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Abstract

We study new statistics on permutations that are variations on the descent and the
inversion statistics. In particular, we consider the alternating descent set of a per-
mutation a = ala2 " an defined as the set of indices i such that either i is odd and
ai > ui+l, or i is even and au < au+l. We show that this statistic is equidistributed
with the 3-descent set statistic on permutations U = oala 2 ... "n+1 with al = 1,
defined to be the set of indices i such that the triple aiui+10i+2 forms an odd permu-
tation of size 3. We then introduce Mahonian inversion statistics corresponding to the
two new variations of descents and show that the joint distributions of the resulting
descent-inversion pairs are the same. We examine the generating functions involv-
ing alternating Eulerian polynomials, defined by analogy with the classical Eulerian
polynomials E-••, tdes(a)+l using alternating descents. By looking at the number
of alternating inversions in alternating (down-up) permutations, we obtain a new q-
analog of the Euler number En and show how it emerges in a q-analog of an identity
expressing E, as a weighted sum of Dyck paths.

Other parts of this thesis are devoted to polytopes relevant to the descent statis-
tic. One such polytope is a "signed" version of the Pitman-Stanley parking function
polytope, which can be viewed as a generalization of the chain polytope of the zigzag
poset. We also discuss the family of descent polytopes, also known as order polytopes
of ribbon posets, giving ways to compute their f-vectors and looking further into their
combinatorial structure.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

1.1 Background

Descents and inversions are classical and very well studied statistics on permutations.
The work in this thesis revolves around these and more refined statistics, the generat-
ing functions that encode their distribution on the set of permutations of a given size,
and the connections they have with other combinatorial objects such as symmetric
functions and poset polytopes.

1.1.1 Descents and inversions

A permutation has a descent in position i if the element in position i is greater than the
element in position i + 1. The number of descents of a permutation a, denoted d(a) or
des(a) in the literature, is a fundamental statistic whose distribution over the set e,
of permutations of size n gives rise to Eulerian polynomials A,(t) := E,-cs td ( )+ l .

For example, for n = 3 the six permutations 123, 132, 213, 231, 312, and 321, have 0,
1, 1, 1, 1, and 2 descents, respectively, and hence A3(t) = t + 4t 2 + t3 . The Eulerian
polynomials have many properties of classical combinatorial polynomials: they are
symmetric, unimodal, and have only real and non-positive zeroes. They have been
widely generalized and refined. For instance, the basic identity

A( t) M m"tm (1.1)
(1 - t)n+l Em>1

is a special case of a theorem true for all partially ordered sets, in which A,(t) is
the polynomial obtained by adding td(")+l over all linear extensions of the poset, and
instead of m" one has the number of order-preserving maps from the poset to the
set [m] = {1, 2,..., m}. (A partially ordered set, or poset, is a set of elements in which
some, but not necessarily all, pairs of distinct elements satisfy the relation x < y, and
the natural transitivity relation holds: if x < y and y < z, then x < z. A linear
extension of a poset is a way to write a permutation of the elements so that if x < y,
then x appears before y.) The above identity corresponds to the case when the poset
is the n-element antichain, that is, no two elements are comparable.



The number of inversions in a permutation a, denoted inv(a), is the number
of pairs of elements of a such that the larger element appears before the smaller
one. As with the descent statistic, one can encode the distribution of the number
of inversions over G, by a polynomial, which is commonly written as -• qinv(a)

The most notable fact about this polynomial is that it is the q-factorial [n]q!, defined
as the product [1],[2]q ... [n]q, where [i]q = 1 + q+q2 + .. + qi-1 is the q-analog of the
positive integer i. This property makes the number of inversions a Mahonian statistic
on permutations, a common term for permutation statistics that are equidistributed
with the major index, denoted z(a) or sometimes maj(a), and defined as the sum of
positions where a has descents. (For instance, we have z(3142) = 1 + 3 = 4, as 3142
has descents in the first and the third positions.)

There are many results, classical and recent, related to the generating functions
for the distributions of the above statistics, including the joint distribution of two
statistics, one of which is Eulerian, i.e. equidistributed with the number of descents,
and the other is Mahonian. One notable bivariate identity is due to Stanley [18]:

1 + E td(r)qinv(a) . U - (1.2)1t
n>laI l n [n]q! Exp q(U(t - 1)) - t' (1.2)

where Exp,(x) = En>0 q(n)xn/[n]q!. The q 1 specialization reduces Expq,() to ex,
and the above identity to the exponential generating function for the Eulerian poly-
nomials An(t). A good reference featuring discussion of this and other ways of com-
bining classical Eulerian and Mahonian permutation statistics is a recent paper [17]
of Shareshian and Wachs.

1.1.2 The descent set of a permutation

A refined permutation statistic arises if one looks at not just the number of descents,
but the set of positions at which descents occur. The descent set of a permutation a
is denoted D(a), and the number of permutations of size n with descent set S is
denoted 3,(S). There are several ways to express 3n(S) - for example, as an alter-
nating sum of multinomial coefficients or as a determinantal formula (see [19, p. 69]).
The former involves the closely related numbers an (S), defined as the number of per-
mutations of size n whose descent set is contained in S. From the inclusion-exclusion
principle it follows that /3(S) = -Tcs(-1)Fs-T a0(T).

One can ask for a generating function for an(S) or /,(S), and such a function
would need to encode the set D(a) in some way. A subset S C [n - 1] can be turned
into an algebraic object via the monomial quasisymmetric function M-(x 1, X2,.. -
where y - (yl, 2, ... ) is a composition of n, that is, a sequence of positive integers
that add up to n. The function My is a polynomial in infinitely many variables x 1, x 2,

defined as the sum of all monomials of the form xY1 X 2 ... , where i < i2 < .
The standard correspondence between a set S = {si < S2 < . < Sk} C [n - 1] and
the composition co(S) = (sl, S2 - S1, S3 - S2, . . , sk - Sk-1l,n - Sk) of n allows to write
a generating function for the numbers an(S) in terms of monomial quasisymmetric



functions:

Z (nM(S)Mco(s) = (xl + x2 +... )n
sc [n-1]

This identity is equivalent to saying that a,(S) is the multinomial coefficient (coS)) =

sl!(S2-S1)!(s3-S2)!"'
Another natural approach is to associate a subset S of [n - 1] with a monimial

in two non-commuting variables a and b as follows: given S, define us to be the
monomial of degree n - 1, or the (a, b)-word of length n - 1, obtained by writ-
ing a in position i if i S, or b ifi E S. Thus for n = 4 and S = {2,3},
one would obtain us = a b b = a b2. Then the desired generating functions are
Tn(a, b) = Esc[n-1] an(S) us and \I(a, b) = ESC[n-1] On(S) Us, and the aforemen-
tioned inclusion-exclusion principle yields ,n(a, b) = T,(a - b, b).

1.1.3 Enumerating chains of a poset and the cd-index of a
polytope

The polynomial 'I(a, b) is known as the ab-index of the Boolean algebra B,, which
is the poset of subsets of an n-element set ordered by inclusion. The ab-index can be
defined for any finite ranked poset.

A chain of length k, or a k-chain, in a poset is a sequence of pairwise comparable
elements, commonly written in the increasing order: xl < x 2 < ... < Xk+1. A chain
is called saturated if there is no element y in the poset such that xi < y < xj+l for
some i. A poset is called ranked if for every element x, all saturated chains whose
largest (top) element is x have the same length, and this length is the rank of x,
denoted r(x). The rank of the whole poset is the largest rank among all its elements.

Given a ranked poset P, the chain enumerating quasisymmetric function

Fp(x , x 2,...) : M (r( )-r(xo), r(x2)-r(x1), ..., r(k)-r(xk-1))
o<xl <..."<k

where x0o and Xk are a minimal and a maximal element of P, has many interesting
properties. For example, FPxQ = FP FQ, where P x Q is the Cartesian product of
posets; see [3]. Equivalently, one can write down the chain enumerating polynomial

Tp(a, b) := U{r(xi), r(x2), ..., r(xk-1)}
Xo<Xl<<...<Xk

Then the ab-index of P is defined by Ipp(a, b) := Tp(a - b, b).
For a large class of posets, the ab-index can be reduced to a more compact poly-

nomial called the cd-index. This class of posets includes face lattices of polytopes,
whose elements are the faces of the polytope and the empty set, ordered by inclu-
sion. The rank of a face is its dimension plus one, and the rank of the empty set
is 0. Thus the empty set is the unique minimal element, often denoted 0, and the
polytope itself is the unique maximal element whose rank is the dimension of the



polytope. The ab-index of the face lattice of a polytope can be expressed in terms of
variables c = a+ b and d = ab + b a, and the resulting polynomial ýPp(c, d) is called
the cd-index of the polytope (or of the face lattice). Remarkably, the coefficients of
the cd-index of a polytope are positive integers, yielding a variety of combinatorial
results related to these coefficients in the cases of common polytopes. In [22] Stanley
gives a detailed introduction to the theory of the cd-index and discusses the case of
the Boolean algebra which is intimately related to the enumeration of permutations
by their descent sets.

1.1.4 Alternating permutations

An important class of permutations defined in terms of the descent set statistic are
alternating permutations. Depending on the situation, they are defined to be the up-
down permutations, which are permutations 0a = 0.102 ... satisfying a 1 < U2 > U3 <
0 4 > ".., or equivalently D(a) = {2,4, 6,...}, or the down-up permutations, which
satisfy ,1 > T2 < C 3 > 94 < ... or D(a) = {1,3,5,...}. The map 10a2 - - - ,

1 ' 2 n 7 o', where a' = n+ 1-ai, is a natural bijection between up-down and down-up
permutations, hence with either definition the number of alternating permutations of
size n is the same and equals the n-th Euler number E,.

Perhaps the one most significant fact about Euler numbers is the celebrated ex-
ponential generating function

S n  X2  2X3  5x 4  16x 5  61x 6E -- = 1+x + - + + + + + = tanx +sex.
n! 2! 3! 4! 5! 6!

n>O

Since tan x is an odd function and sec x is even, the sequence of odd-indexed Euler
numbers 1, 2, 16, 272, ... is known as the tangent numbers, and the sequence of
even-indexed Euler numbers 1, 1, 5, 61, 1385, ... - as the secant numbers. One way
to derive this generating function is to turn the recurrence relation

n-1 (n • E,-En-x-i = 2En
i=0

into the differential equation

(E(x))2 = 2E'(x) - 1,

where E(x) = E,>o Ex"/n!. Solving with the initial condition E(O) = 1 one obtains
E(x) = tan x + sec x.

More results on enumeration of alternating permutations, including several com-
binatorial interpretations of En, appear in the paper [10] by Kuznetsov, Pak, and
Postnikov.

A now classical generalization of Euler numbers are the q-Euler numbers, defined
combinatorially by enumerating alternating permutations according to the number of



inversions:
E,(q) := qinv(a)

aEAlt't

where Alt' is the set of up-down permutations of size n. The polynomials E,(q)
satisfy

L(n-1)/2J
2 2i E2i(q) -En--2i(q) = E,(q),

i=0 q

where [] = k,[nlq is the q-binomial coefficient. The q-Euler numbers give rise
to the q-analogs of tangent and secant given by

X
n

tanq x+ secqX = En(q). - ]q.
n>O

In his paper [2] Desarminien studies these q-analogs and their connections to sym-
metric functions.

1.1.5 Polytopes related to the descent statistic

To put the combinatorics of permutations in geometric context one often introduces
polytopes whose crucial characteristics, such as volume or number of integer (lattice)
points, carry a combinatorial significance of being equal to the number of permuta-
tions with a certain property.

A great opening example is a celebrated result about slicing an n-dimensional
hypercube with parallel hyperplanes so that the volumes of the resulting pieces are,
up to a common scalar, the coefficients of the Eulerian polynomial An(t). More
specifically, if the unit hypercube C, consisting of all points (x1, x2 , ... , x· ) E R' such
that 0 < xi < 1 is split into n regions by the hyperplanes E xi = k for k C [n-l], then
the relative volumes of these regions are A(n, 1), A(n, 2), ... , A(n, n), where A(n, k)
is the number of permutations of size n with k - 1 descents. In his famous short
paper [21] Stanley gives a combinatorial proof of this fact.

A more straightforward way to partition the unit hypercube Cn into regions cor-
responding to permutations is to define the polytope R,, where a E 6,, to be the
closure of the set of points (x1 , X2,... , x, ) E Cn such that the relative order of the
coordinates xl, x2 , ... , xn is the same as that of the elements of a. For instance, if
a = 312 E E3, then R, is the set of points in R3 satisfying 0 < x 2 < x3 < x 1 < 1.
Permutation of coordinates provides a volume-preserving map transforming R, into
the simplex 0 < xl < x2  .. < n 5 1, hence the volume of R, is 1/n! for
every a E -,.

In the study of finite posets, a frequently arising class of permutations is the set of
linear extensions of a poset called the Jordan-Holder set. To make linear extensions
of an n-element poset permutations of [n], one can choose a labeling of the elements
of the poset with numbers in [n]. Then a linear extension, written down as a list
of labels of elements, becomes a permutation in &n. The union of R, taken over



all linear extensions cr is the order polytope of the poset, normally defined as the set
of points in C, satisfying xi < xj whenever the element of the poset labeled i is
smaller than the element labeled j. A special case directly relevant to the descent set
statistic is the class of n-element ribbon posets Zs, where S is a subset of [n - 1],
whose elements zl, z2, ... , z,, are partially ordered by the relations zi < zi+l for i ý S
and zi > zi+l for i E S. The volume of the order polytope of Zs is 1/n! times the
number of permutations in 6i, with descent set S. Another very closely related poset
polytope is the chain polytope, also a polytope lying inside C, and defined by the
inequalities xi, + xi 2 +- + Xilk < 1 whenever the elements labeled i1 , i2, ..., ik form
a chain in the poset.

A notable connection between the order polytope O(P) and the chain poly-
tope C(P) of the same poset P is that they have a common Ehrhart polynomial
i(O(P), k) = i(C(P), k). For a convex polytope P whose vertices are integer points
(that is, every coordinate of every vertex is an integer) and a non-negative integer k,
the value of i(P, k) is defined to be the number of integer points inside or on the
boundary of P dilated by a factor of k, which can be thought of as the convex hull of
the set of points obtained by multiplying the coordinates of every vertex of P by k. It
turns out that i(P, k) is a polynomial in k of degree equal to the dimension of P and
that it encodes many properties of P: for instance, the volume of P is the leading
coefficient of this polynomial. In [23] Stanley proved the following result relating the
Ehrhart polynomial i(O(P), k) = i(C(P), k) to the order polynomial Q(P, k) of P,
defined to be the number of order preserving maps f : P -+ [k] (that is, f(x) < f(y)
whenever x < y):

i(O(P), k) = i(C(P), k) = Q(P, k + 1).

In particular, for k = 1 this result states that the number of vertices of O(P) and C(P)
is equal to the number of subsets I C P such that if y E I and x < y, then x E I;
such subsets are called the order ideals of P.

1.2 Thesis overview

In the second part of the introduction we present a summary of the two main chapters
of this work. Chapter 4 features an open-ended discussion of topics for future research
inspired by our results.

1.2.1 Variations on the descent and the inversion statistics
Specifying the descent set of a permutation can be thought of as giving information on
how the elements are ordered locally, namely, which pairs of consecutive elements are
ordered properly and which are not, the latter constituting the descents. The original
idea that became the starting point of this research was to generalize descent sets
to indicators of relative orders of k-tuples of consecutive elements, the next simplest
case being k = 3. In this case there are 6 possible relative orders, and thus the analog
of the descent set enumerator 4'(a, b) introduced in Section 1.1.3 would involve 6
non-commuting variables. In order to defer overcomplication, to keep the number



of variables at 2, and to stay close to classical permutation statistics, we can divide
triples of consecutive elements into merely "proper" or "improper", defined as having
the relative order of an even or an odd permutation of size 3, respectively. We call
the improper triples 3-descents, and denote the set of positions at which 3-descents
occur in a permutation a by D3(cr).

Computing the number of permutations with a given 3-descent set S yields a
few immediate observations. For example, the number of permutations a E 6n
with D3(a) equal to a fixed subset S C[n - 2] is divisible by n. This fact becomes
clear upon the realization that D3 () is preserved when the elements of a are cyclically
shifted, so that 1 becomes 2, 2 becomes 3, and so on. As a result, it makes sense
to focus on the set 6, of permutations of [n] with the first element equal to 1. A
second, less trivial observation arising from early calculations is that the number of
permutations in 6, whose 3-descent set is empty is the Euler number E,_1.

This second observation follows from the equidistribution of the statistic D3 on
the set n6,+ with another variation on the descent set statistic, this time on 6n,
which we call the alternating descent set (Theorem 2.1.3). It is defined as the set of
positions i at which the permutation has an alternating descent, which is a regular
descent if i is odd or an ascent if i is even. Thus the alternating descent set D(a) of
a permutation a is the set of places where a deviates from the alternating pattern.

Many of the results in this thesis that were originally motivated by the generalized
descent statistic d3 (a) = ID3(ac) are actually given in terms of the alternating descent
statistic d(a) = D(a) . We show that the alternating Eulerian polynomials, defined
as A,(t) := tE • (o)+l by analogy with the classical Eulerian polynomials, have
the generating function

u" t(1 - h(u(t - 1)))

An (t)>1 n! h(u(t-1)) -t

where h(x) - tan x + sec x, so that the difference with the classical formula (1.2)
(specialized at q = 1) is only in that the exponential function is replaced by tangent
plus secant (Theorem 2.3.2).

A similar parallel becomes apparent in our consideration of the analog of the
identity (1.1) for A,(t). Given a formal power series f(x) = 1 + En>, anxn/ n!, we
define the symmetric function

-yý=n\'/

where -y runs over all compositions of n, and (') and M. are as defined in Section 1.1.2.
Then (1.1) can be written as

(1 - t) n + l  gexp,n (lIM) t,

m>l



and we have
A (t)(1- An (t 9tan + sec,n(lm) - "m

(1 - t)n+l M>lm>1

where 1 m denotes setting the variables x•, X2, ... , Xm to 1 and the remaining variables
to 0 (Proposition 2.4.2).

In Section 2.6 we discuss the generating function 4(a, b) for the number of per-
mutations in 3n, with a given alternating descent set S C [n - 1], denoted /3n(S),
which is analogous to the polynomial I,(a,b) introduced in Section 1.1.2. Recall
that ~ ,(a, b) can be expressed as the cd-index 4,n(c, d) of the Boolean algebra B,,
where c = a + b and d = a b + b a. We show that 'i' can also be written in terms of c
and d as 4~(c, d) = I,,(c, c2 - d) (Proposition 2.6.2), and that the sum of absolute
values of the coefficients of this (c, d)-polynomial, which is the evaluation ID"(1, 2), is
the n-th term of a notable combinatorial sequence counting permutations in en with
no consecutive descents and no descent at the end (Theorem 2.6.6). This sequence
has properties relevant to this work; in particular, the logarithm of the corresponding
exponential generating function is an odd function, which is a crucial property of
both ex and tan x + sec x that emerges repeatedly in the derivations of the results
mentioned above. We discuss the similarities with Euler numbers and alternating
permutations in Section 4.2.

It is natural to wonder if the variations of descents introduced thus far can be
accompanied by corresponding variations of inversions. For alternating descents it
seems reasonable to consider alternating inversions defined in a similar manner as
pairs of indices i < j such that either i is odd and the elements in positions i and j
form a regular inversion, or else i is even and these two elements do not form a regular
inversion. As for 3-descents, we define the accompanying 3-inversion statistic, where
a 3-inversion is defined as the number of pairs of indices (i, j) such that i + 1 < j
and the elements in positions i, i + 1, and j, taken in this order, constitute an odd
permutation of size 3. Let i(a) and i3 (o) be the number of alternating inversions
and 3-inversions of a permutation a, respectively. We find that the joint distribution
of the pair (d, i) of statistics on the set E, is identical to the distribution of the
pair (d3, i3) of statistics on the set n,+1 (Theorem 2.2.7).

It would be nice to produce an analog of the generating function (1.2) for these
descent-inversion pairs, but this task appears to be challenging, and it is not even
clear what form such a generating function should have, as the q-factorials in the
denominators of (1.2) are strongly connected to q-binomial coefficients, which have a
combinatorial interpretation of the number of inversions in a. permutation obtained by
concatenating two increasing runs of fixed size. Nevertheless the bivariate polynomial
A,(t, q) := EC'CI td(a)qi(U) seems to be of interest, and in Section 2.7 we direct our
attention to the q-polynomials that result if we set t = 0. This special case concerns
up-down permutations and, more precisely, their distribution according to the number
of alternating inversions. For down-up permutations this distribution is essentially the
same, the only difference being the order of the coefficients in the q-polynomial, and for
our purposes it turns out to be more convenient to work with down-up permutations,
so we use the distribution of i on them to define a q-analog E,,(q) of Euler numbers.



The formal definition we give is

En(q) := q-Ln2/4J Z qi(a),
aEAltn

where Alt, is the set of down-up permutations of [n]. The polynomial En(q) is monic
with constant term equal to the Catalan number cL[/ 2 ] (Proposition 2.7.2), which
hints at the possibility to express E (q) as the sum of CLn/ 2J "nice" polynomials
with constant term 1. We discover such an expression in the form of a q-analog
of a beautiful identity that represents E, as the sum of weighted Dyck paths of
length 2[n/2J. In this identity we imagine Dyck paths as starting at (0,0) and
ending at (2 [n/2J, 0). We set the weight of an up-step to be the level at which that
step is situated (the steps that touch the "ground" are at level 1, the steps above
them at level 2, and so on) and the weight of a down-step to be either the level of
the step (for even n) or one plus the level of the step (for odd n). We set the weight
of the path to be the product of the weights of all its steps. The sum of the weights
taken over all cLn/ 2J paths then equals En, and if we replace the weight of a step with
the q-analog of the respective integer, we obtain E~(q) (Theorem 2.7.5).

The original q = 1 version of the above identity provides a curious connection
between Catalan and Euler numbers. A notable difference between these numbers
is in the generating functions: one traditionally considers the ordinary generating
function for the former and the exponential one for the latter. An interesting and
hopefully solvable problem is to find a generating function interpolating between the
two, and a potential solution could be to use the above q-analog En(q) of Euler
numbers to write

H(q,x) := (q) " x

n>0[n]q

so that H(1, x) = tan x + sec x and

n>O

1.2.2 Descent polytopes

For a positive integer n and a subset S C [n - 1J, we define the descent polytope DPs
to be the order polytope of the ribbon poset Zs as described in Section 1.1.5. Descent
polytopes occur as a subdivision of the n-cube in the recent work [4] of Ehrenborg,
Kitaev, and Perry.

Our efforts in this part of the thesis are aimed at calculating the f-vector of the
n-dimensional polytope DPs for arbitrary n and S. We represent this f-vector as the
polynomial Fs(t) = fo + fit + f 2t2 + ... + f_ltn- 1 + tn, where fi is the number of
i-dimensional faces of DPs, and the last term t" represents the polytope itself viewed
as an n-dimensional face.

To obtain a closed-form result we once again invoke the technique of encoding the



subset S C [n - 1] by a word in two non-commuting variables, this time x and y
to avoid confusion with a and b that arise in the discussion of the ab-index of DPs.
Let vs be the (x, y)-word constructed in the same way as us in Section 1.1.2, only
using letters x and y instead of a and b. Then we have the following formula (The-
orem 3.3.2):

C Fs(t)vs= 1+ +1y 1
n>l SCn-1] 1 - (t + 1) ((1 - y)- +(1 - x)y)

The above expression is not very helpful if one wants to actually compute Fs(t)
for some particular S. We give two sets of recurrence relations that allow to carry
out such a calculation. The first one (Lemma 3.3.1) is used to derive the main
generating function, and the second one (Lemmas 3.4.1 and 3.4.2) is advantageous
if the composition c(S) = (7y1,2,...), defined by vs = x71 y- 2 XY3 y 74 . . . , does not
have too many parts. We exclude technical details here to avoid complicating this
introductory outline.

Of course, it would be interesting to extend the theory of descent polytopes by find-
ing ways of computing the flag f-vector and, more preferrably, the cd-index of DPs.
In Section 3.5 we give a description of the face lattice of DPs, and in Section A.2 we
list the cd-indices of small descent polytopes.



Chapter 2

Alternating descents and
inversions and related statistics

2.1 Variations on the descent statistic

In this chapter, we investigate permutation statistics that are similar to the descent
and the inversion statistics.

Let 6, be the set of permutations of [n] = {1,..., n}, and let 6, be the set of
permutations ala2... a~ of [n] such that oa = 1. For a permutation a = al...oia,
define the descent set D(a) of o by D(a) = {i I ai > ajr} [n - 1], and set d(a) =
ID(u)l.

We say that a permutation a has a 3-descent at position i if the permutation
UiOi+1Ui+2 , viewed as an element of 53, is odd. Let D3(a) be the set of positions
at which a permutation o has a 3-descent, and set d3(a) = 1D3 (a)l. An important
property of the 3-descent statistic is the following.

Lemma 2.1.1 Let wl be the cyclic permutation (2 3 ... n 1), and leta E E,. Then
D3 (a) = D3(own).

Proof. Multiplying a on the right by wn replaces each ai < n by o-i + 1, and the
element of a equal to n by 1. Thus the elements of the triples aUai+lai+2 that do
not include n maintain their relative order under this operation, and in the triples
that include n, the relative order of exactly two pairs of elements is altered. Thus the
3-descent set of a is preserved. O

Corollary 2.1.2 For all i, j, k, e E [n] and B C [n - 2], the number of permutations
a E , with D3 (Uo) = B and ua = j is the same as the number of permutations with
D3 (a) = B and ak = t.

Proof. The set E, splits into orbits of the form {a, aw, (w,)2,..., a(w)n - 1}, and
each such subset contains exactly one permutation with a j in the i-th position for
all i,j E [n]. LO



Next, we define another variation on the descent statistic. We say that a permu-
tation a = al ... a, has an alternating descent at position i if either ai > Ui+l and i
is odd, or else if ai < i+il and i is even. Let DI(a) be the set of positions at which a
has an alternating descent, and set d(a) = Db(u)l.

Our first result relates the last two statistics by asserting that the 3-descent sets
of permutations in n,+1 are equidistributed with the alternating descent sets of per-
mutations in 6,.

Theorem 2.1.3 Let B C [n - 1]. The number of permutations a E 6n+1 with
D3(a) = B is equal to the number of permutations w E 6 with D(w) = B.

Proof (by Pavlo Pylyavskyy). We construct a bijection between 6~+l and Er, mapping
permutations with 3-descent set B to permutations with alternating descent set B.

Start with a permutation in a E 'n. We construct the corresponding permutation
w in n, by the following procedure. Consider n + 1 points on a circle, and label them
with numbers from 1 to n + 1 in the clockwise direction. For convenience, we refer
to these points by their labels. For 1 < i < n, draw a line segment connecting ao
and ai+l. The segment aiai+l divides the circle into two arcs. Define the sequence

C1, ..., C,, where Ci is one of the two arcs between ai and ai+l, according to the
following rule. Choose C1 to be the arc between al and a2 corresponding to going
from al to -2 in the clockwise direction. For i > 1, given the choice of Ci-1, let Ci be
the arc between ai and oi+1 that either contains or is contained in Ci_1. The choice
of such an arc is always possible and unique. Let e(i) denote how many of the i points
al,... ,a i, including ai, are contained in Ci.

Now, construct the sequence of permutations w(i) = wi) i) , 1 < i < n
as follows. Let w (1) = 4(1). Given w (i-1), set w i = (i), and let i ... wi) be the
permutation obtained from w(i-') by adding 1 to all elements which are greater than
or equal to fi. Finally, set w = w(n)

Next, we argue that the map a H w is a bijection. Indeed, from the subword
wl...wi of w one can recover e(i) since wi is the e(i)-th smallest element of the set
{wl,... ,wi. Then one can reconstruct one by one the arcs Ci and the segments
connecting ao and ai+l as follows. If £(i) > f(i - 1) then Ci contains Ci-1, and if
£(i) 5 f(i - 1) then Ci is contained in Cj_1. Using this observation and the number
£(i) of the points al,...,ai contained in Ci, one can determine the position of the
point ai+i relative to the points oa, ... , ua.

It remains to check that D3 (a) = D)(w). Observe that a has a 3-descent in
position i if and only if the triple of points ai, ai+l, ai+2 on the circle is oriented
counterclockwise. Also, observe that wi > wi-1 if and only if C-1 C Ci. Finally,
note that Ci-1 C Ci D Ci+l or Ci-1 D Ci C Ci+l if and only if triples ai-1, 0i, ai+l
and ai, aC+l, ai+2 have the same orientation. We now show by induction on i that
i E D3 (a) if and only if i E D(w). From the choice of C1 and C2, it follows that
C1 C C2 if and only if 03 > -2, and hence w has an (alternating) descent at position
1 if and only if alaI2 3 1= a•a3 is an odd permutation. Suppose the claim holds for
i - 1. By the above observations, we have wi_ 1 < wi > wj+l or wi_- > wi < wi+l if
and only if the permutations ua_1laeail and a0-ii+li+2 have the same sign. In other



words, i - 1 and i are either both contained or both not contained in D(w) if and
only if they are either both contained or both not contained in D3(a). It follows that
i E D 3(a) if and only if i E D(w). O

An important special case of Theorem 2.1.3 is B = 0. A permutation a cE , has
D(a) = 0 if and only if it is an alternating (up-down) permutation, i.e. al < a 2 >
a3 < - . The number of such permutations of size n is the Euler number En. Thus
we get the following corollary:

Corollary 2.1.4 (a) The number of permutations in 6n,1 with no 3-descents is E,.

(b) The number of permutations in 6n+1 with no 3-descents is (n + 1)E,.

Proof. Part (b) follows from Corollary 2.1.2: for each j E [n + 1], there are E,
permutations in n,+1 beginning with j. O

Permutations with no 3-descents can be equivalently described as simultaneously
avoiding generalized patterns 132, 213, and 321 (meaning, in this case, triples of
consecutive elements with one of these relative orders), and Corollary 2.1.4(b) appears
in the Ph.D. thesis [8] of Kitaev. Thus the above construction yields a bijective proof
of Kitaev's result.

2.2 Variations on the inversion statistic

In this section we introduce analogs of the inversion statistic on permutations corre-
sponding to the 3-descent and the alternating descent statistics introduced in Section
2.1. First, let us recall the standard inversion statistic. For a E 6n, let ai be the
number of indices j > i such that ai > aj, and set code(a) = (al,..., an_l) and
inv(a) = al + - - - + a,_-.

For a permutation a E &, and i c [n - 2], let cf(a) be the number of in-
dices j > i + 1 such that ajo+jlaj is an odd permutation, and set code3 (a)
(ci(a), c(a),.. ., c_-2(a)). Let Ck be the set of k-tuples (al,..., ak) of non-negative
integers such that ai < k + 1 - i. Clearly, code3 (a) E Cn-2

Lemma 2.2.1 Let w' be the cyclic permutation (2 3 ... n 1), and let a E 3,. Then
code3(a) = code3 (aw ).

Proof. The proof is analogous to that of Lemma 2.1.1. O

Proposition 2.2.2 The restriction code 3 :• n -- Cn-2 is a bijection.

Proof. Since 16,1 = lCn-21 = (n - 1)!, it suffices to show that the restriction of code3
to 6, is surjective. We proceed by induction on n. The claim is trivial for n = 3.
Suppose it is true for n - 1, and let (al,.... a_ 2 ) E Cn-2. Let T be the unique
permutation in n-_1 such that code3(T) = (a2 ,... , an-2). For 1 < f < n, let * T



be the permutation in E, beginning with £ such that the relative order of last n - 1
elements of * T is the same as that of the elements of 7. Setting = n - al we obtain
code3 (f • 7) = (al,..., an-2) since e 1 m is an odd permutation if and only if f < m,
and there are exactly al elements of £ * T- that are greater than f. Finally, by Lemma
2.2.1, the permutation a = ( * T7)(Lnc)1-al E 6n satisfies code3(a) = (ai,..., an-2).

Let i3(a) = c((a)+c3(a)+.- - +c3n2(a). An immediate consequence of Proposition
2.2.2 is that i3 (1 * a) is a Mahonian statistic on permutations a E ®n:

Corollary 2.2.3 We have

E qi3(1*") = (1 + q)(1 + q + q2) ...(1 q + q2 + qn-1)

aE~n

For a permutation a E G-, and i E [n - 1], define Bi(a) to be the number of indices
j > i such that oa > aj if i is odd, or the number of indices j > i such that ai < aj if
i is even. Set code(a) = (61(a), ... , ̂ ,_l(a)) E C-_1 and i(a) = 21(a)+ - + +•n_(a).

Proposition 2.2.4 The map code : ~ - C -1 is a bijection.

Proof. The proposition follows easily from the fact that if code(a) = (al,..., an_ 1) is
the standard inversion code of a, then code(o) = (al, n - 2 - a2 , a3, n - 4 - a4,. ..).
Since the standard inversion code is a bijection between 6B and Cn- 1, so is code. O

Corollary 2.2.5 We have

E qi ( ) = (1 + q)(1 + q + q2). (1 + q + q2 + + qn-1)

aE6n

Another way to deduce Corollary 2.2.5 is via the bijection a +-, a v , where

U- = o.1.3 5... ' " ' 6 4 2.-

Proposition 2.2.6 We have zi(a) = inv(av).

Proof. It is easy to verify that a pair (~i, a-y), i < j, contributes to i(a) if and only if
it contributes to inv(av). O

Next, we prove a fundamental relation between the variants of the descent and
the inversion statistics introduced thus far.

Theorem 2.2.7 We have

: td3(a) qi3()= td ( W)~q ( )

aEý5n+ wE®n



Proof. The theorem is a direct consequence of the following proposition.

Proposition 2.2.8 If code 3(U) = code(w) for some a E ~,n+ and w e ,n, then
D 3(a) = D(w).

Proof. The alternating descent set of w can be obtained from code(w) as follows:

Lemma 2.2.9 For w E Gn, write (a,... , an-l) = code(w), and set an = 0. Then
D(w) = {iE [n - 1] I a, + al 2> n - i}.

Proof. Suppose i is odd; then if wi > wi+l, i.e. i E b(w), then for each j > i we
have wi > wj or wj+j < wj or both, so ai + ai+l is not smaller than n - i, which is
the number of elements of w to the right of wi; if on the other hand wi < wi+l, i.e.
i ý D(w), then for each j > i, at most one of the inequalities wi > wj and wi+l < wj
holds, and neither inequality holds for j = i + 1, so ai + ai+1 < n - i - 1, which is
the number of elements of w to the right of wi+l. The case of even i is analogous. O

We now show that the 3-descent set of a can be obtained from (al,..., an-1) in
the same way.

Lemma 2.2.10 For oa E 6n+1, write (al,...,an-1) = code 3(u), and set an = 0.
Then D3 (a) = {i E [n - 1] I ai + ai+l > n - i}.

Proof. Let B = D3 (a), and let a' = u(WO+l)1-) i  E Gn+.. Then oa = 1, and by
Lemmas 2.1.1 and 2.2.1, we have D3(') = D3 (a) = B and code3 (U') = code 3(a).

Suppose that 1 = aoi < au, < a+42. Then i ý B, and for each j > i + 2, at most
one of the permutations aa+lo ua = lau+ja  and ao+la+20' is odd, because lou+lr
is odd if and only if o•, > ou, and a+l'aj+2a is odd if and only if al+1 < oa < aj+ 2.
Hence ai + aj+l is at most n - 1 - i, which is the number of indices j E [n + 1] such
that j > i + 2.

Now suppose that 1 = ai < aU+I > aU+ 2 . Then i E B, and for each j > i + 2,
at least one of the permutations <oa +loj' = l>i+l~' and ai+1aU+2j is odd, because

ri+, > oa makes l+la(i a odd, and oa 1+ < aj makes aUa1 +2a' odd. Thus each index
j > i + 1 contributes to at least one of ai and ai+l, so ai + a±+l Ž n - i, which is the
number of indices j E [n + 1] such that j > i + 1. O

Proposition 2.2.8 follows from Lemmas 2.2.9 and 2.2.10. O

Combining the results of the above discussion, we conclude that both polynomials
of Theorem 2.2.7 are equal to

E tlb(. ,....,an-1)I qa + ..+an-. 1

(al ... ,an- 1) I

where D(al,...- ,an-l) = {It C= [n - 1]1 ai + aj+j >_ n - %I. El



Note that the bijective correspondence

code (code3 )- 1
a E n C E Cn-1 W E n+l

satisfying D(a) = D3 (w) yields another bijective proof of Theorem 2.1.3.
Besides the inversion statistic, the most famous Mahonian statistic on permuta-

tions is the major index. For r E 6n, define the major index of 7 by

maj(a)= : i.
iCD(cT)

Our next result reveals a close relation between the major index and the 3-inversion
statistic i3.

Proposition 2.2.11 For a E 6~, write 9'r = ' . ' a , where , = n - ai.
Then

i3(1 * u) = maj(, T).

Proof. Let a = 1*w CE 6n+-1 Let D(a) = {bl < .-. < bd}. Write =
T(1)T( 2) ... (d+l), where 7 (k) = bk_±1+1cbk_1+2 ... bk and bo - 0 and bd+l = n. In
other words, we split o7 into ascending runs between consecutive descents. Fix an
element aj of a, and suppose ac E T(k). We claim that there are exactly k - 1 indices
i < j - 1 such that uici+lorj is an odd permutation. For each ascending run r(e),
f < k, there is at most one element oi E T(e ) such that ac < aj < eoa+l, in which
case iai0+loj is odd. There is no such element in T(E) if and only if the first element
Ub, 1-+l of T)) is greater than oj, or the last element 9b, of T(e) is smaller than rj. In
the former case we have 9b,- 1 > Ube > oj, SO Ob•-19broj is odd, and in the latter case,
oj > ob, > Obe+l, SO -beb,±+1j is odd. Thus we obtain a one-to-one correspondence
between the k - 1 ascending runs T(1) , ... , r((k-) and elements ai such that oici+loj
is an odd permutation.

We conclude that for each r(k), there are (k - 1) - (bk - bk-1) odd triples iai+1o• j
with oj E 7 (k), and hence

d+l

i3(g) = (k - 1) - (bk - bkl) =
k=1

= (bd+l - bd) + (bd+l - bd + bd - bd-1) + (bd+l - bd + bd - bd-1 + bd-1 - bd-2) ...

d

= (n - bm).
m=1

We have D(w) = {bi - 1, b2 - 1,..., bd - 1}, from where it is not hard to see that
D(w') - {n - bd, n - bd- ,... , n - b1 }. The proposition follows. O

Observe that for a permutation -r with F' = ' •... 7r', the triple i7ri7•7i+2 is odd
if and only if the triple Ti• 2 7i+Ti±1 is even, which in turn is the case if and only if the



triple i+2ri+17ri of consecutive elements of 7rr is odd. Thus d3 (ir) = d3 (rr), and we
obtain the following corollary.

Corollary 2.2.12 We have

E td3() qi3() = td3(wo(n+l))qmaj(w)'
aEOn+l WEen

where w o (n + 1) is the permutation obtained by appending (n + 1) to w.

Proof. To deduce the identity from Proposition 2.2.11, write a = 1 *7r and set w = 7rr,

so that wo (n + 1) = Or.

In the language of permutation patterns, the statistic i3 (a) can be defined as the
total number of occurrences of generalized patterns 13-2, 21-3, and 32-1 in a. (An
occurrence of a generalized pattern 13-2 in a permutation a = ala2 ... is a pair of
indices (i, j) such that i +1 < j and ai, ai+l, and ao have the same relative order as 1,
3, and 2, that is, ai < aj < aj1+, and the other two patterns are defined analogously.)
In [1] Babson and Steingrimsson mention the Mahonian statistic STAT(a), which is
defined as i3 (a) (treated in terms of the aforementioned patterns) plus d(a). In the
permutation a o (n + 1), where a E 6,, the descents of a and the last element n + 1
constitute all occurrences of the pattern 21-3 involving n+1, and hence i3 (o(n+ 1)) =
STAT(a).

2.3 Variations on Eulerian polynomials

Having introduced two new descent statistics, it is natural to look at the analog of
the Eulerian polynomials representing their common distribution on en. First, recall
the definition of the classical n-th Eulerian polynomial:

n

An(t):= td(a)+l -E A(n, k) . tk,
aEE•n k=1

where A(n, k) is the number of permutations in .n with k - 1 descents. There is a
well-known formula for the exponential generating function for Eulerian polynomials:

un t(1 - eu(t- 1))
E(t, u) = An(t). eu(tl)- t (2.1)

n>l

In this section we consider analogs of Eulerian numbers and polynomials for our
variations of the descent statistic. Define the alternating Eulerian polynomials A•(t)
by

n

An(t) := E td(U)+ = E A(n, k). tk,
OEr 6n Ik=1



where A(n, k) is the number of permutations in G3, with k - 1 alternating descents.
Our next goal is to find an expression for the exponential generating function

Un

n>1

We begin by deducing a formula for the number of permutations in Gn with a given
alternating descent set. For S C [n - 1], let 4,3(S) be the number of permutations
a E C, with b(a) = S, and let &n(S) = ETCS )n(T) be the number of permutations

cr E C, with D(a) C S. For S = {sl < ... < sk} C [n - 1], let co(S) be the
composition (Sl, S2 - Sl, S3 - S2, ... ,Sk - Sk-1, n - Sk) of n, and for a composition

= ('yi, . .- , -) of n, let S, be the subset {~y, }i + }2,. . 1 + "" Y7-1} of [n- 1].

Also, define

(n) n ) n!

and

Lemma 2.3.1 We have

and

3n (S) = Z(1)S- )

TCS c o(T) E

Proof. Let S = {si < -.. < Sk} C [n - 1]. Set so = 0 and Sk+1 = n for convenience.
The alternating descent set of a permutation a E ~, is contained in S if and only
if for all 1 < i < k + 1, the subword Ti = s1r_l+lsi+2 ..* * si forms either an up-
down (if si-1 is even) or a down-up (if si-i is odd) permutation. Thus to construct
a permutation a with D(a) C S, one must choose one of the (s n-o,-S,...,Sk-Sk) =

(cs)) ways to distribute the elements of [n] among the subwords ri, ... , Tk+l, and
then for each i E [k + 1], choose one of the Es,_,-s ways of ordering the elements
within the subword 7-. The first equation of the lemma follows. The second equation
is obtained from the first via the inclusion-exclusion principle. O

Now consider the sum

nS xsi - (in(S) - X'S' XJ (2.2)
S[n-l] E SC[n-1] (UCn TDD(a)

(a permutation a contributes to 6,(T) whenever T D D(or)). The right hand side of



(2.2) is equal to

E T()
UEGn TDD(a)

- xd()(1 + x)nl-d (a)
aEGn

as there are ("n-ld(o)) subsets of [n - 1] containing b(ur). Continuing with the right
hand side of (2.3), we get

(+X ) : d(a)+l

aE6n

(1 + x)
x

(2.4)

Combining equations (2.2)-(2.4), we obtain

E) n! x
n>1

+ x y"(1 + n )n (2.5)

Since S -4- co(S) is a bijection between [n - 1] and the set of compositions of n, the
left hand side of (2.5) is

nE,,> ! y -- E
Syn- 1

x
(2.6)i iy

i!
x>1

where the inside summation in the left hand side is over all compositions - =
(1, -y7e) of n. Applying the well-known formula Ej>o Ejyj/j! = tany + secy,
the right hand side of (2.6) becomes

x x(tan y + sec y - 1)
x xe>l - 1(tany secy -

1 - x(tan y + sec y - 1)

Now set t =lx and u = y(l + x). Equating the right hand sides of (2.5) and (2.7),
we obtain

U
n

F(t, u) = E Att) - -
n>1

- x(tan y + sec y -

Finally, applying the inverse substitution x = i- and y = u(1 - t) and simplifying

Sn- l-0d ()

cj(O) (n

Ou It n

1- d(a) xi

(2.3)

- 1).(2.7)

(2.8)
1) j

x d(,7)+IT- D( cQ

" =--

x:

An, I +( AX )

~n
Rc(S))n>1 SCin-1] (CO

1-



yields an expression for F(t, u):

F(t,u) x(tan y + sec y - 1)
1 - z(tan y + sec y - 1)

t tan y + sec y - 1
1 - t 1 -t - (tan y + secy-1)

t - (tan(u(1 - t)) + sec(u(1 - t)) - 1)
1 - t - (tan(u(1 - t)) + sec(u(1 - t)))

Using the property (tan z + sec z)(tan(-z) + sec(-z)) = 1, we can rewrite the
above expression for F(t, u) as follows:

Theorem 2.3.2 We have

t - (1 - tan(u(t - 1)) - sec(u(t - 1)))F(t, u)= tan(u(t - 1)) + sec(u(t - 1)) - t

Thus F(t, u) can be expressed by replacing the exponential function in the for-
mula (2.1) for E(t, u) by tangent plus secant. In fact, omitting the Euler numbers
and working with standard multinomial coefficients gives a proof of (2.1).

A basic result on Eulerian polynomials is the identity

(1 - t) =S mt m . (2.10)
m>1

Our next result is a similar identity involving alternating Eulerian polynomials. For
a partition A of n with ri parts equal to i, define

z\ :=  1T1  -rl! .2 2  r2!....

Theorem 2.3.3 Let

f(m) n EAI-1EA2-1 .. (A)

A Z (A - 1)!(A2- 1)!...

where the sum is over all partitions A = (A1, A2 , ... A(A)) of n into odd parts. Then

An(t)

m>1

Proof. Let us consider the generating function

G(t, u) := (1- +l n!

n>l



Then, by (2.9), we have

G(t, u) = -- .F 1t t
1 - ts 1( I-t

H (m u) :=

t - (tan u + sec u - 1)
(1 - t)(1 - t (tan n + secu))

fn (m)
n>1

This series can be rewritten as follows:

fn (m)H(, u)= n! • u" = -1+
n>l i>O j>0

E2imu22i+1 )J(2i+1)!

Indeed, for each i, the index j in the summation is the number of parts equal to 2i + 1
in a partition of n into odd parts, and it is not hard to check that the contribution of
j parts equal to 2i + 1 to the appropriate terms of fn(m)/n! is given by the expression
inside the summation on the right. We subtract 1 to cancel out the empty partition
of 0 counted by the product on the right but not by H(m, u). Continuing with the
right hand side of (2.12), we get

H(m, u) + 1 = exp E2imu2i+1

i> (2i + 1)!

= exp (m (2.13)

The sum appearing in the right hand side of (2.13) is the antiderivative of sec u =

C>o0 E2i2i/(2i)! that vanishes at u 0; this antiderivative is ln(tan u + sec u).
Therefore

H(m, u) + 1 = (tan u + sec u) m.

Hence we have

E H(m, u) - tm

m>1

It is straightforward to verify that
thus

A(1 (t) u= G(t, u)
( - t)n+l ! -

n>l

Equating the coefficients of uL"/n!
theorem. FO

(tan u + sec u) -t 1
1 - (tan u + sec u) t 1 - t

the right hand sides of (2.11) and (2.14) agree, and

- H(m, u)t m =
m>1 m,n2>1

on both sides of (2.15) completes the proof of the

Define

(2.11)

(2.12)

(2.14)

n! (2.15)

E 
iU 2i+1



In the terminology of [19, Sec. 4.5], Theorem 2.3.3 states that the polynomials
A,(t) are the fn-Eulerian polynomials.

2.4 Eulerian polynomials and symmetric functions

The results of the previous section can be tied to the theory of symmetric functions.
Let us recall some basics. For a composition 7 = (y1i, 2, ... , Yk), the monomial
quasisymmetric function MJ(xI, x2 ,...) is defined by

nx 7 := ... .x x..

1 l<ii<..<ik

Let r(7Y) denote the partition obtained by rearranging the parts of -y in non-increasing
order. Then for a partition A, the monomial symmetric function mA(xl,x 2, ... is
defined as

mx := - M.r .

Let f(x) be a function given by the formal power series

an 
X n

f(x) = l + n!
n>1

Define the symmetric function gf,n(x, X2, ... ) by

gf,n := E () .aay2 .... M = E (n) .axAaA2 .... m
7r-n 7A-n

where by 7y n and A - n we mean that 7 and A are a composition and a partition
of n, respectively. This function can be thought of as the generating function for
numbers like an(S) or &6(S) (the number of permutations oE c, with D(a) c S or
D(o) C S, respectively). Our first step is to express gf,n in terms of the power sum
symmetric functions Pk(X1, 2,...) = .E X.

Consider the generating function

un
Gf(xl, X2, ;u) : gf,n (2.16)

n>O

Then we have

Gf al a2 M=un -= f (Xu). (2.17)
n>0 -yn i>1

Now let us write

Inf (x)) = (2.18)
n>l



Then from (2.17) we have

In Gf = lIn(f (xiu)) = E bnpn(x, x2,...) - . (2.19)
i>1 n>1

Since the power sum symmetric functions pA = pxpP2 ·... , with A ranging over all
partitions of positive integers, form a basis for the ring of symmetric functions, the
transformation pn bnPnun/(n - 1)!, where u is regarded as a scalar, extends to a
homomorphism of this ring. Applying this homomorphism to the well-known identity

p - pn ~ = zp,

n>1 A

where A ranges over all partitions of positive integers, we obtain from (2.19) that

Gf = exp 1: -(bnpnu
n" (n-1)!

-Z= z bb2 p u I 1. (2.20)
A (A,1 )!( - 1)(2 !''""

A

Comparing the coefficients of u" in (2.16) and (2.20), we conclude the following:

Proposition 2.4.1 For a function f(x) with f(0) = 1 and ln(f(x)) = •n>, bx"n/n!
we have

= Zn! b,1bA2 ...

Ag n z (A - 1)!(A 2 - 1)! ...

Two special cases related to earlier discussion are f(x) = ex and f(x) = tan x +
sec x. For f(x) = ex, we have bj = 1, b2 = b3 = ... = 0, and hence gf,n = Pa. In the
case of f(x) = tan x + sec x, we have

Ei-j1 ifi is odd,
0 if i is even,

thus the coefficient at pA in the expression of Proposition 2.4.1 coincides with the
coefficient in the term for A in the definition of the polynomial fn(m) of Theorem 2.3.3.
These observations lead to the following restatements of the classical identity (2.10)
and Theorem 2.3.3.

Proposition 2.4.2 Let g(1m) denote the evaluation of g(x 1, x2,...) at x = z2
... m = , Xm+ 1 = Xm+2 = .'. = O. Then

An(t) lM tM

(1 - t)n"+l m exp,
m>1



and

(1 - t) n±l = gY tan+secn(l m ) t "n.
(1 - t)+l m>l

Proof. We have pi(1m) = m, and hence pA(1m ) = m'(A). O

It is an interesting problem to prove Proposition 2.4.2 without referring to the
results of Section 2.3. Observe that for y = (y71, 2, ... ,Yk) f n, we have M, (1m) =
(") the number of monomials x7• x 2 ... x7k where 1 < il < ... < ik < m, which are
the monomials in the definition of My that evaluate to 1.

It would also be of interest to relate the observations of this section to Schur
functions. One possibility is to consider the following generalization of the complete
homogeneous symmetric function. Let 0pf be the homomorphism of the ring of sym-
metric functions defined by p,, bnpn/(n - 1)!, where the bi's are as in equation
(2.18). Let

hf,n : zlJf (PA) "

t-n

For f(x) = (1 - x)- 1, the homomorphism p is identity, and hf,, is the standard
complete homogeneous symmetric function hn, defined to be the sum of all monomials
in xj, x 2, ... , of degree n. Then (2.20) becomes

Gf = E hf,n u

n>1

(we do not really need u here because of homegeneity). We can define the generalized
Schur function sf,A, where A = (A1 , A2, ... ) F- n, by the Jacoby- Trudy identity

Sf,A := det[ hf, ,-i+j Il<i,j< n

where hf,o = 1 and hf,k = 0 for k < 0 (see [20, Sec. 7.16]). What happens for
f(x) = ex and f(x) =tan + secx?

2.5 The alternating Eulerian numbers

In this section we give a recurrence relation that allows to construct a triangle of
alternating Eulerian numbers A(n, k) introduced in Section 2.3. (Recall that A(n, k)
denotes the number of permutations in 6n with k - 1 alternating descents.) The first
few rows of this triangle are given in Table 2.1.

The following lemma provides a way to compute alternating Eulerian numbers
given the initial condition A(n, 1) = E,.



1 1

2 2 2

5 7 7 5

16 26 36 26 16

61 117 182 182 117 61

272 594 1056 1196 1056 594 272

Table 2.1: Triangle of alternating Eulerian numbers

Lemma 2.5.1 For n > k > 0 we have

S - A(it, j + 1) -A(n - i,k - j + 1)
i=0 j=0

= (n + 1 - k)A(n, k + 1) + (k + 1)A(n, k + 2). (2.21)

Proof. First, suppose that k is even. The left hand side of the equation counts the
number of ways to split the elements of [n] into two groups of sizes i and n - i, arrange
the elements in the first and the second group so that the resulting permutations
have j and k - j alternating descents, respectively, and writing down the second
permutation after the first to form a permtutation of [n]. This permutation has
either k or k + 1 alternating descents, depending on whether an alternating descent
is produced at position i. For a permutation a E E5 with i(a) = k, there are exactly
n + 1 - k ways to produce a by means of the above procedure, one for every choice
of i E D(a) U {0, n}. Similarly, for a E (, such that i(a) = k + 1, there are exactly
k + 1 ways to produce a, one for every choice of i E D(a). The identity follows.

As for odd k, the same argument is valid, except that the quantity A(n-i, k-j+1)
in the left hand side should be interpreted as the number of ways to arrange the
elements of the second group to form a permutation with k - j alternating ascents,
which become alternating descents when the two permutations are concatenated. O

Recall the generating function

tkun
F(t, u)= A(,k). n!

n,k>l

introduced in Section 2.3. An alternative way to express F(t, u) and obtain the
result of Theorem 2.3.2 is by solving a partial differential equation arising from the
recurrence of Lemma 2.5.1.



Proposition 2.5.2 The function F(t, u) is the solution of the partial differential
equation

8F 8F
F 2 -F = u - -  +(1 -t) O (2.22)

with the initial condition F(O, u) = tan u + sec u.

Proof. Since A(n, 0) 0= for all n, the left hand side of (2.21) is n! times the coefficient

of tkun in (F(t, u)) 2 , which we denote by [tkun]F 2 . The right hand side of (2.21) is

n!(A(n, k + 1) A(n, k + 1) kA(n, k + 1)+ (k + 1)A(n, k + 2)

(n - 1)! n! n! n!

=n! ([tkun]Fu + {tk u]F - [tk-lunlFt + [tkUn]F

= n!. [tk u] (uF,+F - tFt + Ft) ,

where Ft and F, denote partial derivatives of F with respect to t and u. Equating
the above with n! - [tkun ]F2 proves (2.22). O

Upon reparameterization u = wez and t = 1 + e- z , we obtain from (2.22) that

Fz = wezFu - e-zFt
= uF+(1 - t)Ft
= 2 - F, (2.23)

where F,, Ft, and Fz are partial derivatives. Hold w fixed and define f(z) :=
F(wez, 1 + e-z). Then (2.23) turns into an ordinary differential equation:

df= f 2 -f,
dz

which yields
f-i

= ceZ

where c depends only on w = u(1 - t). Hence

F-1
F = ug(w) (2.24)

for some function g(w). To find this function, set t = 0 in (2.24), so that w becomes u:

tan u + sec u - 1 1 + tan - sec u
g(u) =

u(tan u + sec u) u

Finally, the formula of Theorem 2.3.2 can be obtained from the expression

1F(t, u) = 1
1 - ug(u(1 - t))



2.6 The generating function for the alternating de-
scent set statistic

Besides the generating polynomials for the alternating descent statistic, another nat-
ural generating function to consider is one counting permutations by their alternating
descent set. We begin by stating some well-known facts about the analogous gener-
ating function for the classical descent set statistic.

Fix a positive integer n. For a subset S C [n - 1], define the monomial us in two
non-commuting variables a and b by us = UlU2 ... Un-1, where

i a if if S,
b ifiES.

Consider the generating function

n~(a,b) := • ,(S)us,
sc[n-1]

where P3(S) is the number of permutations in $n with descent set S. The poly-
nomial X '(a, b) is known as the ab-index of the Boolean algebra B,. A remarkable
property of ~I(a, b) (and also of ab-indices of a wide class of posets, including face lat-
tices of polytopes) is that it can be expressed in terms of the variables c = a + b and
d = ab + b a. The polynomial 4,(c, d) defined by Wf(a, b) = (,(a+b, ab+ba)
is called the cd-index of B,.

The polynomial 4%(c, d) has positive integer coefficients, for which several com-
binatorial interpretations have been found. Here we give one that will help establish
a connection with the alternating descent set statistic. We proceed with a definition.

Definition 2.6.1 A permutation is simsun if, for all k > 0, removing k largest
elements from it results in a permutation with no consecutive descents.

Let SS, be the set of simsun permutations in G, whose last element is n. (Thus
SS, is essentially the set of simsun permutations of [n- 1] with an n attached at the
end.) It is known that I SS, I = E,.

For a permutation a E SS, define the (c, d)-monomial cd(a) as follows: write out
the descent set of a as a string of pluses and minuses denoting ascents and descents,
respectively, and then replace each occurrence of " - + " by d, and each remaining
plus by c. This definition is valid because a simsun permutation has no consecutive
descents. For example, consider the permutation 423516 E SS6 . Its descent set in the
above notation is " - + + - + ", and thus cd(423516) = dcd.

The simsun permutations provide a combinatorial expression for the cd-index
of B,:

An(c,d) = cd(a). (2.25)
aESSn



Now let us define the analog of I,n(a, b) for the alternating descent set statistic:

SC[n-1]

Proposition 2.6.2 There exists a polynomial In(c, d) such that

(n (a+b, a b ba) = ~n(a, b),

namely, I,(c, d) = ,n(c, c2 - d).

Proof. Note that Xi',(a, b) is the polynomial obtained from T(a, b) by switching
the letters at even positions in all the (a, b)-monomials. For example, we have
\X3(a,b) = aa+2ab+2ba+bb, so Xý3(a,b) = ab+2aa+2bb+ba. In terms
of the variables c and d, this operation corresponds to replacing d = a b + b a with
aa+bb = c2 - d, and c = a+ b with either a + b or b + a, which in any case is
still equal to c. OI

The polynomial ,n(c, d) has both positive and negative coefficients, but the poly-
nomial In(c, - d) = 41,(c, c2 + d) has only positive coefficients. It would be nice to
give a combinatorial interpretation for these coefficients similar to that of the coeffi-
cients of 4I•(c, d), so that the coefficients of c,(c, - d) enumerate permutations of
a certain kind according to some statistic. In what follows we show that the sum of
the coefficients of c,(c, - d) is equal to the number of permutations containing no
consecutive descents and not ending with a descent. Let R, denote the set of such
permutations of [n].

In working with the different kinds of permutations that have emerged thus far
we use the approach of min-tree representation of permutations introduced by Hetyei
and Reiner [7]. To a word w whose letters are distinct elements of [n], associate a
labeled rooted planar binary tree according to the following recursive rule. Let m be
the smallest letter of w, and write w = w 1 0 m o W2, where o denotes concatenation.
Then form the tree T(w) by labeling the root with m and setting the left and the
right subtrees of the root to be T(wi) and T(w2), respectively. To the empty word we
associate the empty tree. Thus T(w) is an increasing rooted planar binary tree, i.e.
the distinction between left and right children is being made. For example, T(423516)
is the tree shown in Figure 2-1.

To get the word w back from the tree T(w), simply read the labels of the nodes
of T(w) in topological order.

Next, we formulate some of the permutation properties from the above discussion
in terms of the min-tree representation.

Lemma 2.6.3 A permutation oa has no consecutive descents if and only if the tree
T(u) has no node whose only child is a left child, except maybe for the rightmost node
in topological order.
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Figure 2-1: The tree T(423516)

Proof. Write a = s818s2  Sn and T = T(o). For convenience, we refer to the nodes
of T by their labels. We have si > sa+l if and only if sj+l is an ancestor of si in T.
Since si and Si+l are consecutive nodes in the topological reading of T, it follows
that si+l is an ancestor of si if and only if si has no right child. Thus we have
Si > si+1 > Si+2 if and only if si+l has no right child and si is a descendant of si+l,
i.e. si+l has a lone left child. The proposition follows. O

Proposition 2.6.4 A permutation a is in Rn if and only if the tree T(a) has no
node whose only child is a left child.

Proof. We have sn-1 > sn if and only if the rightmost node s, has a (lone) left child.
The proposition now follows from Lemma 2.6.3. O

Proposition 2.6.5 A permutation o is in SS, if and only if the rightmost node
of T(a) is labeled n, no node has a lone left child, and for every node s not on the
rightmost path (the path from the root to the rightmost node) that has both a left child
t and a right child u, the inequality t > u holds.

Proof. If T(a) has a node s not on the rightmost path whose left child t is smaller than
its right child u, then removing the elements of a that are greater than or equal to u
results in a permutation a' such that in T(a'), the node s has a lone left child t and
is not the rightmost node, meaning that a' contains a pair of consecutve descents, by
Lemma 2.6.3. If on the other hand T(a) has no such node s, the removing k largest
elements of a does not create any nodes with a lone left child except maybe for the
rightmost node. O

One can see that for a = 423516, the tree T(a) shown in Figure 2-1 satisfies all
conditions of Proposition 2.6.5, and hence 423516 E SS 6. Next, we consider the sum
of coefficients of I,(c, - d).

Theorem 2.6.6 The sum of coefficients of •i(c, - d) is IR•I.



Proof. The sum of coefficients of 1P,(c, - d) is ~,(1, -1) = 4• (1, 2), which equals

S 2 d(a),
aESSn

where d(o) is the number of d's in cd(a), or, equivalently, the number of descents
of u. Since the descents of a correspond to nodes of T(u) that have no right child

(except for the rightmost node, which corresponds to the last element of a), it follows
from Proposition 2.6.4 that the descents of a permutation a E GR, correspond to the
leaves of T(a) minus the rightmost node. Thus for a E R, we have that 2

d(") is the
number of leaves in T(a) minus one, which equals the number of of nodes of T(a)
with two children. (The latter can be proved easily by induction.)

For a min-tree T and a node s of T with two children, let F,(T) be the tree
obtained by switching the left and the right subtrees of T. (This operation is called
the Foata-Strehl action on the permutation encoded by T; see [7].) For example, if T
is the tree T(423516) shown above, then F2(T) is the tree shown in Figure 2-2.

1

6

Figure 2-2: The tree F2(T(423516))

Note that the action of F, preserves the set of nodes with two children and does
not create any nodes with a lone left child if the original tree contained no such
nodes. Hence the set T(R,) is invariant under this action. Observe also that the
operators F, commute and satisfy F2 = 1. Thus these operators, viewed as operators
on permutations corresponding to trees, split the set R, into orbits of size 2d( ),
where a is any member of the orbit. It remains to show that each orbit contains
exactly one permutation in SS,.

Given G E Rn, there is a unique, up to order, sequence of operators F,, where s
is on the rightmost path, that, when applied to T(a), makes n the rightmost node
of the resulting tree. An example is shown in Figure 2-3. (One needs to find the
closest ancestor of n on the rightmost path and then apply the corresponding operator
to bring the node n closer to the rightmost path.) Once n is the rightmost node,
apply the operator F, to all nodes s with two children for which the condition of
Proposition 2.6.5 is violated. We obtain a tree corresponding to a permutation in SS,,
in the orbit of o . To see that each orbit contains only one member of SS,, observe



F2(F (T))

Figure 2-3: The action of F1 and F2 on a min-tree

that the action of F, preserves the sequence of elements on the path from 1 to k
for each k, and given the sequence of ancestors for each k E [n], there is a unique
way of arranging the elements of [n] to form a min-tree satisfying the conditions of
Proposition 2.6.5: first, set the path from 1 to n to be the rightmost path, and then
set all lone children to be right children, and for all nodes with two children, set the
greater element to be the left child.

The proof is now complete. O

Table 2.2 lists the polynomials 'n(c, d) for n
these polynomials for n < 9.

< 6. Section A.1 contains values of

D,(c, d)
1

c

2 c2 - d

5 3 -2(c d + dc)

16 c4 -7(c 2 d+d c2) - 5cdc+4d 2

61 c-26(c3d+dc3 ) - 21(cd c2 + c 2 dc) + 10 dcd+12(cd 2 +d 2 c)

Table 2.2: The polynomials i,(c, d)

2.7 A q-analog of Euler numbers

Let A,(t, q) denote the bivariate polynomial of Theorem 2.2.7:

Ain(t, q) : q
aE6n

FI (T)



Then the alternating Eulerian polynomial A,(t) is just the specialization tA,(t, 1).
We also noted earlier (Corollary 2.2.5) that

A,(1,q) = [n]q!,

the classical q-analog of the factorial defined by [n]q! := [1]q[2]q, .. [n]q, where [i]q

1 + q + q2 + - - 1+ qi- 1 . One can ask about other specializations of A,(t, q), such
as the ones with t or q set to 0. Clearly, we have A,(t, 0) = 1 because the only
permutation c E 6, for which i(a) = 0 also satisfies d(a) = 0. The case of t = 0 is
more curious and is the subject of this section.

We have d(a) = 0 if and only if o is an up-down permutation. Thus An(0, 1)
E,, and the specialization A•(0, q) gives a q-analog of the Euler number E, with
coefficients encoding the distribution of the number of alternating inversions among
up-down permutations. The following lemma is key in understanding this q-analog.

Lemma 2.7.1 For a permutation a E n,, let code(a) = (2, 2 , n-l1). Then a is
up-down (resp., down-up) if and only if • + i+1 i< n - 1 - i (resp., ý + i+1 > n- i)
for all i.

Proof. This fact is just a special case of Lemma 2.2.9. EO

For various reasons it is more convenient to study the distribution of i on down-up,
rather than up-down, permutations. The q-analog obtained this way from down-up
permutations is essentially equivalent to An(0, q), the difference being the reverse
order of coefficients and a power of q factor. It follows from Lemma 2.7.1 that for a
down-up permutation o E Gn, we have

i() > (n-1)+(n-3)+(n-5)+ ... = . (2.26)

Therefore let Alt, be the set of down-up permutations in 6n, and define

E,(q) := q-Ln2/4i S qi(a).
•crEAltn

The values of E_(q) for small n are given in Table 2.3. We have the following facts
about Ek(q).

Proposition 2.7.2 (a) The polynomial E•(q) is monic and has degree I .

(b) An(0,q) = qL(n - 1)2/4] . En(q-1)i

(c) E£(0) = C[n/2], the [n/2J-th Catalan number.

Proof. (a) By Proposition 2.2.4, the unique permutation o E En with the maximum
possible number of alternating inversions is the one for which code(a) = (n - 1, n -
2,... , 1). By Lemma 2.7.1, or by simply realizing that o = no 1 o (n - 1) o 2 o...,



n7

0,1,2

3

4

5

6
7

E (q)
1

l+q

2 + 2q + q2

2 + 5q + 5q2 + 3q3 + q4

5 + 12q + 16q 2 + 14q3 + 9q4 + 4q5 + q6

5 + 21q + 42q2 + 56q3 + 56q4 + 44q5 + 28q6 + 14q7 + 5q' + q9

Table 2.3: The polynomials En(q) for n < 7

one can see that a E Altn. We have i(a) = n(n - 1)/2, and thus the degree of En(q)
is n(n - 1)/2 - [n2/4J = [(n - 1)2/4].

(b) This identity is an algebraic restatement of an earlier observation.

(c) The constant term En(0) of En(q) is the number of permutations a E Alt, with
exactly [n2/4] alternating inversions. By (2.26), these are precisely the permutations
in Altn satisfying aj + ci+1 = n - i for odd i. Let a E Alt, be a permutation with this
property.

For j > 1, we have c2j > n - 2j - 2j+l1 = C2j+2 - 1. Thus a2, C4, ... c2[n/2j
is a strictly decreasing sequence of non-negative integers satisfying C2j < n - 2j
(for convenience, let a, = 0). Reversing the sequence and reducing the k-th term
by k - 1 for all k yields a bijective correspondence with sequences of [n/2J non-
negative integers whose k-th term does not exceed k - 1, and it is well known that
there are c[n/2J such sequences. Since a2j-1 is uniquely determined by 62j, it follows
that there are c[n/2J permutations a E Alt, with [n2/4] alternating inversions. O

It is curious to note that the permutations in Altn with Ln2/4J alternating inver-
sions can be characterized in terms of pattern avoidance, so that Proposition 2.7.2(c)
follows from a result of Mansour [11] stating that the number of 312-avoiding down-up
permutations of size n is C[n/2j -

Proposition 2.7.3 A permutation a E Alt, has Z(a) = Ln2/4J if and only if a is
312-avoiding.

The following lemma implies the above proposition and is useful in the later
discussion as well.

Lemma 2.7.4 For a permutation a = ala2 ... "an E Altn, the number i(a) is equal
to Ln2/4] plus the number of occurrences of the generalized pattern 31-2 (that is, the
number of pairs of indices i < j such that ai+l < aj < ai).

Proof. For i E [n - 1], define

S·= ( {j  > >iandai>a j } ifiisodd;
j {j > i and ai < aj} if i is even.



Thus c• = ISI. Let i be odd. Then ai > oi+1, so i + 1 E Si and for every j > i + 1,
either aj < ai or aj > Oi+1, or both. Hence {i + 1,i + 2,...,n- 1} C S, U Si+l and
ýi + ci+ =- n - 1 - i + Si n S+ •I. But Si n S+1 is the set of indices j > i + 1 such
that ai•1 < aj < ao, i.e. the number of occurrences of the pattern 31-2 beginning at
position i. Therefore the total number of alternating inversions is K-i odd (n - 1- i)

Ln2/4] plus the total number of occurrences of 31-2. O

Proof of Proposition 2. 7.3. Suppose that a permutation ac E Alt, has exactly [n 2/4J
alternating inversions but is not 312-avoiding. Choose a triple i < k < j such that

Uk < Uj < ai and the difference k - i is as small as possible. Suppose that k - i > 2.

If crk-1 < oj, then we have 0 k-1 < o-j < oi, contradicting the choice of i, k, and j. If

Uk-1 > uj, then we have k < cyj < O-k-1, also contradicting the choice of i, k, and j.
Hence k = i + 1, and we obtain a contradiction by Lemma 2.7.4. O

In view of Lemma 2.7.4, we can write E,(q) as

En(q)= - qOCC31-2(a)
aEAltn

where occ31_2 (u) is the number of occurrences of 31-2 in u. In what follows, we use
this expression to show how a q-analog of a combinatorial identity representing the
Euler number E, as a weighted sum of Dyck paths yields a refined identity of E,(q).

First, we need to introduce Dyck paths, which are perhaps the most famous com-
binatorial objects counted by Catalan numbers. A Dyck path of length 2m is a
continuous path consisting of line segments, or steps, each of which connects an inte-
ger point (x, y) with either (x + 1, y - 1) or (x + 1, y + 1), such that the path starts
at (0, 0), ends at (2m, 0), and never goes below the x-axis, that is, contains no point
with a negative y-coordinate. The identity we are about to describe involves asso-
ciating a certain weight with every step of a Dyck path, defining the weight of the
entire path to be the product of the weights of the individual steps, and adding the
weights of all Dyck paths of length 2m to obtain E 2m or E 2m,+, or, in the case of the
refined identity, E2m(q) or E2m,+1 (q)-

For a step in a Dyck path, define the level of that step to be the y-coordinate of
the highest point of the corresponding segment of the path. Given a Dyck path D of
length 2m, let f(i) be the level of the i-th step of D. Define

WDi(9) :: [,(i)]q

and
o f [((i)]q, if the i-th step is an up-step;
W'(q) [(i) + 1]q, if the i-th step is a down-step.

As mentioned above, we set the weight of the entire path to be the product of step



2m

=fwV',i(q);

i=1

2m

i=1

Theorem 2.7.5 We have

and

wV(q) = E2(q)

EwV(q) = E2m+l(q),
7V

where both sums are taken over all Dyck paths of length 2m.

For example, for m = 2 there are two Dyck paths, shown in Figures 2-4 and 2-5
with step weights given by w,,i(q) and w;,i(q). From these weighted paths, we get

1 +(1+ q)2 = 2 + 2q + q2 =_ 4 (q)

(1 + q)2 + (1 + q) 2(1 + q + q2) = 2 + 5q + 5q 2 + 3q3 + q4 = E5(q).

1+ 1+q

1 \1 1 \1

We = 1 we = (1 + q)2

Figure 2-4: Weighted Dyck paths adding up to E4(q)

1+ 1 + q + q2

1+ +q

WO = (1 + q)2 wo = (1 + q)2(1 + q + q2)

Figure 2-5: Weighted Dyck paths adding up to E5 (q)

weights:

w;(q)

wD(q)

and

1+q



In the classical case q = 1, the identities of Theorem 2.7.5 are due to Frangon
and Viennot [5], and are discussed in a broader context in the book [6, Sec. 5.2]
by Goulden and Jackson. The proof of our identities is a refinement of the original
argument.

Proof of Theorem 2.7.5. Fix a positive integer n > 1, and let m = [n/2]. Recall that
in Section 2.6 we associated to a permutation ua E n, an increasing planar binary
tree T(a) with vertex set [n]. Extending the argument in the proof of Lemma 2.6.3,
we conclude that ac is in Alt, if and only if the tree T(o) has no vertices with a lone
child, except for the rightmost vertex in the case of even n, which has a lone left child.
For a E Altn, define the corresponding Dyck path D(u) of length 2m as follows: set
the i-th step of the path to be an up-step if vertex i of T(a) has at least one child,
and set the i-th step to be a down-step if vertex i is a leaf of T(U). We leave it as an
exercise for the reader to check that D(a) is a valid Dyck path.

Fix a Dyck path ED of length 2m. We claim that

qOCCl _ f w'(q), if n is even;q OCC31-2 (U) - D iS8Ve (2.27)
Y D w(q), if n is odd.

aEAltn : 'D(U)=D

To prove the claim, consider for every i the subtree Ti(a) obtained from T(a) by
removing all vertices labeled with numbers greater than i. For the sake of clarity, one
should imagine the "incomplete" tree Ti(a) together with "loose" edges indicating
those edges with parent vertices in Ti(a) that appear when Ti(a) is completed to T(o).
For even n one should also think of a loose edge directed to the right coming out of the
rightmost vertex of every tree Ti(a) including T,(a) = T(a) - this way the number
of edges coming out of a vertex of Ti(a) is always 0 or 2.

Observe that for 1 < i < 2m, the number of loose edges of Ti(a) is equal to
yD(i) + 1, where y-,(i) is the y-coordinate of the point of D whose x-coordinate is i.
Indeed, TI(a) has two loose edges, and Ti+l(a) is obtained from Ti(a) by attaching
a non-leaf to a loose edge, thus increasing the number of loose edges by one, if the
i-th step of D is an up-step, or by attaching a leaf to a loose edge, thus reducing the
number of loose edges by one, if the i-th step is a down-step. Hence we can count
the number of permutations a E Altn with D(a) = D by multiplying together the
number of possibilities to attach a vertex labeled i + 1 to Ti(a) to form Ti+ (U) for
all 1 < i < n - 1. The number of valid places to attach vertex i + 1 is equal to the
number of loose edges in Ti(a) unless i + 1 is a leaf of T(u) and n is even, in which
case we have one fewer possibilities, because we are not allowed to make the rightmost
vertex a leaf. Note that the level £(i) of the i-th step of D is equal to yD(i) if it is an
up-step, or yD(i) + 1 if it is a down-step. Comparing with the choice of step weights,
we conclude that the number of possibilities to attach vertex i + 1 is w,i+1 (1) if n is
even, or w , +1(1) if n is odd. (For odd n and i = n - 1 the latter assertion makes no
sense as D does not have an n-th step; however, there is just one way to attach the
last vertex, so the counting argument is not affected.)

The above computation proves the q = 1 case of (2.27). To prove the general
claim, we need to show that if there are p possibilities to attach vertex i + 1 to a loose



edge of T,(a), then the number of occurrences of the 31-2 pattern "induced" by the
attachment is 0 for one of the possibilities, 1 for another possibility, 2 for another,
and so on, up to p- 1. Then choosing a place to attach vertex i + 1 would correspond
to choosing a term from 1+ q + q2 +... + qp-1 = [p],, the weight of the i-th step of D,
which is a factor in the total weight of D, and (2.27) would follow.

It remains to specify which occurrences of 31-2 in a are induced by which vertex
of T(a). Suppose there are p possible places to attach vertex i + 1. Order these
places according to the topological order of tree traversal, and suppose we choose to
put vertex i + 1 in the k-th place in this order. Let rl, r2, ... , rk-1 be the numbers of
the vertices immediately following the first k - 1 places in the topological order, and
let aj denote the label of the rightmost vertex of the eventual subtree of T(a) rooted
at what is currently the j-th of these k - 1 places. Although aj is not determined
at the time vertex i + 1 is attached, it is certain that rj < i + 1 < aj and that aj
and ry will be consecutive elements of a, with i + 1 located somewhere to the right,
resulting in an occurrence of 31-2. Thus the choice to put vertex i + 1 in the k-th
available place induces k - 1 occurrences of 31-2, one for each 1 < j < k - 1. It is
not hard to check that each occurrence of 31-2 is induced by some vertex of T(a),
namely, the vertex corresponding to the rightmost element forming the pattern, in
the way described above.

1

X A 7 a X

Figure 2-6: An intermediate tree T6(a) and its completion T(a)

Let us illustrate the argument with an example. The left side of Figure 2-6 shows
the tree T6(a) for some a E Altlo, with the four potential places for vertex 7 marked
A, B, C, and D. If vertex 7 is put in position A, then it induces no occurrences of
31-2. If it is put in position B, it induces one occurrence of 31-2 as the triple a5-7 is
created, where a stands for the number of the rightmost vertex in the subtree rooted
at A in the eventual tree. If vertex 7 is put in position C, then in addition to the
triple a5-7, one obtains a second 31-2 triple bl-7. Finally, putting vertex 7 in position
D results in a third 31-2 triple c2-7. (Here b and c are defined by analogy with a.)
On the right side of Figure 2-6 we have a possible completion of the tree on the left,
which corresponds to the permutation a = 10 5 8 1 4 3 7 2 9 6.

The theorem now follows by taking the sum of (2.27) over all Dyck paths D of
length 2m. El

1

-r 1 ;I





Chapter 3

The f-vector of the descent
polytope

3.1 Preliminaries

For a set S C [n - 1], define the descent polytope DPs to be the set of points

(x 1 ,... ,x,) in RfB such that 0 < xi _ 1, and

Xi > 2i+1 if i S,
xi x 2 i+ if i S.

Thus DPs is the order polytope of the ribbon poset Zs = {zl, z2,. . ., zn defined
by the cover relations zi" > zj+l if i E S and zi <. zi~+ if i 0 S (cf. Section 1.1.5).
Therefore the volume of DPs is equal to the number of linear extensions of Zs or,
equivalently, the number of permutations in Gn with descent set S, times 1/n!.

In this chapter our primary goal is to compute the f-vector of the descent poly-
tope DPs. Recall that for an n-dimensional polytope, the f-vector is the integer
vector (fo, fi,... , fn-1), where fi is the number of i-dimensional faces in the poly-
tope. For S C [n - 1], define the polynomial

n

Fs(t) :=E f jt '

i=O

where (fo, fl,... , fn-1) is the f-vector of DPs, and fn = 1 by convention. To simplify
notation, we will often write Fs instead of Fs(t). As we show in Section 3.2, Fs can
be expressed as a sum of polynomials taken over all subsets of S. To obtain a "closed
form" result, in Section 3.3 we compute a generating function for Fs as a formal
power series in two non-commuting variables. We describe the general setup here.

Let x and y be two non-commuting variables. For S C [m], define vs = V1 v 2 . .. Vm
where

Vi x if i ý S,
y ifiES.



For a given n, define ,, E Z[t](x, y) by

4,(x, y):= Fsvs.
SC[n-1]

Now define ((x, y) E Z[t]((x, y)) by

S(x,y) = ,(x, y),
n>1

so that (In(x, y) is the homogeneous component of (I(x, y) of degree n - 1. Note that
for Sc = [n - 1] - S, we have Fse = Fs, and vse is obtained from vs by switching
x and y. It follows that '•,(x, y), and hence 4(x, y), is symmetric with respect to x
and y, that is,

4I(x, y) = (y, x).

3.2 An expression for Fs

The following theorem provides a way to compute Fs.

Theorem 3.2.1 Let S be a subset of [n - 1] and let v s = vl V2"* Vn- 1, where
vi E {x, y}. For T = {ji < j 2 < . < jk} C [n - 1], let v = v 2  ThenV

Fs is given by

Fs= 1+ ) (vtlTll

TC[n-1]

where ;(V 1 V2 - -vm ) = 2 + I{i : Vi 4 Vi+Il for m > 0, and n(1) = 1.

Proof. For a face F of a polytope, let F' denote the relative interior of F. Then the
polytope is the disjoint union of FI taken over all faces F, including the polytope
itself.

As we stated before, the polytope DPs consists of all points (l,..., xn) E Rn
belonging simultaneously to the halfspaces xi > 0, xi < 1 (1 < i < n), xi x ~ 1+l
(i 4 S), and xi > zi+1 (i E S). A face F of DPs can be uniquely identified by
specifying which of these halfspaces contain F on their boundary hyperplanes, as long
as the intersection of the whole polytope and the specified boundary hyperplanes is
non-empty. Forming the specification just for the halfspaces of the form xi < xi+l or
xi > XziŽ restricts the location of F-I in R n to the region defined by the relations

Xl = X 2  ... X ji j+l Xj+2 ... j2 X 5 Xjk+l Xjk+2 ... Xn

(3.1)
for some T = {jl < j2 < ... < jk} C [n - 1], where the symbol X denotes strict
inequality: xj, < xj±+l if ji . S, or xj, > xj~+l if ji e S. Then T is the set of indices j
for which F does not lie entirely on the boundary hyperplane xz = xj+l and thus the
relative interior FI is contained in the interior of the corresponding halfspace. Let



R(T) denote the intersection of the region defined by (3.1) and the hypercube [0, 1'n .
Each point (x 1 ,... ,z,) of DPs belongs to exactly one such region R(T), namely, the
one for T = {j I xj 7 xj+l}. Thus we have the disjoint union

DPs= U R(T).
TC[n-1]

Let us show that the term corresponding to T Z 0 in the expression in the statement
of the theorem is the contribution to Fs of the faces F of DPs for which F' is
contained in the region R(T). In other words, we claim that for T f- 0 we have

d td imF ( tIT+1. (3.2)
S: TF'CR(T)

Fix 0 = T C [n - 1]. To select a particular face F from the set of all faces with
the property FI C_ R(T), we need to complete the specification started above, that is,
we must specify which of the hyperplanes xi = 0, 1 contain Y, and we must make sure
that the intersection of the set of the specified hyperplanes and R(T) is non-empty. In
terms of defining relations (3.1), this task is equivalent to setting the common value of
some of the "blocks" of coordinates (x,..., xsj), (xil+l,... , x 2 ), ... , (Xjk+ ... , "Xn)
to 0 or 1. Since the relations must remain satisfiable by at least one point in [0, 1] ,
only the blocks preceded in (3.1) by > (or nothing) and succeeded by < (or nothing)
can be set to 0. Similarly, only the blocks preceded by < (or nothing) and succeeded
by > (or nothing) can be set to 1. Thus each block can be set to at most one of 0
and 1. The letters of the (x, y)-word v = vj .. .vjk encode the inequality signs in
(3.1) (x stands for <, and y stands for >), so the number of blocks that can be set
to 0 or 1 is the total number of occurrences of x followed by y, or y followed by x, in
vS, plus 2, as we also need to count the first and the last blocks. In other words, the
number of such blocks is /(vT).

Observe that the dimension of the face of DPs obtained by this specification
procedure equals the number of blocks that have not been set to 0 or 1: the common
values of the coordinates in those blocks form the "degrees of freedom" that constitute
the dimension. Let us call such blocks free. The number of faces F with F' C_ R(T)
for which the specification procedure results in m free blocks is

ITI + 1 -m '

the number of ways to choose ITI + 1 - m blocks that are not free out of r, (vT)
possibilities. Hence we have

dim-F IT+1 rT + 1 M
t E T) ITI + -1-m

S: yzCR(T) m=JTJ+1-,s(vT )



\=O

proving (3.2).
Finally, for T = 0, we have R(T) = {0 = x - = z, 1}, which is just

the line segment joining the two vertices (0,..., 0) and (1,..., 1) of DPs. Thus the
contribution of R(T) to Fs is

t+2= + t+1 .t.

Adding this equation to the sum of (3.2) taken over the non-empty T proves the
theorem. O

Theorem 3.2.1 yields a combinatorial interpretation of the number of vertices of the
polytope DPs. Call an (x, y)-word v = v 1 v 2 ... Vk, where vi E {x, y}, alternating if
vi 7 vi+ 1 for all 1 < i < k - 1. Then we have the following corollary.

Corollary 3.2.2 For S C [n - 1], the number of vertices of DPs is one greater than
the number of subsets T C [n - 1] for which the word v T is alternating.

Proof. The number of vertices of DPs is the constant term of Fs. For the summand
corresponding to a subset T C [n - 1] in the formula of Theorem 3.2.1, the constant
term is either 0 or 1, the latter being the case if and only if TI + 1 - K(vT) - 0. This
condition is equivalent to vT being alternating. The corollary follows. O

3.3 The power series D(x, y)

We now discuss a more efficient way to compute Fs(t) than the expression of Theo-
rem 3.2.1. In this section we denote Fs by Fvs; such notation has an advantage, as vs
encodes not only S C [n - 1] but also the dimension n. Since pairs (n, S C [n - 1]) are
in bijective correspondence with (x, y)-words via S F-+ vs, it makes sense to param-
eterize the f-polynomials of descent polytopes by (x, y)-words and write Fv, where
v = vs for some S C [I v ]. (Here I v denotes the length of the word v.)

Let v = vv 2 ... Vn- 1, where vi E {x, y}. Consider the following polynomials:

Kv (t) :- • •[T I
TC[n-1] : vjl=x

Lv (t) [n= t1] (vv )

rC[n-1] : Vjl=y



where vj, denotes the first letter of the word vT = Vi3 Vj 2 ... Vjk , as in the notation
of Theorem 3.2.1. Since vT begins with either x or y unless T = 0, we have

Fv =l+ t + Kv + L = Kv + L + t + 2. (3.3)

We continue with a lemma that relates the two polynomials Kv and Lv.

Lemma 3.3.1 For an (x, y)-word v = v v2 ... vn- 1, where vi E {x, y}, the follow-
ing equalities hold:

Kyv = Kv;
Lxv = L,;
Kxy = Lyv = (t + 1)(Kv + Lv + t + 1).

Proof. For an integer i and a set U C Z, let U + i denote the set obtained by adding
i to each element of U.

Clearly, (y v)T begins with x if and only if 1 ý T and vT- 1 begins with x, in
which case (y v)T = vT- 1. Hence Kyv = Kv.

Now, (x v)T begins with x if and only if either 1 E T, or else 1 0 T and vT- 1

begins with x. In the former case, we have T = {1 < jl + 1 < j 2 +1 < ... <
jk + 1}, and (xv)T = XVjl vj2 * * Vjk. Set U = T\{1}- 1 = {jl < - < jk}. Then
,((xv)T) = ri(vU) if vjl = x, and ,((xv)T) = K(vU) + 1 if vjl = y. Hence

Y t+1)K((xv)T) tTI+1= (3.4)
1ETC[n]

=(t+1) 2 +t- z i (v )tU+1 (tl) tUl+1

U: jl=x U : vjl=y

= (t+ 1)2 +tKv + (t + 1)Lv,

where the leading term (t+ 1)2 corresponds to T = {1} and U = 0. In the case where
1 V T and v T- 1 begins with x we have, as before, (xv)T = vj vj,2 .. vjk = v T - 1,

and hence

Ez +) ( vT) tTI+1 - z (t (VT ) tIT-11+1 = K. (3.5)
T : vjl=x Vj/ =x

Adding (3.4) and (3.5) yields

Kxy = (t + 1)(Kv + Lv + t + 1).

The relations for Lx v and Ly v follow from symmetry that arises from exchanging the
variables x and y. O



Starting with KI = L1 = 0, one can use Lemma 3.3.1 to compute Kv and Lv, and
hence Fv, from (3.3). Recall the generating power series

<(x, y) = Fv v,
v

where the sum is over all (x, y)-words, including the empty word v = vz = 1. Define
the two generating power series

K(x, y) := ZKv v;
V

A(x, y) := Lv v.

It is not hard to see from the definition of Kv and Lv that Kv = Lv(y,x), where v(y, x)
denotes the word obtained from v by switching x and y. It follows that

K(x, y) = A(y, x).

Then, by (3.3), we have

S(x, y) = K(x, y) + A(x, y) + (t + 2) v

= Kx,y) + K(y,x) + (t + 2) (x+ y)
r>O

- K(x, y) + K(y, x) + (t + 2)
1

1 -x-y
(3.6)

From the equations of Lemma 3.3.1 we obtain

SKxvx v
V

= (t + 1)x (Kv+Lv + t +1)v;
V

Kyvyv = yZKvv.

We add these two identities and recall that K 1 = 0 to get

K(x, y) = EKvv
v51

= (t+ 1)xE(Kv + Lv +t+ 1)v+yEKvv

(t+1)x(K(x,y)

(t+l x D S(x, y)

+ A(x, y) + (t + 1) - + y K(x, y)
Ax~y)+y(t)1-x-y

1)
- + y K(x, y),

1 -x-y



or, after rearranging terms,

K(xy)= (t+l)(1-y)-l (x y)- 1-x-y

Adding this equation and its symmetric version obtained by switching x and y gives,
via (3.6),

I)(x, y) - (t + 2) - = K(x, y) + K(y, x) =1 l y )_
=(t+ 1)((1 -y)-lx+(1 -x)'y) ((xy) -Y 1

(recall that 4(x, y) = I(y, x)). Solving for '(x, y), we arrive at the following theo-
rem.

Theorem 3.3.2 The generating power series 4)(x, y) is given by

O(x, y) = t 1
1 - (t + 1)((1 -y)-1x +(1 - x) - 1 y) 1-x-y

3.4 More recurrence relations

In this section we derive a different set of recurrences determining Fs(t) than the
ones we used to obtain Theorem 3.3.2. Here it will be more convenient to associate
integer sets with compositions. Let Comp'(m) denote the set of integer composi-
tions (yl, 72, . ..) of m with 7- > 0 and y2, 73,... > 0. For y = (71, 72, . ..) E
Comp'(m), define v, = x- 1 y-2 x y3 yY4 -... There is a bijective correspondence c :
[m] -+ Comp(m) arising from the defining relation vs = Vc(S). For example, if
we have S = {1,3,4} g [6], then vs = yxyyxx = XOy l x1 y2 X2 and thus
c(S) = (0, 1,1, 2, 2).

Write Fs(t) = Fc(s)(t). In the notation of Theorem 3.2.1, define

G,(t) := t + 1 + tiTrl+1;

T : x1>y1

whereT= {xl <x2< -. } C [n-1]. Thus F. = 1+G +H,. The extrat+1inG,
corresponds to the term for T = 0. Note that G, does not depend on the value of
y1, and that yi = 0 implies H, = 0. For y = (y 1, Y 72.), write Y = (7+1,7+2,. - - -..
Also, for a nonnegative integer r, define

(t + 1)r - 1
t



where [r], = %i- is the classical q-analog of r. Breaking up the summation formula
for F allows to obtain the folloq-ing recurrence relations.
for F, allows to obtain the following recurrence relations.

Lemma 3.4.1 For r > 0, we have G(r) = t + 1 and H(,) = p,(t + 1)2.

(Y1i, Y2,. .) has at least two parts, then
If r =

Gr = G (1) + H (1) ;

H, =- PY" . ((t + 1) 2 + t(H_(x ) + HY(2) + -- ) +Hy() + H,() + H,(s) +- ).

Proof. Comparing with Theorem 3.2.1, observe that G, = F,(i) - 1 = G,c() + H,(-).
Now consider the terms in the definition of Hy. These terms correspond to T C

[n - 1] such that T n [yi] l 0. Write T = {x1 < ... < xt < y1 < . < Yk-}, where

x < yi1 and yl > yi. Let X = {X < -.. < xe} and Y = {yl < -. < yk-f}, so that
vT vx vi'. Since vx is a positive power of x, we have (vT)= - (vY) if vy begins
with an x, and tý(v') = (v_) + 1 if vry begins with a y or if Y = 0. Hence we have

Htx) (] t+1)

(0:xgs]Y1 v I- 1\yi I

)+EtYt IY I+i ,

where ey is 0 if VYwe 'v begins with an x, and 1 otherwise. The sum on the left is
(t + 1)Y1 - 1 = tp, 1 . Therefore

H= tp

= tp 1 (H) H(2) + S(H,(i) + H,(3)+ H, ( 5) +t

because H,(, is the sum of ((t + 1)/t) (vY)tIYl+l taken over Y with yi + " - + -i <
Yi •< 71 . - -+ 7Yi+1, and ey = 1 if and only if this condition on yI holds for odd i (or
if Y = 0, which is accounted for by the two t + 1 terms). D

The next lemma provides a more concise recurrence relation for H,.

Lemma 3.4.2 For a composition y = (71,72,...) with at least two parts, the follow-
ing equality holds:

H, + H(l ,7,r4,.-.) ±. Pr l (tGrcl + (t + 1) (1 + G,)).

Proof. Observe that, by Lemma. 3.4.1,

G, = Gr(1)+ H-(1 = Gr(2) + Hý(1) + H (2) = ... = t + 1 + (Hy()+ H (2) + ..)

tIYI+i +
t

t /~=Y : EY=I

tIY Iji) (3.7)IV "*

... +t+1) ),
(E( t



since G(o) = t + 1. Apply the relation (3.7) to H, and H1,3,74,...), and then add the
two resulting equations:

1y - (G + (Hc(, + H(3) +H.,(5) + --+ t + 1))

+ tpY ( G"() + (H,2) + H7 (4 ) + H,(6) + + t + 1))

= tp7YI (G, + G(1+ (G + t + 1)
+ G~m + 7

The lemma follows. O

A useful consequence of Lemma 3.4.1 is that in working with G, and H. we can
concentrate on just the compositions with the first part equal to 1. Specifically, we
have the following corollary.

Corollary 3.4.3 The polynomials G and H satisfy

G(71,-2,.--) = G 1,,Y2 Y3...)

and
H(71,'2,.-.) = PY1H(1,Y72,73, --)

Proof. The first identity follows from an earlier observation that G, is independent
of the first part of y, and the second one follows from Lemma 3.4.1 since pl = 1. O

Thus for a composition 7 with k parts, we can compute F, by applying the
recurrence relations of Lemmas 3.4.1 and 3.4.2 k times. For instance, to compute
F(2,4,3) we proceed as follows:

G(1) = G(3)
H(1)

G(1,3 ) = G(4,3)

H(1,3)

G(1,4,3) = G(2,4,3)

H(1,4,3)

= t+l;

= (t + 1)2;
= G(3) + H(3) = G(1) + pa3H(1);

= -H(1) + (tG(3) + (t + 1) (1 + G(1, 3))) ;
= G(4,3) + H(4,3) = G(1, 3) + p 4H(1 ,3 );

= -H(1, 3 ) + (tG(4,3) + (t + 1) (1 + G(1,4,3)))

and finally

F(2,4,3) = 1 + G(2,4,3) + H(2,4,3) = 1 + G(1,4,3) ± p2H( 1,4,3).

The special case of the alternating pattern, corresponding to S = {2, 4,6,...} n
[n-1] or v = xyxy-.. or y = 1n-1 = (1, 1,..., 1) = n-1, is connected to Fibonacci
numbers Fn as in this case the descent polytope DPs has F+I1 vertices. We can obtain
the generating function for FIn-1 (t) from the recurrences of this section.

H -1 + H(.1,.y3,y4,.... )



From Lemmas 3.4.1 and 3.4.2 we get the relations

G1n-1 = Gin-2 + Hn-2;
Hjn-1 + Hln-2 = tGln-2 + (t + 1) (1 + Gin-1)

for n > 2, where we put Glo = 0 and Hlo = t + 1 for convenience (it can be easily
seen that the relations are valid for n = 2). Then we multiply the above equations
by xn and sum over all n > 2 to obtain the system of equations

G = x(G + H);
H + H = txG + (t + 1)(x 2(1 - x)-1 + G) + (t + 1)x,

where G = G(t,x) := E,,>,Gln -(t) X
n and H = H(t,x) := En>, Hn-l(t) n .

Solving this system for G and H, we get

(t)1 1 - (t + 1)X2

n>1

We add 1 in the left hand side so that (3.8) refines the generating function

1+x

n>O

for Fibonacci numbers.
Setting t = 1 in the polynomial Fln -(t) we obtain the number of faces of the

descent polytope DPIn-1. The sequence {Fin-l(1)}n=1,2,... = 3,7,19,51,... appears
to have combinatorial significance, as it matches the sequence A052948 in the Online
Encyclopedia of Integer Sequences [12] defined as the number of paths from (0, 0) to
(n + 1,0) with allowed steps (1, 1), (1,0), and (1, -1) contained within the region
-2 < y < 2. The generating function

1 - 2x2

1 - 3x + 2x 3

given in [12] indeed results if t = 1 is substituted into (3.8). Is there a bijective proof?

3.5 Face lattice of the descent polytope

In this section we describe the face lattice of the polytope DPs based on the descrip-
tion of its faces given in the proof of Theorem 3.2.1.

We use the following notation to identify faces of the descent polytope. We asso-
ciate a face of DPs with the pair (T, w), where T is a subset of S, and w is what we
call a starred word obtained from the word vT by inserting stars of one of two kinds
(* and ;) in some of the following places: before the first letter, between consecutive
distinct letters, and after the last letter, - according to the rule that a star before



an x or after a y must be a *, and a star before a y or after a x must be a 7. The
reasoning behind this notation is this: removing certain letters of vs corresponds to
replacing some of the inequalities between coordinates with equalities, and placing
stars * and • corresponds to setting certain blocks of coordinates to be equal to 0 or
to 1, respectively.

The covering relations in the face lattice can be described as follows. Given a face
of DPs specified in the above way, one can go down one step in the lattice by either

(1) putting a new star in a valid position, or

(2) picking a letter not surrounded by two stars and removing that letter (together
with the corresponding element of T), keeping the star if there was one next to that
letter, provided that this operation results in a legitimate starred word, or

(3) picking an occurrence of the substring ± x y or :y x: in w and replacing
all four characters with a single star * or W, respectively (again, removing the two
corresponding elements of T).

We must also add the minimal element to the face lattice, which should not be
confused with the elements having T = 0. The elements having T = 0 are *, •, and
1 (empty word, no stars), corresponding to vertices (0, 0,... , 0) and (1, 1,... , 1), and
the edge connecting these two vertices.

Figure 3-1 shows the face lattice of the 3-dimensional polytope DPxy, where xy
stands for the subset S = {2} of [2]. Observe that DPxy is the square based pyramid
defined by the inequalities xl : x 2 > x3 and 0 • x1 , x 2, 3 _ 1; its base is the square
[0, 1] x {1} x [0, 1], and its apex is the point (0,0, 0).
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_xy

I

Figure 3-1: Face lattice of the descent polytope DPxy
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Chapter 4

Diversions and open questions

We now describe some open problems and ideas for further research on the topics
treated in the other parts of this thesis. Note that some questions are mentioned in
Sections 2.4 and 3.4.

4.1 Generalized chain polytope of the zigzag poset

The characterization of alternating (up-down) permutations r in terms of inequalities
satisfied by the components of code(a) given in Lemma 2.7.1 motivates the study of
the following polytope.

Let bi, b2 , ... , b, be positive real numbers, and let Zn(bl, b2 ,..., bn) be the poly-
tope in RIn defined by the equations xi > 0 for i E [n], xi + xi+1 < bi for i E [n - 1],
and x, < bn. Then setting bi = n - i yields a polytope of dimension n - 1 whose
integer points correspond to alternating inversion codes of up-down permutations of
size n + 1, and hence we have

IZ,(n - 1, n - 2,..., 1, 0)I = En,+

(the number of integer points in a polytope P is commonly denoted by IPl). Another
important special case is that of bl = b2 . . = bn = 1, which makes Z, into
the chain polytope of the n-element zigzag poset Z{2,4,6,...} whose elements obey the
relations zl < z2 > z3 < z4 < ---. As mentioned in Section 1.1.5, the volume
of this polytope is 1/n! times the number of linear extensions of the zigzag poset,
that is, the number En of alternating permutations of size n. The integer points
of Z,(1, 1,... , 1) are the (0, 1)-sequences of length n with no consecutive l's, and the
number of such sequences is well known to be the (n + 1)-th Fibonacci number F,+1.
The polytope Z,(bx, b2 ,..., b,) is a fairly natural generalization of the aforementioned
chain polytope, thus it seems reasonable to call it the generalized chain polytope of
the zigzag poset.

In the case bl > b2 > -.. > b, the volume of Z,(bl,b 2,... , b,) has a nice combi-
natorial expression. Let K, denote the set of weak compositions y = (i, 72, -- Y 7n)
of n (that is, parts equal to 0 are allowed) satisfying Yi + 72 + '+ yi _ i.



Theorem 4.1.1 Suppose bl > b2 > ... > b,. Then the volume of Zn(bl, b, 2... , bn)
is given by

1 Z(;)
n. E (-1) "

7
2 -

4+Y6+
- - 

. (n - -1 b212 ... bn

where (n) = y!y2!y
7 71 7!2 !'"yn ! "

Proof. Let

Vn(bb, b..., bn) n• (-1 )7 7 n - b^'b2 ... b . (4.1)
-yEKn

The volume of Zn(bl, b2 ,..., b) is given by

Vol(Zn(b, b2, ... , bn)) = ... dxl dx2 ... dxn.

The assumption that bl b2 > -- - > b, ensures that the upper limits of the integrals
are non-negative. Let Jk(bl, b2 , bk; Xk+1) be the evaluation of the k inside integrals
in the above equation. Set x,,- = 0 for convenience. We claim that for 1 < k < n,
we have

Jk(bl, b2 ,..., bk; k+l)

_- (_l)L1k/2 k, (Yk+l=+\(-y12+)4+Y6+--. () •'bY1b
2 ... b""Yk XYk+1 (4.2)

k! - L +..-++k+1=k 7246 . k b) 12 kk+1 (4.2)

We prove (4.2) by induction on k. In the base case k = 1, we have J1 = bl - z2,
and the terms in the defining expression (4.1) for V2 (bx, x2) corresponding to the two
members (1, 1) and (0, 2) of K2 are b1x 2 and -x2. Suppose the claim is true for k - 1.
Then

bk -Xk+l

Jk(bl, b2 ,..., bk; Xk+) = Jk-l(bl, b2,..., bk-1; Xk) dxk =

=((-1-'1 bb •22 . bk k-1 (bk - Xk+1)Yk+

y•1+...+k=k-1 71 !72 "l'Tk- (7k

Expanding (bk - k+1)Yk+ l in the right hand side by the binomial theorem, we get
that Jk(bl, b2 ,. .. ,bk; k+l) equals

(-1)L (-1)... " b " k-1 (-1)sbrxz+1

yl+...+ Yk-l+r+s=k "1 )2.
" " " . k-! r s

To complete the inductive step it remains to check that the signs work out. For odd k,
the factor (-1)" inside the sum enters (-1)Y2+± 4+"' because s is the (k + 1)-th part of
the newly obtained composition of k, and outside the sum, the sign factor stays the



same as [(k - 1)/2J = [k/2J. For even k, the factor (-1)'2+74+" includes (-1)' k =
(-1)r+s-1, which, combined with the other (-1)", gives (-1)r- 1. Entering (-1)r in
the factor (-1)-2+ Y4+±", we are left with an extra -1 to make the (-1)L(k-1 )/2j on the
outside into (-1) Lk/2J

Now set k = n so that Xk+1 = 0; then the non-vanishing terms of (4.2) are the
ones corresponding to compositions with yk+1 = 0. The theorem follows. O

With the exception of the sign factor and the direction of the inequality in the
definition of Kn, the above formula is exactly the formula for the volume of the
parking function polytope introduced by Pitman and Stanley [14]. This polytope,
which we denote Hn(bl,b 2 ,... , b), is defined by the relations xi Ž 0 and Xl + x2 +
• --+ xi 5 bl + b2 + -- -+ bi for i E [n]. The volume-preserving change of coordinates
yj = bn + bn-1 + - -+ bn+l-i - (x + x2 + 2 - -+ Xi) transforms the defining relations
into yi > 0 for i E [n], yl 5 bl, and y~ - yi+i _ bi for i E [n - 1], and these new
relations look much like the ones defining Z,(bl, b2,... , b,): in essence we have here a
difference instead of a sum. This similarity somewhat explains the close resemblance
of the volume formulas for the two polytopes.

As we mentioned above, the volume of HIn(bl, b2,..., b,) can be written as

Vol(Hn (bi,b2,... , b)) = Vn(bn, -bn 1, bn-2 -b 3,. ., (-1)n-1 b).

The name of the polytope HII(bi, b2 , ... , b,) comes from the fact that the above volume
formula, when viewed as a polynomial in the indeterminates bl, b2 , ... , bn, is a
generating function enumerating parking functions of size n by content. Let us give
the relevant definitions. A parking function of size n is a sequence (al, a2 ,..., an) of
positive integers such that for each i E [n], the number of elements of the sequence
not exceeding i is at least i. The content of a parking function is the sequence 0 =
(/1,/32,... ,/3n) of non-negative integers where /3 is the number of elements of the
parking function equal to i. Thus the content sequence satisfies 01 + 2 + -" + /i _ i
for i E [n], which is equivalent to 3n + On-1 + - - - + On+1-i < i for i E [n], that is,
to (,, /3n-1,... , 01) E Kn. The number of parking functions of size n with content /
is known to be (n). The total number of parking functions of size n is even better
known to be (n + 1)n"-, and thus setting bi = 1 for all i yields the identity

>EKn

(reversing the order of the elements of 3 does not affect (n)).

A more general specialization Vol(IIn(1, q, q2,. .. ,qn-1)) is closely related to a
notable combinatorial polynomial In(q) known as the inversion enumerator of labeled
rooted trees. Let Tn denote the set of all trees on vertices labeled 0, 1, 2, ... , n, where
vertex 0 is considered to be the root, thus defining ancestor-descendant relations
between some pairs of vertices. (Here we make no distinction on how the children of
a particular vertex are ordered.) We say that two vertices i and j of such a tree form
an invesion if i > j and j is a descendant of i, that is, i lies on the unique path in the



tree from j to the root 0. Let inv(T) be the number of inversions in a tree T. Then
the inversion enumerator is defined by

I(q) := qinv(T)

Cayley's formula states that T, = (n+l)n - 1, so that trees on n+1 labeled vertices are
equinumerous with parking functions of size n. A classical bijection by Kreweras [9]
establishes a correspondence between trees in Tn with (n) - k inversions and parking
functions of size n whose components add up to k + n, and hence we have

q(") In(q- 1) = q()inv(T)
TEE,

E SEK (n)"q72+273+' +(n-l)Yn

= n! Vol(H,(1, q, q
2  qn-1))

= n! Vn(qn- 1, _- q n- 2 ,qn - 3 _q n-4 ... ( n-- 1), (4.3)

where -r denotes the composition y with the order of the parts reversed.

Setting bi = 1 for all i in the formula for the volume of Zn(bl, b2, ... , bn), we get
the normalized volume of the chain polytope of the zigzag poset:

E (-1)-2+-4+Y6+ (n)=En.

Up to sign, we get the same value by plugging in q = -1 into (4.3). After careful
analysis of signs, we arrive at a remarkable formula

In(-1) = En.

This formula can be proved analytically from generating functions (see [6, Exer-
cise 3.3.49(d)] or [9]), and a combinatorial proof is advertised in [13].

In addition to an elegant volume formula, the Pitman-Stanley parking function
polytope has an equally elegant expression for its Ehrhart polynomial. (Recall that
the Ehrhart polynomial evaluated at a non-negative integer k equals the number
of integer points in the dilation of the polytope by a factor of k.) Let us assume
that bl, b2 , ... , bU are positive integers. Since the dilation of Hn(bl, b2, ... ,b) by
a factor of k is another parking function polytope In,(kb1, kb 2 ,..., kb), the Ehrhart
polynomial of HIn(bl, b2 ,..., bn) is obtained automatically from an expression for the
number of integer points in In,(bl, b2,..., b,). In [14] Pitman and Stanley give such



an expression:

|II(bi b2l... bn)| = E b, + 1) bz
yrEK n i --2

where (() = x(x+l)(x+2)...(x+1-1)

The above formula can be thought of as the formula

Vol(H,(bi, b2 ,..., bn)) = Z -b7 b 2 ...
TrEKn

with b' replaced with the "raising power" bi(bi + 1) ... (bi + yi - 1) (or, for i = 1,
with (bl + 1)(bl + 2) ... (bl + y7) ). One could ask if the number of integer points
in Zn(bl, b2,..., bn), and hence the Ehrhart polynomial, could be obtained from the
volume formula of Theorem 4.1.1 in a similar way.

Another natural direction for further work is to investigate generalized chain poly-
topes of other posets. After the zigzag poset, a logical class of posets to consider next
are the ribbon posets Zs. Defining Zs(bl, b2,...) for Zs in the same way Z, is defined
for Z{2,4,6,...}, we get a polynomial in bl, b2,..., whose value at bl = b2 = .-. = 1 is 1/n!
times the descent number ,n(S), resulting in an interesting combinatorial identity. Is
there a way to relate this polytope to objects similar to parking functions or labeled
trees?

4.2 Shapiro-Woan-Getu permutations

In this section we take a closer look at the class of permutations which we denoted
by 1, in Section 2.6. Recall that Rn is the set of permutations with no consecutive
(double) descents and no descent at the end. They appear in the paper [16] by Shapiro,
Woan, and Getu, hence the section title, who call them reduced permutations. The
paper studies enumeration of permutations by the number of runs or slides, and
in [15, Sec. 11.1] Postnikov, Reiner, and Williams put these results in the context
of structural properties of permutohedra: for instance, the polynomial encoding the
distribution of permutations in Rn by the number of descents is the y-polynomial of
the classical permutohedron.

In Section 2.6, we found the number Rn of SWG permutations of size n to be the
sum of absolute values of coefficients of a (c, d)-polynomial that, when expanded in
terms of a and b, gave the generating function for the alternating descent set statistic.
Shapiro, Woan, and Getu provide a generating function for R/:

n 2 tan(x/v/2)R(x) := R 1 +
n>O n! - tan(xV'3/2)

(we put Ro = 1). Observe that R(x)R(-x) = 1, a property that R(x) shares with ex
and tan x + sec x, which are the two fundamental generating functions in the analisys



done in Chapter 2. There is a further resemblance with the Euler numbers E, if one
looks at the logarithm of R(x):

2n+l

ln(R(x))= x + 2 R++ - (4.4)
n>o (2n + 1)!

Comparing with
Z2n+l

In(tan x + sec x) =E E22n + 2 (4.5)
n>0 (2n + 1)!
n>0

we see that taking the logarithm has a similar effect on both R(x) and tan x + sec x of
taking the even part and integrating, except that for R(x) all coefficients excluding
that of x are doubled.

The fact that

sec x dx = In(tan x + sec x) (4.6)

(omitting the arbitrary constant of integration) has been used in the proof of Theo-
rem 2.3.3. This textbook integral formula can be proved combinatorially using the
exponential formula for generating functions (see [20, Sec. 5.1]). Given an up-down
permutation a, divide a into blocks by the following procedure. Put the subword of a
starting at the beginning of a and ending at the element equal to 1 in the first block,
and remove this block from c. In the resulting word, find the maximum element m 2
and put the subword consisting of initial elements of the word up to, and includ-
ing, m 2 in the second block, and remove the second block. In the remaining word,
find the minimum element m 3, and repeat until there is nothing left, alternating be-
tween cutting at the minimum and at the maximum element of the current word. For
example, for a = 593418672, the blocks would be 59341, 8, and 672. Note that given
the blocks one can uniquely recover the order in which they must be concatenated to
form the original permutation u. Indeed, the first block is the one containing 1, the
second block contains the largest element not in the the first block, the third block
contains the smallest element not in the first two blocks, and so on. Thus to construct
an up-down permutation of size n we need to divide the elements of [n] into blocks
of odd size, then determine the order of concatenation using the above principle, and
then arrange the elements of odd numbered blocks in up-down order and those of even
numbered blocks in down-up order. There are Ek-1 ways to arrange the elements in
a block of size k for odd k, and 0 ways for even k since we do not allow blocks of even
size. Thus (4.5), which is equivalent to (4.6), follows from the exponential formula.
This argument "combinatorializes" the proof of Theorem 2.3.3. It would be nice to
give a similar argument for reduced permutations R,.

Problem 4.2.1 Find a combinatorial proof of the formula (4.4) for ln(R(x)).

Another problem emerging from the results of Section 2.6 is the following.

Problem 4.2.2 Give a combinatorial interpretation of the coefficients of the poly-
nomial D,(c, - d) by partitioning the set R, into classes corresponding to the F -1
monomials.



It is worth pointing out here that even though one can split 1n into Fn_1 classes
corresponding to (c, d)-monomials by descent set, like it was done for simsun permu-
tations in Section 2.6, the resulting polynomial is different from Dn(c, - d). There
are a few hints on what the correct way to refine permutations in 7n could be. The
coefficient of c"- 1 in 4,(c, - d) is the Euler number En, and the set Rn includes at
least three kinds of permutations mentioned in this thesis that are counted by E,:
alternating permutations ending with an ascent, simsun permutations, and permuta-
tions a E 6n such that ao(n+ 1) has no 3-descents. Values of 4, listed in Section A.1
present evidence that the common coefficient of c"-3 d and d c" -3 is A(n - 1, 2) (the
number of permutations of size n - 1 with exactly one alternating descent).

4.3 Circular posets

In this section we convey some thoughts on why 3-descents as a generalization of
ordinary descents is a potentially fruitful subject involving quite natural combinatorial
concepts.

In the proof of Theorem 2.1.3 the 3-descent set of a permutation a = al12 .. an is
given the following interpretation: if the elements al, a2, ... , are written in clockwise
order on a circle, then the set D3(a) consists of all those indices 1 < i < n-2 such that
the triple ai, ai+l, ai+2 is oriented counterclockwise. If we write the elements of a- '
on the circle instead of those of a, we obtain a correspondence between permutations
in a E 6~ with D3 (a) = S and arrangements of the numbers 1, 2, ... , n on a circle
(with no distinction of the starting position) such that the triple i, i + 1, i + 2 is
oriented clockwise if and only if i ý S. Thus we can single out such arrangements
from the total of (n - 1)! arrangements by prescribing the orientation (clockwise or
counterclockwise) of every triple i, i + 1, i + 2 for i E [n - 2], leaving the orientation
of every other triple unspecified.

This viewpoint invokes a parallel with partially ordered sets, in which "orien-
tation" is prescribed for pairs, rather than triples, of elements. To give a formal
definition of this poset-like concept, note that a finite poset in the traditional sense
can be defined as a collection of ordered pairs x < y of elements of a base set such
that there exists a linear extension - a way to linearly order the elements so that
if x < y is in the collection, then x appears before y. Now consider the following
concept suggested by Pavlo Pylyavskyy (private communication).

Definition 4.3.1 A circular poset Q on an underlying set X is a collection R(Q) of
ordered triples of distinct elements of X such that:

(I) Q has a circular extension - a way to arrange the elements of X on a circle so
that if a triple (x, y, z) is in R(Q), then it is oriented clockwise on the circle;

(II) if an ordered triple (x, y, z) is oriented clockwise in every circular extension of Q,
then (x, y, z) c R(Q).

For the rest of the section, we assume the base sets of ordinary and circular posets
in question to be finite unless stated otherwise.



Let us call R(Q) the set of relations of Q. The following properties are apparent
from the definition.

Lemma 4.3.2 Let Q be a circular poset.

(a) If (x,y,z) E R(Q), then (y,z,x) and (z,x,y) are in R(Q), whereas (x,z,y),
(z, y, x), and (y, x, z) are not.

(b) If (x, y, z) E R(Q) and (z, t, x) E R(Q), then (y, z, t) and (t, x, y) are in R(Q).

In view of part (a) of Lemma 4.3.2, the cyclic shifts (x, y, z), (y, z, x), and (z, x, y)
are the same triple for the purposes of R(Q). To shorten notation and to make the
statements of the lemma more apprehensible, let ((x, y, z)) denote the "cyclic" triple
meaning any of these three cyclic shifts. We can extend the notion of a cyclic triple
to a cyclic k-tuple, and write (( 1 , X2, ... , k)) R(Q) to mean that every cyclic sub-
triple ((xi, xj, xe)), where i < j < f, is in R(Q). (That is, in a circular extension
of Q, the entire k-tuple ((xl, x2 ... , k)) appears in the given order in the clockwise
direction.) Then Lemma 4.3.2 can be rewritten as follows.

Lemma 4.3.3 Let Q be a circular poset.

(A) If ((x,y, z)) R(Q), then ((x, z, y)) R(Q).

(B) If ((x, y, z)) R(Q) and ((z,t, x)) R(Q), then ((x, y, z, t)) R(Q).

If one defines ordinary (finite) posets by analogy with Definition 4.3.1, then the
existence of a linear extension implies the usual poset axioms stating that x 4 x,
that x < y implies y ý x, and that x < y and y < z together imply x < z. It is
easy to see that if these axioms hold, then there exists a linear extension. Moreover,
for every pair (x, y) of elements that are not forced to be comparable by the axioms,
there exists a linear extension in which x appears before y and one in which x appears
after y. It is a very interesting question whether the same is true for circular posets.

Question 4.3.4 Do the conditions of Lemma 4.3.3 characterize circular posets com-
pletely? In other words, if R is a collection of cyclic triples of an underlying set X
satisfying the conditions of Lemma 4.3.3,

(1) does R always have a valid circular extension?

(2) does R always include every cyclic triple that is oriented clockwise in every valid
circular extension?

Even if the above dilemma with the proper set of axioms is not resolved, it still
makes sense to think about examples of circular posets. There are trivial examples,
such as an "antichain", for which R(Q) = 0. There is also a "total order" in the case
when the underlying set X is countable, which can be defined by presenting a map a :
X -- Q and prescribing a triple ((x, y, z)) to be in R(Q) whenever Ca(x) < a (y) < aC(z).
(In the case of finite X we can define the total order simply by ((x1 , X2 , ., x)) E
R(Q), where {X,, X2, X - - - } = X.)



Note that an ordinary poset P can be made into a circular poset P° by adding a
new element O to the underlying set of P and defining R(P") to be the collection of
triples

{((O,x,y)) x,y y P and x < y}.

It is not hard to see that P° is indeed a circular poset, for which a circular extension
is a linear extension of P with O acting as "the point of infinity" that makes the line
into a circle.

When describing a circular poset it is probably unnecessary to prove that the pre-
sented set of relations satisfies condition (II) of Definition 4.3.1. Instead, it suffices to
show that these relations allow a circular extension (condition (I)), and then let R(Q)
be the closure of the presented set of relations R under the implications forced by
condition (II). Let us write R(Q) +- R to denote that R(Q) was obtained from R in
this way.

The discussion at the beginning of the section essentially provides a circular analog
of the ribbon poset Zs. Let the underlying set be [nh, fix a subset S C [n - 2], and
put

Rs = ((i,i + , i + 2)) i S U ((i,i + 2, i + I)) i S,

where 1 < i < n - 2. Then a permutation ocE EG is a circular extension of Rs if and
only if Da(a - 1) = S. Hence Rs satisfies condition (I) of Definition 4.3.1, and we can
define the circular poset Os by R(Os) ý- Rs. It is an interesting problem to answer
Question 4.3.4 for R = R(Os).

Many questions emerge from attempts to further develop the theory of circular
posets along the lines of the theory of ordinary posets. One such question is how
to properly define a circular counterpart of a chain. On one hand, a chain in an
ordinary poset is a totally ordered subset, which prompts to adopt the same definition
for circular posets. On the other hand, if we regard a chain in an ordinary poset as
a sequence xz, x2 , ... of elements satisfying xi < xi+l for all i, then the natural
circular analog would be a sequence Xl, x 2 , ... , Xk such that ((xi, X+l, xi+2 )) E R(Q)
for all 1 < i < k - 2, which in general is different from a totally ordered subset. To
differentiate between the two definitions, let us call the latter version a weak chain
and a totally ordered subset of a circular poset a strong chain.

By Corollary 2.1.4, the number of circular extensions of a weak chain with k
elements is Ek-1, if there are no extra relations besides ((xi, xi+l, i+ 2 )). This inter-
pretation of the corollary suggests that there could be a connection between circular
posets and the results of Chapter 2, where there were E, ways of arranging n objects
in "proper" order instead of a trivial 1. Another occurrence of Euler numbers re-
placing the sequence of all l's is in the polynomials In, where the coefficient of cn - 1

is En, excluding the possibility of ",(c, - d) being the cd-index of a polytope or a
poset. Is there a way to relate 1,(c, - d) to a circular poset instead?

Another class of circular posets that should not be too hard to analyze is a natural
generalization of permutation posets P,. For a permutation a = alo2 ... o1n, define
the poset P, on the set [n] by the relations i <p j whenever i < j and i appears
before j in u. By analogy, for a permutation a E 6n, define the circular poset 0,



on [ni] from the set of relations containing the triple ((i, j, k)) whenever i < j < k and
i, j, and k appear in clockwise order when all the elements a are written in clockwise
order on a circle. As is the case with P,, (strong) chains of 0, become antichains
and vice versa if the permutation a is replaced with ar = a•n ... • 2l.

For any finite poset P, the Greene-Kleitman theorem asserts that there exists a
partition A(P) = (A1 > A2 > *..) such that for all i, the largest number of elements
in a union of i chains of P is A1 + A2 + -"' + Ai, and that the partition p(P) defined
in the same way for antichains is in fact the conjugate partition A'(P). In the case of
permutation posets, A(P,) is the common shape of the two standard Young tableaux
produced by the RSK algorithm (see [20, Sec. 7.11]). It would be very nice to have a
similar theory for circular posets, or at least the ones of the form O,. For example,
it is well known that for a poset P on n elements whose longest chain and largest
antichain have f(P) and a(P) elements, respectively, the inequality

f(P)a(P) 2 n

holds. Defining f(O,) and a(O,) for a E 8, analogously, the above result implies

(f (O,) - 1) (a(O,)- 1) 2 n - 1,

and it can be shown that this inequality is sharp. As for the partitions A(O,)
and /u(O,) defined in terms of unions of strong chains and unions of antichains,
computer experiments show that A(O,) and p(O,) exist but do not determine each
other uniquely. To prove that these partitions exist, that is, that A1 > A2 > ...

and pL > ŽP2 >_ - -. in the case of circular permutation posets seems to be a non-
trivial problem. And, of course, there is a much less trivial problem of generalizing
to arbitrary circular posets.



Appendix A

Computational results

A.1 The cd-index of the Boolean algebra and the
polynomials D,(c, d)

The following tables show the coefficients of the cd-index I,,(c, d) of the Boolean al-
gebra B, and the polynomials I,(c, d) = -,(c, c2 - d) for n < 9. The notation [w]P
is used to denote the coefficient of w in P. Note that a word w and the word w'
obtained by reading w backwards have the same coefficient in the polynomials in
question, thus many entries in the columns labeled "w" actually read "w + w '"

1

2
3

4

1

c

c
2

d

c
3

cd+dc
c
4

c2 d + d C2

cdc

1

1

1

1

1

2

1

1

2

-1

5

-2

16

-7

-5

Table A.1: Coefficients of the polynomials 'D,(c, d) and ý,(c, d) for n < 5.

[W] 4),



6

7

[w]1y 4 w
1

4

9

12

10

1

5

14

19

25

35

42

18

34

c
5

c3 d + d C3

c2 dc + cd C2

c d2 + d2 c

dcd

C6

c4 d + d C4

c3 dc+cdc3

C2 d C2

C2 d2 + d2 C2

cdcd+dcdc

c d2 c

dc 2 d

d3

C
7

c5 d + d c5

c4 dc + cd c4

c3 d c2 + C2 d c3

c3 d2 + d2 C3

c2 dcd + dcd C2

c2 d 2 c + c d 2 C2

cdc c2 d + d C2 d c

cdcdc

dc 3 d

c d3 + d3 c

d cd 2 + d2 cd

61

-26

-21

12

10

272

-117

-91

-103

59

35

42

52

-34

1385

-594

-468

-510

292

196

236

208

140

252

-136

-112

Table A.2: Coefficients of the polynomials In(c, d) and ~,(c, d) for n = 6, 7, 8.

1

6

20

34

44

84

100

72

140

28

136

112

[W]ý,,



n

9

Table A.3: Coefficients of the polynomials QD,(c, d) and 4,(c, d) for n = 9.

w
c

8

c6 d + d c6

c5 dc + cd C5

C4 d c2 + C2 d c4

c3 d c3

c4 d2 + d2 C4

c3 dcd+dcd c3

c3 d2 c + c d2 C3

c2 dc2 d +dC 2 dc 2

c2 dcdccde dc C2

C2 d2 C2

cd c2 d c

cd c3 d +d C3 d c

d c4 d

c2 d3 + d3 c2

cdcd 2 + d2 cdc

c d 2 d + dc d 2 c

d c2 d2 + d2 C2 d

dcdcd

c d3 c

d4

[w 1n
1

7

27

55

69

70

168

198

196

378

268

324

126

40

364

504

504

256

420

612

496

[wIý,
7936

-3407

-2673

-2951

-2841

1690

1092

1314

1312

882

1492

936

1134

1468

-860

-504

-504

-752

-420

-612

496



A.2 The cd-indices of descent polytopes

In this section we present the coefficients of the cd-indices of descent polytopes. In
the following tables, rows are labeled by (c, d)-words of degree n, and columns are
labeled by (x, y)-words of length n - 1, where 2 < n < 6. The coefficient of a word w
in the cd-index of DPs is written in the intersection of the row corresponding to w
and the column corresponding to vs = vi V2 .. V- 1 , where vi = x if i 0 S and
vi = y if i e S. We include only (x, y)-words that are essentially different for our
purposes, as reversing an (x, y)-word or changing x's to y's and vice versa clearly
does not affect the corresponding cd-index.

n=2 x
c2  1

d l

n= 4

C

c2 d

cdc

d c2

d2

n =5

c3 d
c2 dc

cd c2

c d2

dc 3

dcd

d2 c

x
4

1

4

9

9

12

4

10

12

3 2 22 2

X3 y
1

7

15

13

22

5

18

20

1

3

5

3

4

x2 yx
1

9

20

17

33

6

26

28

xxy
1

5

8

4

7

X 2 y
1

8

17
14

26

5

21

23

xyx
1

6

10

5

10

xy2 x
1

10

22

18

36

6

28

30

xyxy
1

11

25
21

44

7

35

37



n=6
c
6

c4 d

c3 d c

c2 d c2

c2 d2

cd c3

cdcd

c d2 c

d c4

d C2 d

dcdc

d2 C2

d3

X3 y x
1

12

33

39

72

24

98

104

7

48

86

52

100

x 2 y X2

1

13

36

42

81

25

109

114

7

52

93

55

112

x3 y2

1

29

33

60

20

82

88

6

41

73

43

82

x2 y xy
1

16

45

52

106

30

145

149

8

69

122

70

151

x2 y2 x
1

15

41

46

92

26

123

128

7

59

105

60

127

xyxyx
1

19

55

64

136

36

188

190

9

88

156

88

200

xy X2 y
1

17

48

55

113

31

153

157

8

72

128

73

159

xy3 x
1

14

38

43

82

25

110

116

7

54

96

56

112

X5

1

5

14

19

25

14

35

42

5

18

35

25

34

X4 y
1

9

24

29

47

19

65

72

6

33

60

38

64
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