123 research outputs found

    The existence of Ck-factorizations of K2n − F

    Get PDF
    AbstractA necessary condition for the existence of a Ck-factorization of K2n − F is that k divides 2n. It is known that neither K6 − F nor K12 − F admit a C3-factorization. In this paper we show that except for these two cases, the necessary condition is also sufficient

    A survey on constructive methods for the Oberwolfach problem and its variants

    Full text link
    The generalized Oberwolfach problem asks for a decomposition of a graph GG into specified 2-regular spanning subgraphs F1,,FkF_1,\ldots, F_k, called factors. The classic Oberwolfach problem corresponds to the case when all of the factors are pairwise isomorphic, and GG is the complete graph of odd order or the complete graph of even order with the edges of a 11-factor removed. When there are two possible factor types, it is called the Hamilton-Waterloo problem. In this paper we present a survey of constructive methods which have allowed recent progress in this area. Specifically, we consider blow-up type constructions, particularly as applied to the case when each factor consists of cycles of the same length. We consider the case when the factors are all bipartite (and hence consist of even cycles) and a method for using circulant graphs to find solutions. We also consider constructions which yield solutions with well-behaved automorphisms.Comment: To be published in the Fields Institute Communications book series. 23 pages, 2 figure

    Thresholds for Latin squares and Steiner triple systems: Bounds within a logarithmic factor

    Get PDF
    We prove that for nNn \in \mathbb N and an absolute constant CC, if pClog2n/np \geq C\log^2 n / n and Li,j[n]L_{i,j} \subseteq [n] is a random subset of [n][n] where each k[n]k\in [n] is included in Li,jL_{i,j} independently with probability pp for each i,j[n]i, j\in [n], then asymptotically almost surely there is an order-nn Latin square in which the entry in the iith row and jjth column lies in Li,jL_{i,j}. The problem of determining the threshold probability for the existence of an order-nn Latin square was raised independently by Johansson, by Luria and Simkin, and by Casselgren and H{\"a}ggkvist; our result provides an upper bound which is tight up to a factor of logn\log n and strengthens the bound recently obtained by Sah, Sawhney, and Simkin. We also prove analogous results for Steiner triple systems and 11-factorizations of complete graphs, and moreover, we show that each of these thresholds is at most the threshold for the existence of a 11-factorization of a nearly complete regular bipartite graph.Comment: 32 pages, 1 figure. Final version, to appear in Transactions of the AM

    Partial triple systems and edge colourings

    Get PDF
    AbstractA partial triple system of order v, PT(v), is pair (V, B) where V is a v-set, and B is a collection of 3-subsets of V (called triples) such that each 2-subset of V is contained in at most one triple. A maximum partial triple system of order v, MPT(v), is a PT(v), (V, B), such that for any other PT(v), (V, C), we have |C| ⪕|B|. Several authors have considered the problem of embedding PT(v) and MPT(v) in systems of higher order. We complete the proof, begun by Mendelsohn and Rosa [6], that an MPT(u) can be embedded in an MPT(v) where v is the smallest value in each congruence class mod 6 with v ⩾ 2u. We also consider a general problem concerning transversals of minimum edge-colourings of the complete graph

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    Merging Combinatorial Design and Optimization: the Oberwolfach Problem

    Get PDF
    The Oberwolfach Problem OP(F)OP(F), posed by Gerhard Ringel in 1967, is a paradigmatic Combinatorial Design problem asking whether the complete graph KvK_v decomposes into edge-disjoint copies of a 22-regular graph FF of order vv. In Combinatorial Design Theory, so-called difference methods represent a well-known solution technique and construct solutions in infinitely many cases exploiting symmetric and balanced structures. This approach reduces the problem to finding a well-structured 22-factor which allows us to build solutions that we call 11- or 22-rotational according to their symmetries. We tackle OPOP by modeling difference methods with Optimization tools, specifically Constraint Programming (CPCP) and Integer Programming (IPIP), and correspondingly solve instances with up to v=120v=120 within 60s60s. In particular, we model the 22-rotational method by solving in cascade two subproblems, namely the binary and group labeling, respectively. A polynomial-time algorithm solves the binary labeling, while CPCP tackles the group labeling. Furthermore, we prov ide necessary conditions for the existence of some 11-rotational solutions which stem from computational results. This paper shows thereby that both theoretical and empirical results may arise from the interaction between Combinatorial Design Theory and Operation Research
    corecore