem 2.4.1. The proof follows from noticing that our proposed expres-
sion for f(~y; z) is Strehl’s polynomial t{1,2,...,n}(1,y; z). By induction we obtain

f(~y, yn+1; z) =
∑

L
�
∪R={1,2,...,n}

(
z +

∑
l∈L

yl

)
· f(~yL; z) · f(~yR; 1)

=
∑

L
�
∪R={1,2,...,n}

(z + yL≤max(L)) · tL(1,y; z) · tR(1,y; 1)

=
∑

L
�
∪R={1,2,...,n}

z · sL(1,y; z) · tR(1,y; 1)

= z · s{1,2,...,n}(1,y; z + 1)

= t{1,2,...,n+1}(1,y; z),

where we used the recursion in Lemma 2.4.2, equation (2.4.1) and Theorem 2.4.3.

2.5 Concluding remarks

The idea of considering a circular arrangement goes back to Pollak; see [39]. In fact,
when all the cars have size 1, our argument without a trailer reduces to his argument
that the number of classical parking functions is (n+ 1)n−1.

The idea of not using fixed coordinates when placing cars in the circular arrange-
ment is reminiscent of the argument Athanasiadis used to compute the characteristic
polynomial of the Shi arrangement [1].

The polynomial tA(x,y; z) satisfies the following convolution identity; see [50,
Equation (7)],

tA(x,y; z + w) =
∑

B
�
∪C=A

tB(x,y; z) · tC(x,y;w). (2.5.1)

Hence it is suggestive to think of this polynomial as of binomial type and the poly-
nomial sA(x,y;w) as an associated Sheffer sequence; see [40]. When setting all the
parameters x to be constant and also the parameters y to be constant, we obtain the
classical Abel–Rothe polynomials. Hence it is natural to ask if other sequences of bi-
nomial type and their associated Sheffer sequences have multi-parameter extensions.
Since the Hopf algebra k[x] explains sequences of binomial type, one wonders if there
is a Hopf algebra lurking in the background explaining equations (2.5.1) and (2.4.2).

Copyright c© Alexander Thomas Happ, 2018.
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Chapter 3 The antipode of the noncrossing partition lattice

3.1 Introduction

Recall from Section 1.6 that the antipode of the reduced incidence Hopf algebra
of posets is an extension of the Möbius function of a poset. For instance, Hall’s
formula for the Möbius function as the alternating sum of chains was extended to
the antipode by Schmitt [42]. However, very few posets have had their antipode
determined in an explicit form. Haiman and Schmitt computed the antipode of the
partition lattice [24, Corollary 1], and Einziger in her dissertation computed the
antipode of the noncrossing partition lattice in terms of polygon dissections where
each region has an even number of sides; see [17, Theorem 8.7]. These dissections
are in bijective correspondence with noncrossing hypertrees; see [35, Remarks 3.2
and 3.3].

We present here a different approach to the antipode of the noncrossing partition
lattice directly in terms of noncrossing hypertrees. Our approach is based on a map ϕ
from chains in the noncrossing partition lattice to noncrossing hypertrees. Chains that
belong to the same fiber of this map have the same poset product that appears in the
Schmitt formula. The last step is to show that the alternating sum over each fiber
cancels all elements but one. We do this by a geometric argument using the Euler
characteristic with compact support. In this proof the permutahedron has a cameo
appearance similar to that in the paper [15].

For more work on computing the antipode of posets, see [16, 17], and for other
Hopf algebras appearing in combinatorics, see [2].

3.2 Preliminaries

Noncrossing partitions

Let [n] denote the set {1, 2, . . . , n}. A (set) partition π = {B1, B2, . . . , Bk} of the
set [n] is a collection of non-empty blocks which are disjoint and whose union is the
set [n]. Let |π| denote the number of blocks of the partition π. Let Πn be the set of all
partitions of [n]. Order Πn such that for π and τ in Πn, we have the inequality π ≤ τ
if each block of π is contained in a block of τ . Note that the minimal element of Πn is
the partition 1|2| · · · |n, and the maximal element is the singleton block [n]. In fact,
the poset Πn is a lattice, hence known as the partition lattice.

A partition σ of [n] is noncrossing if it has the property that if a < b < c < d and
some block B of σ contains both a and c, while some block B′ of σ contains both b
and d, then B and B′ are the same block, that is, B = B′. Geometrically, σ is a
partition of the vertices of a regular n-gon (labeled by the set [n]) with the property
that the convex hulls of its blocks are pairwise disjoint. For example, Figure 3.1 shows
the noncrossing partition 14|2|3|589|67. Then the set of noncrossing partitions on [n]
comprises a sublattice of Πn, known as the noncrossing partition lattice, NCn. Note
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Figure 3.1: A noncrossing partition on 9 elements.
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Figure 3.2: A noncrossing hypertree on 9 vertices.

that such a partition when pictured in this way divides the n-gon into regions. For
instance, in our example in Figure 3.1, this partition has three regions: {1, 2, 3, 4},
{1, 4, 5, 9}, and {5, 6, 7, 8}.

Recall that an integer partition λ is a sequence (λ1, λ2, . . . , λk) of positive integers
such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1. The length of a partition λ is given by `(λ) = k.
Lastly, define the partition λ+ 1 to be the partition (λ1 + 1, λ2 + 1, . . . , λk + 1).

For a partition λ, we define the product of noncrossing lattices NCλ to be the
Cartesian product NCλ =

∏`(λ)
i=1 NCλi .

For more on the structure of the noncrossing partition lattice NCn, see for in-
stance [44] or [46].

Noncrossing hypertrees

A hypergraph H on a vertex set [n] is a collection of subsets, called edges, of [n] of
cardinality at least 2. A hypergraph is connected if for all vertices x and y in the
vertex set [n] there exists a sequence of vertices x = x0, x1, . . . , xk = y and a sequence
of edges E1, E2, . . . , Ek such that xi−1, xi ∈ Ei for all 1 ≤ i ≤ k. A hypertree H on [n],
then, is a connected hypergraph such that

∑
E∈H(|E| − 1) = n− 1. Note that there

are equivalent ways to define a hypertree, such as a connected hypergraph without
any cycles, but we have picked the definition that best fits our purposes.

25



Take n points on a circle labeled counterclockwise from 1 to n, and consider graphs
whose vertices are the given points and whose edges are rectilinear and do not cross.
We call these noncrossing graphs. If we allow the edges to consist of more than just
two vertices, then these become noncrossing hypergraphs. Then we may consider trees
of this same type, called noncrossing hypertrees. We denote the set of noncrossing
hypertrees on n vertices as NCHTn. For example, Figure 3.2 shows a noncrossing
hypertree on 9 vertices. These look quite similar to noncrossing partitions, and they
again divide the n-gon into regions. The regions in the hypertree in Figure 3.2 are
{1, 3, 4}, {1, 8, 9}, {5, 6, 8}, and {6, 7, 8}. For more on noncrossing hypertrees, see [35].

For a hypertree T on the vertex set [n], let the type of the hypertree T be the
partition type(T ) consisting of the cardinalities of the edges of T in weakly decreasing
order. Thus, the type of a tree on n vertices from classical graph theory is the partition
(2, 2, . . . , 2).

Posets and the reduced incidence Hopf algebra

Given a finite poset P , let the order complex of P , denoted by ∆(P ), be the simplicial
complex consisting of all chains in the poset P . Observe that this includes the empty
chain. For a poset P with a minimal element 0̂ and a maximal element 1̂, we let P
denote the poset P−{0̂, 1̂}, that is, with the minimal and maximal elements removed.
For a poset P with minimal element 0̂ and maximal element 1̂, we will identify the
complex ∆(P ) with all chains in P containing the two extreme elements 0̂ and 1̂, that
is,

∆(P ) = {c ∈ ∆(P ) : c = {0̂ = x0 < x1 < · · · < xk = 1̂}}.
The reduced incidence Hopf algebra on posets consists of the linear span of all

isomorphism types of finite posets having a unique minimal element 0̂ and a unique
maximal element 1̂. That is, we view two posets to be equal in this Hopf algebra if
they are isomorphic. The product in this algebra is the Cartesian product of posets.
The unit consists of the isomorphism type of the one-element poset. The coproduct
(unfortunately also denoted by ∆) of a poset P is given by

∆(P ) =
∑

0̂≤x≤1̂

[0̂, x]⊗ [x, 1̂].

Every Hopf algebra is endowed with an antipode. In the reduced incidence Hopf
algebra, the antipode S(P ) of a poset P has an expression summing over all chains
in P ; see [42, Theorem 6.1]. See also [24, Theorem 1].

Theorem 3.2.1 (Schmitt). The antipode of a poset P in the reduced incidence Hopf
algebra of posets is given by

S(P ) =
∑
c

(−1)k · [x0, x1] · [x1, x2] · · · [xk−1, xk], (3.2.1)

where the sum is over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} in the poset P .

This formula for the antipode has the disadvantage that it is not cancellation-free
in general.
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3.3 The map from chains to noncrossing hypertrees

We now produce a map ϕ from chains in ∆(NCn) to noncrossing hypertrees. We
build up the map step by step as we ascend the chain.

Definition 3.3.1. For a block B of a noncrossing partition π and R a region of π
adjacent to the block B, let vR(B) be the vertex of the region R in the most positive
orientation (counterclockwise) that belongs to the block B.

Definition 3.3.2. For two noncrossing partitions π and σ in NCn such that π < σ,
define the hypergraph ϕ(π, σ) as follows. For each region R of π and a maximal
collection of blocks B1, B2, . . . , Bk of π, where k ≥ 2, which are adjacent to the re-
gion R and are all contained in one block of the noncrossing partition σ, add the
edge {vR(B1), vR(B2), . . . , vR(Bk)} to the hypergraph ϕ(π, σ).

Note that the edge {vR(B1), vR(B2), . . . , vR(Bk)} is contained in the region R of
the partition π, and it is also contained in the associated block of the partition σ.

Lemma 3.3.3. For two noncrossing partitions π and σ such that π < σ, the following
poset isomorphism holds

[π, σ] ∼=
∏

E∈ϕ(π,σ)

NC|E| .

Proof. Consider an edge E in ϕ(π, σ) of size k. This edge must join together k blocks
of π to form a single block (or subset of a block) of σ. All of the partial ways to join
these blocks is isomorphic to the noncrossing partition lattice NCk = NC|E|. Since
the edges of the hypergraph ϕ(π, σ) are disjoint, these events are independent of each
other, which on the poset level translates to the Cartesian product of posets.

Definition 3.3.4. For a chain c = {0̂ = π0 < π1 < · · · < πk = 1̂} in the noncross-
ing partition lattice NCn, define the hypergraph ϕ(c) to be the union of the hyper-
graphs

⋃k
i=1 ϕ(πi−1, πi).

See Figure 3.3 for an example of this construction.
By combining Definition 3.3.4 and Lemma 3.3.3, we have the following corollary:

Corollary 3.3.5. Let c = {0̂ = π0 < π1 < · · · < πk = 1̂} be a chain in the
noncrossing partition lattice NCn. Then the following isomorphism holds

k∏
i=1

[πi−1, πi] ∼=
∏

E∈ϕ(c)

NC|E| . (3.3.1)

Especially, given another chain d = {0̂ = σ0 < σ1 < · · · < σr = 1̂} such that
ϕ(c) = ϕ(d), the two poset products

∏k
i=1[πi−1, πi] and

∏r
i=1[σi−1, σi] are isomorphic.

Lemma 3.3.6. For a chain c in the noncrossing partition lattice NCn, the hyper-
graph ϕ(c) is a noncrossing hypertree.
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Figure 3.3: A chain in the noncrossing partition lattice NC9, followed by the associ-
ated hypergraphs ϕ(πi−1, πi). Note that the union of the hypergraphs is the hypertree
displayed in Figure 3.2.

Proof. First, observe that ϕ(c) is connected, since the chain c ends at πk = 1̂, where
all blocks have been merged. Now by considering the rank of the poset in equa-
tion (3.3.1), we have that

∑
E∈ϕ(c)

(|E| − 1) =
∑
E∈ϕ(c)

ρ(NC|E|) =
k∑
i=1

ρ([πi−1, πi]) =
k∑
i=1

(ρ(πi)− ρ(πi−1)) = n− 1.

Hence we conclude ϕ(c) is a hypertree.
Finally, let E ∈ ϕ(πi−1, πi), F ∈ ϕ(πj−1, πj) be two edges of the hypertree ϕ(c).

If i = j, they were added at the same time and hence are disjoint. Without loss of
generality we may assume i < j, that is, i ≤ j − 1. Then E is contained in a block
of πi, which is contained in a block of πj−1. Since F is contained in a region of πj−1,
we have that E and F intersect in at most a single point, and hence the hypertree is
noncrossing.

3.4 A geometric approach to the fibers

We call two edges E and F in a noncrossing hypertree H adjacent if they share a
vertex and they also border a common region of H. Note that the adjacency relation
forms a tree where the vertices are the edges of the hypertree.

For a moment, consider the noncrossing hypertree with two adjacent edges {2, 3, 4}
and {1, 2, 5}. What do chains in the fiber of this hypertree under ϕ look like? Since
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Figure 3.4: A noncrossing hypertree on 7 vertices along with the Hasse diagram of
the induced relations on its hyperedges under the map ϕ.

they share the vertex 2, we know that they were not added at the same step of the
chain in the noncrossing partition lattice. Furthermore, if the edge {2, 3, 4} was added
first, then the elements 2, 3, and 4 belong to the same block B in the partition at
this moment of the chain. Now when the elements 1 and 5 are joined together with
the block B, we would pick the element in the most positive orientation from B.
However, this element would be 4, not the element 2. Hence we, conclude that the
edge {1, 2, 5} was added to the tree before the edge {2, 3, 4}. This motivates the
following definition.

Definition 3.4.1. Let E and F be two adjacent edges in a hypertree T , and assume
that they share the vertex v. If the block E is on the left from the perspective of the ver-
tex v looking into the hypertree, then we give the two blocks the order relation E < F .

In other words, the order relation E < F between two edges implies that the
edge E was added before the edge F in every chain in the fiber of the hypertree. This
gives us a tree with an order relation on each edge.

Example 3.4.2. Consider the hypertree H on 7 vertices with the edges {1, 2}, {2, 4},
{2, 5, 7}, {3, 4}, and {5, 6}, pictured in Figure 3.4. We extract the relations on these
edges using Definition 3.4.1, yielding

{1, 2} < {2, 5, 7}, {2, 5, 7} < {5, 6}, {2, 5, 7} < {2, 4}, {3, 4} < {2, 4}.

Any chain c that induces this list of hyperedges without violating any of these relations
is in the fiber ϕ−1(H).

An ordered (set) partition is a (set) partition where the blocks have a linear order.
That is, (C1, C2, . . . , Cr) is an ordered set partition if {C1, C2, . . . , Cr} is a partition.
Let Qk denote the set of all ordered set partitions on the set [k]. We make Qk into a
poset by joining adjacent blocks, that is, the cover relation is

(C1, . . . , Ci−1, Ci, Ci+1, Ci+2, . . . , Cr) ≺ (C1, . . . , Ci−1, Ci ∪ Ci+1, Ci+2, . . . , Cr).

Note that Qk has one maximal element ([k]) but k! minimal elements. In fact, if we
join a minimal element 0̂ to Qk, we obtain the face lattice of the permutahedron.
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This is the simple (k − 1)-dimensional polytope that is the convex hull of the k!
permutations.

For our purposes, it is better to view the dual polytope which is simplicial. How-
ever, we will view the dual as a subdivision of the (k − 2)-dimensional sphere, where
we describe the sphere Sk−2 as the set

Sk−2 = {(x1, x2, . . . , xk) ∈ Rk : x21 + x22 + · · ·+ x2k = 1, x1 + x2 + · · ·+ xk = 0}.

An ordered set partition τ = (C1, C2, . . . , Cr) with at least two blocks corresponds to
the subset g(τ) of the sphere given by the equalities and inequalities

(a) if i and j belong to the same block of the ordered set partition τ , then xi = xj,

(b) if i belongs to a block which is earlier than the block that j belongs to in the
ordered set partition τ , then xi < xj.

Note that the set g(τ) is homeomorphic to an (r − 2)-dimensional open ball.
Given the noncrossing hypertree H with the k edges E1, E2, . . . , Ek, define a

map ψ from the fiber ϕ−1(H) to the ordered set partitions Qk as follows. The chain
c = {0̂ = π0 < π1 < · · · < πr = 1̂} of length r in the noncrossing partition lattice is
sent to the ordered set partition ψ(c) = (C1, C2, . . . , Cr) into r blocks, where the ith
block is described by Ci = {j : Ej ∈ ϕ(πi−1, πi)}. That is, the ordered set parti-
tion ψ(c) encodes which edges of H are added in the ith step in the chain c. See
Figure 3.5 for an example of this construction.

We can now prove our desired equality.

Proposition 3.4.3. For all noncrossing hypertrees H on n elements with k edges,
we have ∑

c∈ϕ−1(H)

(−1)`(c) = (−1)k.

Proof. Recall that the Euler characteristic with compact support of an r-dimensional
open ball is (−1)r; see [23]. Using this property, we reformulate the sum as computing
the Euler characteristic of a union:

∑
c∈ϕ−1(H)

(−1)`(c) =
∑

c∈ϕ−1(H)

χc(g(ψ(c))) = χc

 ⋃
c∈ϕ−1(H)

g(ψ(c))

 ,

where we used that the Euler characteristic with compact support is an additive
valuation. The union of the right-hand side is the subset of the sphere Sk−2 intersected
with the open halfspaces xi < xj if Ei < Ej in the hypertree H. This intersection
yields an open ball of dimension k−2. The Euler characteristic with compact support
of this ball is (−1)k, completing the proof.

One can avoid the Euler characteristic with compact support by not working
on the sphere. Instead, we can use the dual of the permutahedron, which is the
barycentric subdivision of the boundary of the simplex, and the Euler characteristic
as a valuation, as presented in [26].

30



2-1-3-4 1-2-4-3

2-4-1-3
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12-34

E1 E2

E3 E4

Figure 3.5: The poset order on the edges of some hypertree and the associated com-
plex cut out from the sphere S2 by the inequalities x1 < x3, x2 < x3, and x2 < x4,
where we label the faces with the associated ordered partitions.

3.5 A sign-reversing involution approach to the fibers

In this section we present a Morse matching proving Proposition 3.4.3. Suppose the
noncrossing hypertree H has k edges. Let QH be the collection of all ordered set
partitions compatible with the hypertree H.

Our first step is to label the edges of the hypertree H with indices 1, 2, 3, . . . , k so
that if Ei is adjacent to Ej and Ej is closer to Ek than Ei, then i < j. Then we may
think of the hypertree as a rooted tree with root Ek, and we could remove the edges
in the order E1, E2, . . ., Ek−1 until we are left with just the root Ek. We shall now
refer to the edges E1, E2, . . . , Ek as nodes of this rooted tree, which are also endowed
with a partial order via Definition 3.4.1.

Furthermore, for 1 ≤ i ≤ k− 1, let p(i) be the index of the parent of the node Ei.
That is, Ep(i) is the first node on the path from Ei to the root Ek. We call a node Ei
an ascent node if Ei < Ep(i) (in the partial order of Definition 3.4.1), and otherwise we
call Ei a descent node. Let a(1) through a(ka) be the indices of all the ascent nodes
in order, that is, a(1) < a(2) < · · · < a(ka). Similarly, let b(1) < b(2) < · · · < b(kb)
be all the indices of the descent nodes in order. Note that ka + kb = k − 1, as Ek is
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neither an ascent nor a descent node.
Consider an ordered partition σ on the set [k]. We say that σ has type q if it is of

the form

({a(1)}, {a(2)}, . . . , {a(α)}, C1, C2, . . . , Cr, {b(β)}, {b(β − 1)}, . . . , {b(1)}), (3.5.1)

where α + β + 1 = q is maximal. That is, C1 6= {a(α + 1)} and Cr 6= {b(β + 1)}.
We now define a matching on the collection QH . Consider an ordered set parti-

tion σ of type q ≤ k − 1. That is, σ is given in equation (3.5.1) with r ≥ 1. Assume
that the block Ci of σ contains the element q, that is, q ∈ Ci. We have four cases to
consider:

(1) Suppose Eq is an ascent node, that is, Eq < Ep(q), and Ci is the singleton
block {q}. Note that i 6= 1, or the type of σ would be at least q + 1. Merge
the block Ci with the previous block Ci−1 to obtain the ordered partition u(σ),
that is,

u(σ) = (. . . , Ci−2, Ci−1 ∪ Ci, Ci+1, . . .).

Match σ with this new partition u(σ). Note that u(σ) is also contained in QH

because the requirement that Eq < Ep(q) is still satisfied, and no other relations
have been disturbed.

(2) Suppose Eq is an ascent node as in (1), and q is contained in the block Ci, but Ci
is not a singleton block, that is, {q} $ Ci. Then we will split off the element q
by itself to the right. In particular, we create the ordered partition d(σ) by

d(σ) = (. . . , Ci−1, Ci − {q}, {q}, Ci+1, . . .).

Match σ with this new partition d(σ). Note again that no relations can have
been disturbed, so d(σ) ∈ QH .

(3) Suppose Eq is a descent node, that is, Eq > Ep(q), and Ci is the singleton
block {q}. Note that i 6= r, since this would imply the type of σ is greater
than q. Merge the block Ci with the subsequent block Ci+1 to obtain the
ordered partition u(σ), that is,

u(σ) = (. . . , Ci−1, Ci ∪ Ci+1, Ci+2, . . .).

Match σ with this new partition u(σ).

(4) Suppose Eq is a descent node as in (3), and q is contained in the block Ci, but Ci
is not a singleton block, that is, {q} $ Ci. Then we will split off the element q
by itself to the left. In particular, we create the ordered partition d(σ) by

d(σ) = (. . . , Ci−1, {q}, Ci − {q}, Ci+1, . . .).

Match σ with this new partition d(σ).
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Lemma 3.5.1. The above rules (1) through (4) define a matching on QH . Further-
more, the only unmatched ordered set partition is given by

({a(1)}, {a(2)}, . . . , {a(ka)}, {k}, {b(kb)}, {b(kb − 1)}, . . . , {b(1)}). (3.5.2)

Proof. For any set partition σ of type strictly less than k meeting the requirements
of conditions (1) and (3), we have that d(u(σ)) = σ. Similarly, for an ordered set
partition σ satisfying conditions (2) and (4), we have u(d((σ)) = σ. Hence these four
conditions describe a matching. Finally, we note also that none of the four types of
matchings changes the type of an ordered partition σ. Since the ordered set partition
in (3.5.2) is the unique ordered set partition of type k, this implies that it does not
get matched.

Example 3.5.2. Consider the noncrossing hypertree H from Example 3.4.2 along
with the partial order on its edges unduced by the map ϕ.

One possible indexing of the edges that satisfies the requirements of our matching
would be

E1 = {5, 6}, E2 = {3, 4}, E3 = {1, 2}, E4 = {2, 4}, E5 = {2, 5, 7}.

The unmatched ordered set partition for this labeling is 2-3-5-4-1. See Figure 3.6 for
the entire poset QH with its matching under this labeling of the edges.

Lemma 3.5.3. If σ and τ are two ordered set partitions such that σ ≤ τ , then the
inequality type(σ) ≥ type(τ) holds.

Proof. Since we join blocks together of σ to obtain τ , we cannot increase the number
of singleton blocks at either end of the ordered set partition, and this is the only way
to increase the type of a partition.

Proposition 3.5.4. Assume σ and τ are two different ordered set partitions of the
same type q and that they satisfy the cover relations σ ≺ u(σ) � τ ≺ u(τ). Note this
implies that {q} is a singleton block in both σ and τ . Then the element q is closer to
the parent p(q) in the ordered set partition σ than in τ .

Proof. Note that the block {q} joined the block away from the parent p(q) in order to
form u(σ). Then to obtain τ , the element q had to split from this block, continuing
to move away from the parent p(q).

This proposition proves that no directed cycles are possible in the matching, sug-
gesting the Morse property.

Theorem 3.5.5. The above matching on QH is a discrete Morse matching.

Proof. Assume we have a directed cycle. Then Lemma 3.5.3 implies that all the types
are the same in the directed cycle. But Proposition 3.5.4 implies that the element q
always moves away from its parent, which is impossible in a cycle.
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Figure 3.6: The poset QH for the hypertree from Example 3.4.2 with the indexing on
the edges of H from Example 3.5.2. The matching is signified by the thicker lines in
the Hasse diagram.

Second proof of Proposition 3.4.3. The matching yields a sign-reversing involution
where the only fixed point is the critical cell.

While the Morse property was not necessary to prove Proposition 3.4.3, it does
raise questions concerning the topological properties of these posets QH . Recall also
that the elements in QH correspond to chains in the noncrossing partition lattice, so
QH is the dual of a subposet of the order complex ∆(NCn).

3.6 Conclusion and closing remarks

Combining Proposition 3.4.3 with Schmitt’s antipode formula in Theorem 3.2.1 yields
the main results:
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Theorem 3.6.1. The antipode of the noncrossing partition lattice is given by

S(NCn) =
∑
H

(−1)|H| · NCtype(H),

where the sum is over all noncrossing hypertrees H on n vertices.

As a corollary we have

Corollary 3.6.2. The antipode of the noncrossing partition lattice is given by

S(NCn) =
∑

λ`n−1

(−1)`(λ) ·
{

number of noncrossing hypertrees of type λ+ 1
}
·NCλ+1 .

Einziger combines her expression for the antipode using polygon dissections with
the enumerative results in [18] to give the following expression

S(NCn) =
1

2n+ 1
·

n∑
k=1

(−1)k ·
(

2n+ k

k

)
·

∑
i1+i2+···+ik=n

NCi1 ·NCi2 · · ·NCik ;

see Theorem 8.9 in [17].

Copyright c© Alexander Thomas Happ, 2018.
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Chapter 4 Sums of powers of the descent set statistic

4.1 Introduction

It has always been interesting to study divisibility properties of sequences defined com-
binatorially. Three classical examples are Fibonacci numbers, the partition function,
and binomial coefficients. The Fibonacci numbers satisfy gcd(Fm, Fn) = Fgcd(m,n).
Ramanujan discovered that the partition function satisfies, among other relations,
that 5 divides p(5n+ 4). The binomial coefficients are well-studied modulo a prime;
see the theorems of Lucas and Kummer in Section 4.2. In this chapter we consider di-
visibility properties of the sum of powers of the descent set statistic from permutation
enumeration. The descent set statistic was first studied by MacMahon [34].

Recall from Section 1.2 that for a permutation π in the symmetric group Sn, the
descent set of π is the subset of [n − 1] = {1, 2, . . . , n − 1} given by Des(π) = {i ∈
[n − 1] : πi > πi+1}. The descent set statistics βn(S) are defined for subsets S
of [n− 1] by

βn(S) = |{π ∈ Sn : Des(π) = S}| .
Since there are n! permutations, we directly have

n! =
∑

S⊆[n−1]

βn(S).

Define Arn to be the sum of the rth powers of the descent set statistics, that is,

Arn =
∑

S⊆[n−1]

βn(S)r.

This quantity occurs naturally as moments of the random variable Des(S), where the
set S is chosen with a uniform distribution from all subsets of the set [n− 1].

In Section 4.3 we give two expressions, depending on the parity of r for Arn; see
Lemma 4.3.1. We continue by showing that for an odd prime p and an even positive
integer r, if m and n contain the same non-zero digits in base p, then the prime p
dividing Arm is equivalent to p dividing Arn. In Section 4.4 we give lower bounds for
the number of prime factors in Arn. These bounds depend on the digit sum of n in
base p. Unfortunately, we do not obtain any bound when p is an odd prime and r is
even. In Section 4.5 we sharpen the results by collecting terms together occurring in
the expansion of Lemma 4.3.1. The method of collection is by considering orbits of a
group action. First we use the cyclic group Zpk , and then we use a group defined by
the action on the balanced p-ary tree of cyclically rotating the branches under any
node. The lower bounds obtained in this section for the prime factors of p in Arn now
also depend on the base p expansion of r.

We end in the concluding remarks by presenting two tables obtained by compu-
tation to compare our bounds with the actual number of factors of 2 and 3 occurring
in Arn.
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4.2 Preliminaries

Define αn(S) by the sum

αn(S) =
∑
T⊆S

βn(T ).

Observe that αn(S) enumerates the number of permutations in Sn with descent set
contained in the set S. Especially, we know that A1

n = αn([n− 1]) = n!. For more on
descents; see [49, Section 1.4].

Define a bijection co from subsets of the set [n− 1] to compositions of n by send-
ing the set S = {s1 < s2 < · · · < sk−1} to the composition co(S) = (c1, c2, . . . , ck),
where ci = si−si−1 with s0 = 0 and sk = n. See, for instance, [4] or [48, Section 7.19].
It is now straightforward to observe that αn(S) is given by the multinomial coeffi-
cient

(
n

co(S)

)
.

Using elementary number theory we have three observations.

Proposition 4.2.1. Let p be a prime. Assume that r and s are both greater than or
equal to k and r ≡ s (mod pk−1 · (p − 1)). Then the congruence Arn ≡ Asn (mod pk)
holds. Especially, the statement pk divides Arn is equivalent to pk divides Asn.

Proof. We may assume that r < s, that is, s − r = pk−1 · (p − 1) · j for a positive
integer j. For an integer x which is relative prime to the prime p, Euler’s theorem
implies that xs ≡ xr · (xpk−1(p−1))j ≡ xr (mod pk). For an integer x which is divisible
by the prime p, we have xs ≡ 0 ≡ xr (mod pk) since r, s ≥ k. Thus for all integers x
we have xs ≡ xr (mod pk), and we conclude

Asn ≡
∑

S⊆[n−1]

βn(S)s ≡
∑

S⊆[n−1]

βn(S)r ≡ Arn (mod pk).

When the prime p is 2 and k ≥ 3, we have an improvement of a factor of 2.

Proposition 4.2.2. Assume that r and s are both greater than or equal to k ≥ 3
and r ≡ s (mod 2k−2). Then the congruence Arn ≡ Asn (mod 2k) holds. Especially,
the statement 2k divides Arn is equivalent to 2k divides Asn.

Proof. For an odd integer x we know that x2
k−2 ≡ 1 (mod 2k), which yields the better

bound using the same argument as in the proof of Proposition 4.2.1.

Proposition 4.2.3. Let p be a prime and r an integer such that r ≥ k · p. If pk

divides the k numbers A
r−(p−1)
n , A

r−2·(p−1)
n , through A

r−k·(p−1)
n , then pk divides Arn.

Proof. By Fermat’s little theorem we know xp−1−1 ≡ 0 (mod p) for x relative prime
to p. Hence the kth power of this quantity is divisible by pk, that is, (xp−1 − 1)k ≡ 0
(mod pk). Note that xk ≡ 0 (mod pk) for x not relative prime to p. Multiplying
these two statements we obtain

xk·p −
(
k

1

)
· xk·p−(p−1) + · · ·+ (−1)k · xk ≡ 0 (mod pk)
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for all x. Multiply this polynomial relation with xr−k·p, substitute x to be βn(S), and
sum over all S ⊆ [n− 1] to obtain the linear recursion

Arn −
(
k

1

)
· Ar−(p−1)n + · · ·+ (−1)k · Ar−k·(p−1)n ≡ 0 (mod pk).

This relation yields the result.

Example 4.2.4. Note using Table 4.1 that for 8 ≤ n ≤ 20, the power 25 divides Arn
when 5 ≤ r ≤ 9. Hence, Proposition 4.2.3 gives that 25 divides Arn for r ≥ 5.

Example 4.2.5. Using Table 4.2 we know for n = 6 and 8 ≤ n ≤ 20 that 32 di-
vides A3

n and A5
n. Hence, Proposition 4.2.3 implies for r odd and r ≥ 3 that 32

divides Arn. Similarly, we know for n ∈ {9, 10, 12, 13, 15, 16, 18, 19, 20} that 33 di-
vides A3

n, A5
n and A7

n. Therefore, for these same values of n, 33 divides Arn for r odd
and r ≥ 3.

Remark 4.2.6. Note that Propositions 4.2.1 through 4.2.3 apply to any sequence of
the form

∑N
i=1 ci · dri where ci and di are integers.

We end this section by reviewing Lucas’ theorem, see [33, Chapter XXIII, Sec-
tion 228], and Kummer’s theorem, see [29], for multinomial coefficients.

Theorem 4.2.7 (Lucas). Let p be a prime and ~c = (c1, c2, . . . , ck) be a weak compo-
sition of n, that is, 0 is allowed as an entry. Expand n and each ci in base p, that
is, n =

∑
j≥0 nj ·pj and ci =

∑
j≥0 ci,j ·pj where 0 ≤ nj, ci,j ≤ p−1. Let ~cj be the weak

composition ~cj = (c1,j, c2,j, . . . , ck,j). Then the multinomial coefficient
(
n
~c

)
modulo p

is given by (
n

~c

)
≡
∏
j≥0

(
nj
~cj

)
(mod p).

The power of the prime p in the factorization of the binomial coefficient
(
n
c

)
is

given by the number of carries of the addition c + (n − c) in base p. This result is
due to Kummer. We are going to need an extension of this result for the multino-
mial coefficient

(
n
~c

)
. Hence we define carriesp(~c) to be the sum of the carries when

adding c1 + c2 + · · ·+ ck in base p. To give a better definition, for a positive integer n,
let up(n) be the sum of the digits when n is written in base p. More formally, for
n =

∑
i≥0 ni ·pi, where 0 ≤ ni ≤ p−1, the function up(n) is given by the sum

∑
i≥0 ni.

Furthermore, for a composition ~c = (c1, c2, . . . , ck), define up(~c) to be the sum of the

digits when all the parts of ~c are written in base p, that is, up(~c) =
∑k

i=1 up(ci).

Definition 4.2.8. For a composition ~c of n, define the sum of the carries of the digits
in base p by

carriesp(~c) =
up(~c)− up(n)

p− 1
.
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The motivation for this definition is as follows. If one lines up the parts c1, c2, . . . , ck
of ~c in base p, note that any one of the up(~c) units in any of these addends has only
two options: It may either contribute to a carry along with another p− 1 units in its
column, or it can directly become one of the up(n) units in n.

Theorem 4.2.9 (Kummer). For a prime p and a composition ~c = (c1, c2, . . . , ck)
of n, the largest power d such that pd divides the multinomial coefficient

(
n
~c

)
is given

by carriesp(~c).

Corollary 4.2.10. Let p be a prime. Then the number of factors of p in A1
n is

(n− up(n))/(p− 1).

Proof. Note that A1
n = n! =

(
n

1,1,...,1

)
. Hence by Kummer’s theorem the number of

factors of p is carriesp(1, 1, . . . , 1) = (up(1, 1, . . . , 1)− up(n))/(p− 1).

4.3 Divisibility by odd primes

First, we express the sum Arn =
∑

S⊆[n−1] βn(S)r in terms of αn(S).

Lemma 4.3.1. When r is even, Arn is given by

Arn =
∑

T1,T2,...,Tr⊆[n−1]

(−1)
∑r

i=1 |Ti| · 2n−1−|
⋃r

i=1 Ti| ·
r∏
i=1

αn(Ti). (4.3.1)

When r is odd, we have

Arn =
∑

T1,T2,...,Tr⊆[n−1]
T1∪T2∪···∪Tr=[n−1]

(−1)n−1+
∑r

i=1 |Ti| ·
r∏
i=1

αn(Ti). (4.3.2)

Proof. We begin by expanding βn(S) in terms of αn(S):

Arn =
∑

S⊆[n−1]

βn(S)r

=
∑

S⊆[n−1]

r∏
i=1

(∑
Ti⊆S

(−1)|S−Ti| · αn(Ti)

)

=
∑

T1,T2,...,Tr⊆[n−1]

∑
T1∪T2∪···∪Tr⊆S⊆[n−1]

(−1)r·|S| · (−1)
∑r

i=1 |Ti| ·
r∏
i=1

αn(Ti).

When r is even, we have (−1)r·|S| = 1, and the inner sum has 2n−1−|
⋃r

i=1 Ti| terms.
When r is odd, the inner sum is zero unless the union

⋃r
i=1 Ti is the whole set

[n− 1].

39



Theorem 4.3.2. Let p be an odd prime and r an even positive integer. Assume
that m and n contain the same non-zero digits when written in base p. Then the
congruence 2−m · Arm ≡ 2−n · Arn (mod p) holds. Especially, the prime p divides Arm
if and only if p divides Arn.

Proof. Let m and n have the base p expansions m =
∑

j≥0mj ·pj and n =
∑

j≥0 nj ·pj.
Then there exists a permutation π on the non-negative integers such that mj = nπ(j)
for all j ≥ 0. Note that this permutation may not be unique, but we fix one such
permutation π for the remainder of the argument. Essentially, π permutes the powers

of the prime p. Define a bijection f on the non-negative integers by f
(∑

j≥0 aj · pj
)

=∑
j≥0 aj · pπ(j), where 0 ≤ aj ≤ p− 1. Note that

f(m) =
∑
j≥0

mj · pπ(j) =
∑
j≥0

nπ(j) · pπ(j) =
∑
j≥0

nj · pj = n.

Furthermore, when there are no carries adding x and y in base p, this function
is additive, that is, f(x + y) = f(x) + f(y). Also note that the inverse func-
tion f−1 is additive under the same condition. In terms of compositions, we have
that if ~c = (c1, c2, . . . , ck) is a composition of m such that carriesp(~c) = 0, then the
composition f(~c) = (f(c1), f(c2), . . . , f(ck)) is a composition of f(m) = n.

Let the non-carry power set NCP(m) be the collection of all subsets of [m − 1]
whose associated composition has no carries when added in base p, that is,

NCP(m) = {T ⊆ [m− 1] : carriesp(co(T )) = 0}.

Observe that NCP(m) is closed under inclusion. Note that we can define a bijec-
tion f : NCP(m) −→ NCP(n) by composing the three maps

NCP(m)
co−→ {~c ∈ Comp(m) : carriesp(~c) = 0}
f−→ {~d ∈ Comp(n) : carriesp(~d) = 0}

co−1

−→ NCP(n).

Since the compositions ~c and f(~c) have the same length, the function f preserves
cardinality. But there is a more direct description of the last map f on sets. For
T = {t1 < t2 < · · · < tk} ∈ NCP(m), we claim that f(T ) = {f(t1), f(t2), . . . , f(tk)}.
Let ~c be the composition co(T ). By definition, the ith element of f(T ) is the initial
partial sum of the i first elements of f(~c), that is, f(c1) + · · ·+ f(ci). Since the whole
sum c1 + · · · + ck has no carries, the partial sum also has no carries. Hence, the ith
element of f(T ) is given by f(c1) + · · ·+ f(ci) = f(c1 + · · ·+ ci) = f(ti), proving the
claim.

Also note that for a composition ~c without any carries, we have by Lucas’ Theorem
that (

m

~c

)
≡
(
f(m)

f(~c)

)
(mod p),

since the factors of the product in Lucas’ Theorem are permuted by the permuta-
tion π. Hence, for a set T in NCP(m) we know that αm(T ) = αn(f(T )).
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We now use the expansion in equation (4.3.1). Let ~c i be the composition associ-
ated with the subset Ti of [m− 1]. Similarly, let Ui be the subset of [n− 1] associated

with the composition f(~c i) = ~d i. Next we study the two unions
⋃r
i=1 Ti and

⋃r
i=1 Ui.

However, they may not be in the collection NCP(m), respectively, NCP(n).
For I a non-empty subset of the index set [r], let TI be the intersection

⋂
i∈I Ti.

Note that TI belongs to NCP(m) since this collection is closed under inclusion.
Similarly, let UI be the intersection

⋂
i∈I Ui which belongs to NCP(n). Note that

f(TI) = UI , so the two sets TI and UI have the same cardinality. By inclusion-
exclusion we have∣∣∣∣∣

r⋃
i=1

Ti

∣∣∣∣∣ =
∑
∅$I⊆[r]

(−1)|I|−1 · |TI | =
∑
∅$I⊆[r]

(−1)|I|−1 · |UI | =

∣∣∣∣∣
r⋃
i=1

Ui

∣∣∣∣∣ .
Now observe that the non-zero terms in equation (4.3.1) modulo p are the terms

where Ti belongs to NCP(m). Hence, modulo p we have that

Arm ≡
∑

T1,T2,...,Tr∈NCP(m)

(−1)
∑r

i=1 |Ti| · 2m−1−|
⋃r

i=1 Ti| ·
r∏
i=1

αm(Ti)

≡ 2m−n ·
∑

U1,U2,...,Ur∈NCP(n)

(−1)
∑r

i=1 |Ui| · 2n−1−|
⋃r

i=1 Ui| ·
r∏
i=1

αn(Ui)

≡ 2m−n · Arn (mod p).

This proves the identity. Finally, since 2 is invertible modulo p, we obtain that Arm
and Arn either both have a factor of p or none of them have a factor of p.

Corollary 4.3.3. When r is even and p is an odd prime, the congruence Arpn ≡ Arn
(mod p) holds.

Proof. Since n and p · n have the same non-zero digits modulo p, Theorem 4.3.2
applies. Hence, it is enough to observe that 2pn ≡ (2n)p ≡ 2n (mod p) using Fermat’s
little theorem.

Corollary 4.3.4. When r is even and p is an odd prime, Ar
pk

is not divisible by p.

Proof. It is enough to check that Ar1 = 1 is not divisible by p.

Example 4.3.5. We can compute A2
14 to observe that this number has a factor of 3.

Hence by Proposition 4.2.1 we know that for all even r, the prime 3 divides Ar14.
Furthermore, 14 in base 3 consists of two 1’s and one 2. Hence Theorem 4.3.2 implies
for n = 16, 22, 32, 34, 38, 42, 46, 48, 58, 64, 66, 86, 88, . . . that 3 divides Arn as well.

Example 4.3.6. Note that 5 divides A2
3 = 10. Hence, we know that 5 divides A4·i+2

n

for n of the form 3·5k. One may compute that 5 also divides A2
12 and A2

13. This implies
that 5 divides A4·i+2

n for n belonging to the following two sequences: 12, 52, 60, 252,
260, 300, 1252, 1260, 1300, . . . and 13, 17, 53, 65, 77, 85, 253, 265, 325, 377, 385, . . ..
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4.4 On the number of prime factors

Recall that carriesp(~c) is the sum of carries when adding c1 + c2 + · · ·+ ck in base p.
Also recall that for a positive integer n, that up(n) is the sum of the digits when n is
written in base p and that for a composition ~c = (c1, c2, . . . , ck), up(~c) is the sum of the
digits when all the parts of ~c are written in base p. Similarly, define the depth of n to
be dp(n) = up(n)−1, that is, the sum of the digits of n in base p beyond the requisite
digit greater than zero in its first position. Further, define the depth of a composition ~c
to be the sum of the depth of each of its parts, that is, dp(~c) =

∑k
i=1 dp(ci). The next

lemma is direct.

Lemma 4.4.1. For a composition ~c into k parts, up(~c) = dp(~c) + k.

Recall according to the map co from subsets S ⊆ [n − 1] to compositions ~c of n
that the number of parts k of ~c is one more than the cardinality of S. Combining
this observation with the previous two lemmas yields the next result.

Proposition 4.4.2. For a set S ⊆ [n− 1] and its associated composition co(S) = ~c
of n, the sum of the carries carriesp(~c) is given by (dp(~c) + |S| − dp(n))/(p− 1).

This gives way to the main result in this section.

Theorem 4.4.3. When r is odd and p is prime, the sum Arn has at least

n− 1− r · dp(n)

p− 1

factors of p.

Proof. Consider a term in equation (4.3.2), where we let co(Ti) = ~c i. The number of
factors of p in this term is given by

r∑
i=1

carriesp(~c
i) =

r∑
i=1

dp(~c
i) + |Ti| − dp(n)

p− 1
≥

r∑
i=1

|Ti| − dp(n)

p− 1
≥ n− 1− r · dp(n)

p− 1
,

since dp(~c
i) ≥ 0 for all i and

∑r
i=1 |Ti| ≥ |

⋃r
i=1 Ti| = n− 1.

We can say something stronger when the prime p is 2.

Theorem 4.4.4. The sum Arn is divisible by 2n−1−r·d2(n).

Proof. The case when r is odd follows from Theorem 4.4.3. Now suppose r is even,
and consider a term in equation (4.3.1). The number of factors of 2 in this term is
given by

n− 1−

∣∣∣∣∣
r⋃
i=1

Ti

∣∣∣∣∣+
r∑
i=1

carries2(~c
i) ≥ n− 1−

r∑
i=1

|Ti|+
r∑
i=1

carries2(~c
i)

= n− 1−
r∑
i=1

|Ti|+
r∑
i=1

(d2(~c
i) + |Ti| − d2(n))

≥ n− 1− r · d2(n).
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Since d2(2
k) = 0, we have the following corollary.

Corollary 4.4.5. When n is a power of 2, then Arn is divisible by 2n−1.

In this case, we actually have equality.

Proposition 4.4.6. When n is a power of 2, then 2n−1 is the highest power divid-
ing Arn.

Proof. For x an r-tuple (T1, T2, . . . , Tr), let h(x) represent the associated term in
Lemma 4.3.1. Note that the expression for h(x) depends on the parity of r. Observe
in the proofs of Theorems 4.4.3 and 4.4.4 that we have equality in the bound for those
terms where the sets Ti are disjoint and d2(~c

i) = 0 for all i. Note that the latter
condition requires all the parts of ~c i to be powers of 2. Let X be the collection of all
such r-tuples.

Consider an r-tuple x = (T1, T2, . . . , Tr) ∈ X, and choose the smallest index
1 ≤ k ≤ br/2c such that T2k−1 6= T2k, if one exists. Let x′ be obtained by switching
the (2k− 1)st and 2kth subsets, that is, x′ = (T1, . . . , T2k−2, T2k, T2k−1, T2k+1, . . . , Tr).
Observe that h(x′) = h(x). Since the subsets Ti are all disjoint, the only case where
such a k does not exist is when T1, T2, . . . , T2·br/2c are all empty. This occurs in a
single r-tuple x0, where x0 = (∅, ∅, . . . , ∅) if r is even, and x0 = (∅, ∅, . . . , ∅, [n − 1])
if r is odd. When r is even, we directly observe that h(x0) ≡ 2n−1 (mod 2n). When r
is odd we have h(x0) ≡ n! ≡ 2n−1 (mod 2n), using that n is a power of 2. Now, after
pairing up all these terms except the term h(x0), the result follows by

Arn ≡
∑
x∈X

h(x) ≡ h(x0) ≡ 2n−1 (mod 2n).

4.5 Improving the bound

We now improve upon the bounds of Theorems 4.4.3 and 4.4.4.

Proposition 4.5.1. When p is an odd prime and n ≥ 2, the sum Ap
k

n has at least

n− 1− pk · dp(n)

p− 1
+ k

factors of p.

Proof. Consider the term indexed by the pk-tuple (T1, T2, . . . , Tpk) in equation (4.3.2),
and consider the action by the shift (T2, T3, . . . , Tpk , T1). Note that the size of the
orbit of this action is pi, for some 0 ≤ i ≤ k. Grouping these pi identical terms
gives i factors of p. However, this means that our tuple (T1, T2, . . . , Tpk) can be
written as (T1, T2, . . . , Tpi , T1, T2, . . . , Tpi , . . . , T1, T2, . . . , Tpi) up to a cyclic shift, and
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further,
⋃pi

j=1 Tj = [n− 1]. Hence, the number of factors of p in these terms is

i+

pk∑
j=1

carriesp(~c
j) = i+

pk∑
j=1

dp(~c
j) + |Tj| − dp(n)

p− 1

≥ i+

(∑pk

j=1 |Tj|
)
− pk · dp(n)

p− 1

≥ i+
pk−i · (n− 1)− pk · dp(n)

p− 1

= i+
(pk−i − 1) · (n− 1)

p− 1
+
n− 1− pk · dp(n)

p− 1

≥ k +
n− 1− pk · dp(n)

p− 1
,

where in the last step we used (pk−i − 1)/(p − 1) = 1 + p + · · · + pk−i−1 ≥ k − i
and n− 1 ≥ 1.

The above proof uses the action of the cyclic group Zpk to collect terms together.
We can improve the bound of Proposition 4.5.1 in some cases by using a larger group
acting on the r-tuples.

Let q be the prime power pk. We define the group Gq acting on the set [q]. The
generators are indexed by pairs (a, b) where 1 ≤ a ≤ k and 0 ≤ b ≤ pk−a − 1. The
generator σa,b is given by the following product of p-cycles,

σa,b =

pa−1∏
i=1

(i+ bpa, i+ bpa + pa−1, . . . , i+ bpa + (p− 1)pa−1).

To give a geometric picture of the action of this group, consider a balanced p-ary
tree of depth k. This tree has q leaves, which we label 1 through q. Furthermore,
the tree has (q − 1)/(p − 1) internal nodes, which are indexed by the pairs (a, b).
The a coordinate states that the internal node is at depth k − a. The b coordinate
indicates which node at that depth, reading from left to right. The generator σa,b
then cyclically shifts the p children of this node. See Figure 4.1 for an example.

With this geometric picture, it is straightforward to observe that the group has
order p(q−1)/(p−1). Given a q-tuple of sets x = (T1, T2, . . . , Tq), let the group Gq act
on x by permuting the indices. Let Orbx be the orbit of the q-tuple x, that is,
Orbx = {g · x : g ∈ Gq}. Note that the cardinality of the orbit Orbx is a power of p.

Additionally, for an r-tuple x = (T1, . . . , Tr) let f rn(x) = (−1)
∑r

i=1 |Ti| ·
∏r

i=1 αn(Ti).

Proposition 4.5.2. Let q = pk and dp(n) > 0. For a q-tuple x = (T1, T2, . . . , Tq),

the sum
∑

y∈Orbx

f qn(y) has at least

q − 1 + |
⋃q
i=1 Ti| − q · dp(n)

p− 1

factors of p.
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Figure 4.1: A balanced ternary tree of depth 3 with the action of σ2,1 shown.

Proof. The proof is by induction on k. The induction basis is k = 0, that is, q = 1.
Here Orbx consists only of (T ). The number of p-factors are

carriesp(~c) =
dp(~c) + |T | − dp(n)

p− 1
≥ |T | − dp(n)

p− 1
,

since dp(~c) ≥ 0, which completes the basis of the induction.
Now assume that the statement is true for all p-powers strictly less than q. Notice

that fn(y) = fn(x) for all y ∈ Orbx. Hence,

∑
y∈Orbx

fn(y) = |Orbx | · f qn(x) = |Orbx | · (−1)
∑q

i=1 |Ti| ·
q∏
i=1

αn(Ti).

Furthermore, the number of factors of p in the last expression is

logp(|Orbx |) +

q∑
i=1

carriesp(~c
i) = logp(|Orbx |) +

q∑
i=1

dp(~c
i) + |Ti| − dp(n)

p− 1
.

For 0 ≤ b ≤ p − 1 let xb denote the q/p-tuple (Tb·q/p+1, . . . , T(b+1)·q/p), that is,
the q/p-tuple of sets below the node (k − 1, b) in the tree.

First, assume that the stabilizer of x contains an element involving the permu-
tation σk,0. That is, the stabilizer contains a rotation centered at the root (k, 0) of
the tree. Then the leaves below the nodes (k − 1, 0) are the same as the leaves be-
low (k − 1, b). Then the cardinality of the orbit Orbx is the same as the size of the
orbit Orbx0 . Hence we can apply the induction hypotheses to the node (k − 1, 0) of

45



the tree:

logp(|Orbx |) +

q∑
i=1

carriesp(~c
i)

= logp(|Orbx0 |) +

q/p∑
i=1

carriesp(~c
i) +

q∑
i=q/p+1

carriesp(~c
i)

≥
q/p− 1 +

∣∣∣⋃q/p
i=1 Ti

∣∣∣− q/p · dp(n)

p− 1
+

q∑
i=q/p+1

dp(~c
i) + |Ti| − dp(n)

p− 1

=
q/p− 1 + |

⋃q
i=1 Ti| − q · dp(n)

p− 1
+

q∑
i=q/p+1

dp(~c
i) + |Ti|
p− 1

.

If Ti is non-empty, then |Ti| ≥ 1. If Ti is empty, then ~c i is the composition n, so
dp(~c

i) = dp(n) ≥ 1 by our assumption. In both cases we have dp(~c
i) + |Ti| ≥ 1 for all

q/p+ 1 ≤ i ≤ q. Thus, we can apply this inequality

logp(|Orbx |) +

q∑
i=1

carriesp(~c
i) ≥ q/p− 1 + |

⋃q
i=1 Ti| − q · dp(n)

p− 1
+
q − q/p
p− 1

,

which yields the bound.
It remains to consider the case when the stabilizer of x does not contain a rotation

centered at the root (k, 0). Now the cardinality of the orbit of x is given by the product

|Orbx | =
p−1∏
b=0

|Orbxb |.

Hence we apply the induction hypotheses to each child of the root

logp(|Orbx |) +

q∑
i=1

carriesp(~c
i) =

p−1∑
b=0

logp(|Orbxb |) +

q/p∑
i=1

carriesp(~c
b·q/p+i)


≥

p−1∑
b=0

q/p− 1 +
∣∣∣⋃q/p

i=1 Tb·q/p+i

∣∣∣− q/p · dp(n)

p− 1

≥ q − p+ |
⋃q
i=1 Ti| − q · dp(n)

p− 1
,

which yields the bound. This completes the second case and the induction.

Theorem 4.5.3. For r odd and dp(n) > 0, the sum Arn contains at least⌈
r − up(r) + n− 1− r · dp(n)

p− 1

⌉
factors of p.
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Proof. Let r =
∑up(r)

i=1 qi where qi is a power of p. Note that a power pj occurs
at most p − 1 times in this sum. Now define the group G to be the Cartesian

product G =
∏up(r)

i=1 Gqi . Furthermore, let G act on the set [r] by letting the Gqi act
on the interval [q1 + · · ·+ qi−1 + 1, q1 + · · ·+ qi−1 + qi]. The action of the group G can
be viewed as forest consisting of up(r) trees. Finally, let G act on a r-tuple by acting
on the indices of the tuple.

Note that the function f rn is multiplicative in the following meaning. For an r-
tuple x = (T1, . . . , Tr) define xi to be the qi-tuple (Tq1+···+qi−1+1, . . . , Tq1+···+qi−1+qi).
Then we have

f rn(T1, . . . , Tr) =

up(r)∏
i=1

f qin (xi).

Now the sum over an orbit of the r-tuple x = (T1, . . . , Tr) factors as

∑
y∈Orbx

f rn(y) =

up(r)∏
i=1

∑
yi∈Orbxi

f qin (yi).

Hence we can apply Proposition 4.5.2 to each factor, and the sum over the orbit has
at least

up(r)∑
i=1

1

p− 1
·

qi − 1 +

∣∣∣∣∣∣
q1+···+qi⋃

j=q1+···+qi−1+1

Tj

∣∣∣∣∣∣− qi · dp(n)


≥ 1

p− 1
·

(
r − up(r) +

∣∣∣∣∣
r⋃
j=1

Tj

∣∣∣∣∣− r · dp(n)

)
(4.5.1)

=
1

p− 1
· (r − up(r) + n− 1− r · dp(n)) ,

where the last equality comes from the assumption T1 ∪ T2 ∪ · · · ∪ Tr = [n − 1] in
equation (4.3.2).

Again, we can make a stronger statement when p = 2.

Theorem 4.5.4. For d2(n) > 0, the sum Arn contains at least r−u2(r)+n−1−r·d2(n)
factors of 2.

Proof. The case where r is odd follows from Theorem 4.5.3. We retain the notation
of the proof of Theorem 4.5.3. Note that in that proof, we did not use the parity of r
until the very end. Now assume that r is even. For an r-tuple x = (T1, . . . , Tr) define
the function grn(x) = 2n−1−|

⋃r
i=1 Ti| · f rn(x), which is the expression in equation (4.3.1).

Hence the number of factors of 2 in the sum over the orbit∑
y∈Orbx

grn(y) = 2n−1−|
⋃r

i=1 Ti| ·
∑

y∈Orbx

f rn(y)
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is bounded from below by the sum of n − 1 − |
⋃r
i=1 Ti| and the expression (4.5.1).

That is,

n− 1−

∣∣∣∣∣
r⋃
i=1

Ti

∣∣∣∣∣+ r − u2(r) +

∣∣∣∣∣
r⋃
j=1

Tj

∣∣∣∣∣− r · d2(n) = n− 1 + r − u2(r)− r · d2(n).

Theorem 4.5.4 improves upon Theorem 4.4.4 by at least 1 when n is not a 2-power.

Corollary 4.5.5. When n is not a power of 2 and r ≥ 2, then Arn has at least
n− r · d2(n) factors of 2.

Proof. Note that r ≥ 2 implies that r > u2(r), that is, r − u2(r) − 1 ≥ 0. Hence by
Theorem 4.5.4 we have r − u2(r) + n− 1− r · d2(n) ≥ n− r · d2(n).

Corollary 4.5.6. Let n satisfy the inequality 2k ≤ n ≤ 2k+1−1. Then A2
n is divisible

by 22k−1.

Proof. Write n as the sum 2k + a. When a = 0 there is nothing to prove by Corol-
lary 4.4.5. When a ≥ 1 we have d2(n) = u2(a). Furthermore, since for each
2-power 2j, where j ≥ 1, we have 2j − 2 · u2(2j) ≥ 0. But for j = 0 we have
2j − 2 · u2(2j) = −1. Hence for all non-negative a we have a− 2 · u2(a) ≥ −1. Hence
the bound by Corollary 4.5.5 yields n− 2 · d2(n) = 2k + a− 2 · u2(a) ≥ 2k − 1.

4.6 Concluding remarks

Some of the results in this chapter are reminiscent of results in the papers [4, 8, 9],
where there are results which depend on the binary expansion of the parameters.
However, as the reader can see from Tables 4.1 and 4.2, where we present computa-
tional results for the numbers of factors of the primes 2 and 3 in Arn, a lot of work
remains in order to understand these numbers.

In Section 4.5 there were two groups and their actions that helped us in improving
the bounds. The first group is the cyclic group Zpk in Proposition 4.5.1 and the second
group is Gpk . Is there another group and associated group action that would provide
a new bound?

Are there values of n such that A2
n is divisible by 3, other than those values listed

in Example 4.3.5? Similarly, are there values of n other than those in Example 4.3.6
such that 5 divides A2

n?
Corollary 4.5.6 yields a weakly increasing function w(n) such that 2w(n) divides A2

n.
Are there such lower bound functions w(n) for other primes p and other powers r so
that pw(n) divides Arn?

A final question is to understand the asymptotic behavior of Arn as n tends to
infinity. How similar is this behavior to Stirling’s formula? Using the classical in-
equality (x1 + · · ·+xm)/m ≤ r

√
(xr1 + · · ·+ xrm)/m ≤ max(x1, . . . , xm), we obtain the

following bounds on Arn,

2−(r−1)·(n−1) ≤ Arn
(n!)r

≤ 2n−1 ·
(
En
n!

)r
,
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Table 4.1: A comparison of our best prediction of the number of factors of 2 in Arn with
the actual number. Predictions are given first, colored according to whether the result
is given by Proposition 4.2.1, Proposition 4.2.2, Theorem 4.4.4, or Theorem 4.5.4, and
the actual value is given second.

n n2 d2(n) r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

2 10 0 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

3 11 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

4 100 0 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

5 101 1 3, 3 3, 6 2, 2 3, 3 2, 2 3, 3 2, 2 3, 3

6 110 1 4, 4 4, 4 3, 3 4, 4 3, 3 3, 5 3, 3 4, 4

7 111 2 4, 4 3, 3 1, 2 2, 5 2, 2 3, 4 2, 2 4, 5

8 1000 0 7, 7 7, 7 7, 7 7, 7 7, 7 7, 7 7, 7 7, 7

9 1001 1 7, 7 7, 7 6, 7 7, 8 6, 6 6, 6 5, 7 7, 7

10 1010 1 8, 8 8, 8 7, 7 8, 8 7, 7 7, 8 6, 10 8, 8

11 1011 2 8, 8 7, 8 5, 5 5, 6 3, 6 3, 5 3, 5 4, 7

12 1100 1 10, 10 10, 10 9, 9 10, 10 9, 9 9, 11 8, 12 10, 10

13 1101 2 10, 10 9, 9 7, 7 7, 10 5, 7 4, 7 3, 6 4, 11

14 1110 2 11, 11 10, 11 8, 10 8, 13 6, 8 5, 9 3, 7 4, 11

15 1111 3 11, 11 9, 9 6, 7 5, 8 3, 7 3, 8 3, 6 4, 8

16 10000 0 15, 15 15, 15 15, 15 15, 15 15, 15 15, 15 15, 15 15, 15

17 10001 1 15, 15 15, 15 14, 15 15, 17 14, 14 14, 14 13, 14 15, 15

18 10010 1 16, 16 16, 16 15, 15 16, 16 15, 15 15, 17 14, 15 16, 16

19 10011 2 16, 16 15, 15 13, 14 13, 13 11, 12 10, 16 8, 11 9, 14

20 10100 1 18, 18 18, 18 17, 17 18, 18 17, 17 17, 19 16, 18 18, 18
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Table 4.2: A comparison of our best prediction of the number of factors of 3 in Arn
with the actual number. Predictions are given first, colored according to whether the
result is given by Proposition 4.2.1, Example 4.2.5, Example 4.3.5, Theorem 4.4.3,
Proposition 4.5.1, or Theorem 4.5.3, and the actual value is given second.

n n3 d3(n) r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

2 2 1 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

3 10 0 1, 1 0, 0 2, 2 0, 0 1, 1 0, 0 1, 1 0, 0 3, 3

4 11 1 1, 1 0, 0 1, 2 0, 0 1, 1 0, 0 1, 1 0, 0 2, 3

5 12 2 1, 1 0, 0 1, 1 0, 0 1, 1 0, 0 1, 2 0, 0 1, 1

6 20 1 2, 2 0, 0 2, 4 0, 0 1, 2 0, 0 2, 2 0, 0 2, 5

7 21 2 2, 2 0, 0 1, 2 0, 0 1, 1 0, 0 1, 1 0, 0 2, 3

8 22 3 2, 2 0, 0 1, 2 0, 0 1, 2 0, 0 2, 2 0, 0 2, 2

9 100 0 4, 4 0, 0 5, 6 0, 0 4, 4 0, 0 4, 4 0, 0 6, 7

10 101 1 4, 4 0, 0 4, 6 0, 0 3, 4 0, 0 3, 4 0, 0 4, 6

11 102 2 4, 4 0, 0 3, 3 0, 0 1, 2 0, 0 2, 2 0, 0 2, 4

12 110 1 5, 5 0, 0 5, 6 0, 0 4, 5 0, 0 4, 5 0, 0 5, 7

13 111 2 5, 5 0, 0 4, 4 0, 0 2, 3 0, 0 2, 3 0, 0 3, 5

14 112 3 5, 5 0, 1 3, 4 1, 2 1, 2 1, 1 2, 2 1, 1 2, 5

15 120 2 6, 6 0, 0 5, 5 0, 0 3, 5 0, 0 2, 5 0, 0 3, 6

16 121 3 6, 6 1, 1 4, 5 1, 1 1, 3 1, 1 2, 3 1, 1 3, 7

17 122 4 6, 6 0, 0 3, 4 0, 0 1, 2 0, 0 2, 2 0, 0 2, 3

18 200 1 8, 8 0, 0 8, 11 0, 0 7, 8 0, 0 7, 8 0, 0 8, 12

19 201 2 8, 8 0, 0 7, 8 0, 0 5, 7 0, 0 4, 7 0, 0 4, 10

20 202 3 8, 8 0, 0 6, 8 0, 0 3, 5 0, 0 2, 6 0, 0 3, 7
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where En denotes the nth Euler number. Note that the asymptotic behavior of the
Euler number is described by En/n! ∼ 2 · (2/π)n+1. Thus as n tends to infinity, the
quantity Arn/(n!)r is bounded between two exponential functions. From numerical
data we make the conjecture that there is a constant cr such that a good approxima-
tion of log(Arn) is given by n · log(n) + cr · n.

Copyright c© Alexander Thomas Happ, 2018.
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Chapter 5 The boustrophedon transform for descent polytopes

5.1 Introduction

Recall from Section 1.7 that for a word v = v1v2 · · ·vn−1 of length n − 1 in the
letters x and y, we define the descent polytope DPv to be the n-dimensional polytope

DPv = {(x1, x2, . . . , xn) ∈ [0, 1]n : xi ≤ xi+1 if vi = x, and xi ≥ xi+1 if vi = y}.

Descent polytopes briefly appeared in [13, Subsection 4.2], but it was in the paper [3]
they were first studied for their own sake.

The volume of the descent polytope DPv is given by 1/n! times the descent set
statistic. It is a classical result that the descent set statistic is maximized when the
word v is alternating; see [6, 37, 38, 41, 51, 52]. Hence it is natural to ask if there
are other statistics of the descent polytope which are maximized for the alternating
word. The paper [3, Corollary 2.5] proves that the number of i-dimensional faces of
the descent polytope DPv is also maximized for the alternating word.

We show here an alternative way to compute the f -polynomial of the descent poly-
tope DPv. Our method is reminiscent of the boustrophedon transform to compute the
descent set statistics due to de Bruijn [6]; see also [51, 52]. The boustrophedon trans-
form consists of two linear operators Nn −→ Nn+1 defined by (p1, p2, . . . , pn) 7−→
(0, p1, p1 + p2, . . . , p1 + · · · + pn) and (p1, p2, . . . , pn) 7−→ (p1 + · · · + pn, p2 + · · · +
pn, . . . , pn, 0). Applying n− 1 of these two operators on the starting vector (1) yields
a vector of length n whose entries sum to the corresponding descent set statistic;
see [6]. The name boustrophedon was first used by Millar, Sloane, and Young [36] in
a slightly different context, but the name extends naturally to this situation.

Our method to compute the f -polynomial of descent polytopes consists of two
linear operators on the space N[t]3; see equations (5.2.1) and (5.2.2). We obtain
an element in N[t]3 that we call the refined f -polynomial. Again, by summing the
entries we obtain the desired f -polynomial. The advantage of this approach is that
it is straightforward to obtain the necessary inequalities for the refined f -polynomial.
These inequalities immediately yield the maximizing result for the f -polynomial of
the descent polytope. This follows the same outline as the de Bruijn proof for the
descent set statistic.

5.2 The boustrophedon transform

For a polytope P , let the face number fi(P ) denote the number of i-dimensional faces
of P . Define the f -polynomial to be the (finite) sum f(P ) =

∑
i≥0 fi(P )·ti. Note that

we do not include the empty face. That is, the f -polynomial encodes the f -vector as
its coefficients. Another way to express the f -polynomial is as the sum

∑
F t

dim(F ),
where the sum is over all non-empty faces F .

We define the right action of an xy-word on the space N[t]3 as follows. The empty
word 1 is the identity action, so that (p, q, r)◦1 = (p, q, r). For a non-empty xy-word
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the action is defined recursively by the two cases

(p, q, r) ◦ xv = (p, t · p+ (1 + t) · q, p+ q + r) ◦ v, (5.2.1)

(p, q, r) ◦ yv = (p+ q + r, (1 + t) · q + t · r, r) ◦ v. (5.2.2)

We introduce a refinement of the f -polynomial of the descent polytope. Let Hn
c

be the hyperplane xn = c in Rn. For c = 0, 1 let f c(DPv) denote the sum
∑

F t
dim(F ),

where F ranges over all non-empty faces of DPv contained in the hyperplane Hn
c .

Finally, let f 1/2(DPv) be the f -polynomial of the remaining faces, that is, the sum∑
F t

dim(F ) where the face F is not contained in either of the hyperplanes Hn
0 or Hn

1 .
We define the refined f -polynomial of the descent polytope DPv to be the triplet
rf(DPv) = (f 0(DPv), f 1/2(DPv), f 1(DPv)).

Another way to describe the refined f -polynomial is as follows

rf(DPv) = (f(DPv ∩Hn
0 ), t · f(DPv ∩Hn

1/2), f(DPv ∩Hn
1 )).

The middle entry needs a quick explanation. Namely, a face F in the descent polytope
which is not included in the two hyperplanes Hn

0 and Hn
1 does indeed intersect the

hyperplane Hn
1/2. Finally, there is a dimension shift since dim(F∩Hn

1/2) = dim(F )−1,
explaining the factor of t. In fact, the hyperplane Hn

1/2 can be replaced by any
hyperplane Hn

c for 0 < c < 1.

Theorem 5.2.1. Let v be an xy-word of length n−1. Then the refined f -polynomial
of the descent polytope DPv is given by (1, t, 1) ◦ v, that is,

rf(DPv) = (1, t, 1) ◦ v.

Proof. The proof is by induction on the word v. When the word v is empty, the
associated descent polytope DP1 is the line segment [0, 1] having the three faces
x1 = 0, 0 ≤ x1 ≤ 1 and x1 = 1, yielding the triplet (1, t, 1) and completing the
induction base.

Assume now that the result holds for the word v of length n− 1, and consider a
face F of the descent polytope DPv. What faces in the one-dimension-higher descent
polytope DPvx use F as a building block, and how do these faces contribute to the
refined f -polynomial? We have three cases.

(0) The face F is contained in Hn
0 . Then this face yields the following three faces of

DPvx: F×{0}, F×[0, 1] and F×{1}, which contribute
(
tdim(F ), tdim(F )+1, tdim(F )

)
to the refined f -polynomial of DPvx.

(1/2) The face F is between Hn
0 and Hn

1 . Then we obtain the three faces

{(x1, . . . , xn, xn+1) : (x1, . . . , xn) ∈ F, xn = xn+1},
{(x1, . . . , xn, xn+1) : (x1, . . . , xn) ∈ F, xn ≤ xn+1},

and F × {1}, which contribute
(
0, tdim(F ) + tdim(F )+1, tdim(F )

)
.
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(1) The face F is contained in Hn
1 , and it only creates the face F × {1} with

contribution
(
0, 0, tdim(F )

)
.

Note also that DPvx has no other faces. To summarize, we obtain the map (p, q, r) 7−→
(p, t · p+ (1 + t) · q, p+ q + r), which is the linear map described in equation (5.2.1).
This completes the induction step in the case vx. The second case is the word vy,
which is symmetrical to the first case.

Let Σ denote the sum, that is, Σ(p, q, r) = p+ q+ r. Then the next result follows
directly.

Corollary 5.2.2. Let v be an xy-word. The f -polynomial of the descent poly-
tope DPv is given by

f(DPv) = Σ((1, t, 1) ◦ v).

Let star denote reversing the triplet, that is, (p, q, r)∗ = (r, q, p). Furthermore,
let v denote the result of exchanging the letters x and y in the word v. From
equations (5.2.1) and (5.2.2), we obtain that ((p, q, r) ◦ v)∗ = (p, q, r)∗ ◦ v.

Define a partial order on N[t] by letting p ≤ p′ if the polynomial p′ − p only has
non-negative coefficients. Extend this partial order to N[t]3 by comparing entrywise.
That is, (p, q, r) ≤ (p′, q′, r′) if p ≤ p′, q ≤ q′, and r ≤ r′. Note this inequality also
implies that (p, q, r) ◦ v ≤ (p′, q′, r′) ◦ v for any xy-word v.

Lemma 5.2.3. For a triplet (p, q, r) ∈ N[t]3, the following two inequalities hold:
(p, q, r) ◦ xx ≤ ((p, q, r) ◦ xy)∗ and (p, q, r) ◦ yy ≤ ((p, q, r) ◦ yx)∗.

Proof. It is enough to verify the first inequality for the three unit cases (1, 0, 0),
(0, 1, 0) and (0, 0, 1). We have in each case (1, 2t + t2, 2 + t) = (2 + t, 2t + t2, 1)∗,
(0, 1 + 2t + t2, 2 + t) ≤ (2 + t, 1 + 3t + t2, 1)∗, and (0, 0, 1) ≤ (1, t, 1)∗. The second
inequality of the lemma follows by applying the involution ∗.

Proposition 5.2.4. Let v and w be two xy-words such that the last letter of v is the
same as the first letter of w. For a triplet (p, q, r) ∈ N[t]3, we have (p, q, r) ◦ vw ≤
((p, q, r) ◦ vw)∗.

Proof. Factor v and w as v′ · u and u ·w′, where u is either the letter x or y. Then
we have (p, q, r)◦vu = ((p, q, r)◦v′)◦uu ≤ (((p, q, r)◦v′)◦uu)∗ = ((p, q, r)◦vu)∗ by
the previous lemma. Now applying w′ yields the desired inequality (p, q, r) ◦ vw ≤
((p, q, r) ◦ vu)∗ ◦w′ = ((p, q, r) ◦ vw)∗.

Let zn be the alternating word of length n starting with the letter x, and let zn be
the alternating word of length n starting with y. It is now straightforward to obtain
the maximization result of [3, Corollary 2.5].

Theorem 5.2.5. The f -polynomial of the two descent polytopes DPzn−1 and DPzn−1 is
coefficientwise maximal among the f -vectors of all descent polytopes of dimension n.
That is, f(DPv) ≤ f(DPzn−1) = f(DPzn−1) for an xy-word v of length n− 1.
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Proof. Proposition 5.2.4 shows that the refined f -polynomial rf(DPv) = (1, t, 1) ◦ v
is maximized for the two alternating words zn−1 and zn−1. Applying the functional Σ
yields the result.
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