3 research outputs found

    Analytical Properties of Credibilistic Expectation Functions

    Get PDF
    The expectation function of fuzzy variable is an important and widely used criterion in fuzzy optimization, and sound properties on the expectation function may help in model analysis and solution algorithm design for the fuzzy optimization problems. The present paper deals with some analytical properties of credibilistic expectation functions of fuzzy variables that lie in three aspects. First, some continuity theorems on the continuity and semicontinuity conditions are proved for the expectation functions. Second, a differentiation formula of the expectation function is derived which tells that, under certain conditions, the derivative of the fuzzy expectation function with respect to the parameter equals the expectation of the derivative of the fuzzy function with respect to the parameter. Finally, a law of large numbers for fuzzy variable sequences is obtained leveraging on the Chebyshev Inequality of fuzzy variables. Some examples are provided to verify the results obtained

    Defuzzification of groups of fuzzy numbers using data envelopment analysis

    Get PDF
    Defuzzification is a critical process in the implementation of fuzzy systems that converts fuzzy numbers to crisp representations. Few researchers have focused on cases where the crisp outputs must satisfy a set of relationships dictated in the original crisp data. This phenomenon indicates that these crisp outputs are mathematically dependent on one another. Furthermore, these fuzzy numbers may exist as a group of fuzzy numbers. Therefore, the primary aim of this thesis is to develop a method to defuzzify groups of fuzzy numbers based on Charnes, Cooper, and Rhodes (CCR)-Data Envelopment Analysis (DEA) model by modifying the Center of Gravity (COG) method as the objective function. The constraints represent the relationships and some additional restrictions on the allowable crisp outputs with their dependency property. This leads to the creation of crisp values with preserved relationships and/or properties as in the original crisp data. Comparing with Linear Programming (LP) based model, the proposed CCR-DEA model is more efficient, and also able to defuzzify non-linear fuzzy numbers with accurate solutions. Moreover, the crisp outputs obtained by the proposed method are the nearest points to the fuzzy numbers in case of crisp independent outputs, and best nearest points to the fuzzy numbers in case of dependent crisp outputs. As a conclusion, the proposed CCR-DEA defuzzification method can create either dependent crisp outputs with preserved relationship or independent crisp outputs without any relationship. Besides, the proposed method is a general method to defuzzify groups or individuals fuzzy numbers under the assumption of convexity with linear and non-linear membership functions or relationships
    corecore