17,355 research outputs found

    Multiple Positive Solutions of BVPs for Singular Fractional Differential Equations with Non-Caratheodory Nonlinearities

    Get PDF
    In this article, the existence of multiple positive solutions of boundary-value problems for nonlinear singular fractional order elastic beam equations is established. HereĀ fĀ depends onĀ x,Ā xā€² andĀ xā€³,Ā fĀ may be singular atĀ tĀ = 0 andĀ tĀ = 1 andĀ fĀ is non-Caratheodory function. The analysis relies on the well known Schauder fixed point theorem and the five functional fixed point theorems in the cones

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; JĆ³dar SĆ”nchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Greenā€™s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Greenā€™s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Greenā€™s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & JĆ³dar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & JĆ³dar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Greenā€™s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems

    Get PDF
    We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems D0+Ī±u(t)+f1(t,u(t),v(t),(Ļ•1u)(t),(Ļˆ1v)(t),D0+pu(t),D0+Ī¼1v(t),D0+Ī¼2v(t),ā€¦,D0+Ī¼mv(t))=0,D0+Ī²v(t)+f2(t,u(t),v(t),(Ļ•2u)(t),(Ļˆ2v)(t),D0+qv(t),D0+Ī½1u(t),D0+Ī½2u(t),ā€¦,D0+Ī½mu(t))=0, u(i)(0)=0 and v(i)(0)=0 for all 0ā‰¤iā‰¤n-2, [D0+Ī“1u(t)]t=1=0 for 2<Ī“1<n-1 and Ī±-Ī“1ā‰„1, [D0+Ī“2v(t)]t=1=0 for 2<Ī“2<n-1 and Ī²-Ī“2ā‰„1, where nā‰„4, n-1<Ī±,Ī²<n, 0<p,q<1, 1<Ī¼i,Ī½i<2ā€‰ā€‰(i=1,2,ā€¦,m), Ī³j,Ī»j:[0,1]Ɨ[0,1]ā†’(0,āˆž) are continuous functions (j=1,2) and (Ļ•ju)(t)=āˆ«0tā€Ī³j(t,s)u(s)ds,(Ļˆjv)(t)=āˆ«0tā€Ī»j(t,s)v(s)ds. Here D is the standard Riemann-Liouville fractional derivative, fjā€‰ā€‰(j=1,2) is a Caratheodory function, and fj(t,x,y,z,w,v,u1,u2,ā€¦,um) is singular at the value 0 of its variables
    • ā€¦
    corecore