61 research outputs found

    Coloring Graphs with Forbidden Minors

    Full text link
    Hadwiger's conjecture from 1943 states that for every integer t1t\ge1, every graph either can be tt-colored or has a subgraph that can be contracted to the complete graph on t+1t+1 vertices. As pointed out by Paul Seymour in his recent survey on Hadwiger's conjecture, proving that graphs with no K7K_7 minor are 66-colorable is the first case of Hadwiger's conjecture that is still open. It is not known yet whether graphs with no K7K_7 minor are 77-colorable. Using a Kempe-chain argument along with the fact that an induced path on three vertices is dominating in a graph with independence number two, we first give a very short and computer-free proof of a recent result of Albar and Gon\c{c}alves and generalize it to the next step by showing that every graph with no KtK_t minor is (2t6)(2t-6)-colorable, where t{7,8,9}t\in\{7,8,9\}. We then prove that graphs with no K8K_8^- minor are 99-colorable and graphs with no K8=K_8^= minor are 88-colorable. Finally we prove that if Mader's bound for the extremal function for KpK_p minors is true, then every graph with no KpK_p minor is (2t6)(2t-6)-colorable for all p5p\ge5. This implies our first result. We believe that the Kempe-chain method we have developed in this paper is of independent interest

    A Note on Hadwiger's Conjecture

    Full text link
    Hadwiger's Conjecture states that every Kt+1K_{t+1}-minor-free graph is tt-colourable. It is widely considered to be one of the most important conjectures in graph theory. If every Kt+1K_{t+1}-minor-free graph has minimum degree at most δ\delta, then every Kt+1K_{t+1}-minor-free graph is (δ+1)(\delta+1)-colourable by a minimum-degree-greedy algorithm. The purpose of this note is to prove a slightly better upper bound

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t1t\geq 1

    Forcing a sparse minor

    Full text link
    This paper addresses the following question for a given graph HH: what is the minimum number f(H)f(H) such that every graph with average degree at least f(H)f(H) contains HH as a minor? Due to connections with Hadwiger's Conjecture, this question has been studied in depth when HH is a complete graph. Kostochka and Thomason independently proved that f(Kt)=ctlntf(K_t)=ct\sqrt{\ln t}. More generally, Myers and Thomason determined f(H)f(H) when HH has a super-linear number of edges. We focus on the case when HH has a linear number of edges. Our main result, which complements the result of Myers and Thomason, states that if HH has tt vertices and average degree dd at least some absolute constant, then f(H)3.895lndtf(H)\leq 3.895\sqrt{\ln d}\,t. Furthermore, motivated by the case when HH has small average degree, we prove that if HH has tt vertices and qq edges, then f(H)t+6.291qf(H) \leq t+6.291q (where the coefficient of 1 in the tt term is best possible)

    Densities of Minor-Closed Graph Families

    Full text link
    We define the limiting density of a minor-closed family of simple graphs F to be the smallest number k such that every n-vertex graph in F has at most kn(1+o(1)) edges, and we investigate the set of numbers that can be limiting densities. This set of numbers is countable, well-ordered, and closed; its order type is at least {\omega}^{\omega}. It is the closure of the set of densities of density-minimal graphs, graphs for which no minor has a greater ratio of edges to vertices. By analyzing density-minimal graphs of low densities, we find all limiting densities up to the first two cluster points of the set of limiting densities, 1 and 3/2. For multigraphs, the only possible limiting densities are the integers and the superparticular ratios i/(i+1).Comment: 19 pages, 4 figure
    corecore