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Abstract 

Hoffman, D.G. and P.J. Schellenberg, The existence of C,-factorizations of K,, - F, Discrete 

Mathematics 97 (1991) 243-250. 

A necessary condition for the existence of a C,-factorization of KZn -F is that k divides 2n. It 

is known that neither K, - F nor K,, - F admit a C,-factorization. In this paper we show that 

except for these two cases, the necessary condition is also sufficient. 

1. Introduction 

Let G be a graph and let k > 2 be an integer. A k-cycle decomposition of G is 

an edge-decomposition of G into cycles of length k. If the cycles of a k-cycle 
decomposition can be partitioned into 2-factors of G, we call this 2-factorization a 

C,-factorization of G. More generally, for any graphs G and H, an H-factor of G 

is a spanning subgraph D of G such that every component of D is isomorphic to 

H. If G can be expressed as an edge-disjoint sum of H-factors, then this sum is 

called an H-factorization of G. 

Let C, denote the cycle of length k, let K,, denote the complete graph with n 

vertices, and let K2,, - F denote the graph obtained by deleting the edges of a 

l-factor F from K,,. A necessary condition for the existence of a Ck-factorization 

of &,+I is that k divides 2n + 1. Alspach, Schellenberg, Stinson and Wagner [2] 

show that this necessary condition is also sufficient. 
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Of course KZn does not have a C,-factorization because each vertex has odd 
degree. The best one can hope to do is find a C,-factorization of K2,, - F. A 
necessary condition for the existence of such a factorization is that k divides 2n. 
In this paper we show that, for k > 3 an odd integer, Kak -F has a C,- 
factorization. As an immediate consequence of this, we establish that the 
necessary condition for the existence of a C,-factorization of Kb - F is sufficient 
except when k = 3 and 2n E (6, 12). 

2. The construction 

We use Bose’s [4] method of symmetrically repeated differences (see, for 
example, [3]) to give a direct construction of a C,-factorization of Kdk - F for all 
odd integers k > 3. It is easy to see that any such factorization consists of 2k - 1 
C,-factors. Our approach is to find an initial C,-factor which generates the 
desired C,-factorization under the action of the group &_i, the integers modulo 
2k - 1. Therefore, let the vertices of Kdk - F consist of two copies Z2k_-1, namely 

(0, 1,. . . 3 2k - 2) and (0, i, . . . ,2k - 2}, together with the two fixed points 

{‘Y,?]. 
Let us first treat two special cases to which the general construction does not 

apply. 

Lemma 2.1. There exists a C,-factorization of KzO - F and a C,-factorization of 

Kzs - F. 

Proof. Let the vertices of KzO be 

(0, 1, . . . ,8]u@,i ,..., 8}U{m,,m2}. 

Consider the &factor 
- - _ 

(0, 1,3,&o, O)% 7,5,&i, 2]{m,, 4, g, 2,4, mJ{m~, 5,6,7,3, ~21 

where, for example, (0, 1,3,6,0,0} represents the cycle made up of the edges 

{O,l>, (1,319 (3,619 {6,0) and (0, O}. The differences corresponding to the 
edges of this C,-factor include every pure and mixed difference except for the 
mixed difference 5 (i.e. g - h where g - h = 5 in Z,), and every infinite difference 
except for the differences k( m1 - co*). Letting Z9 act on this factor generates a 
Cs-factorization of KzO - F. The l-factor F consists of the edges 

(5, O}, (6, l}, . . . , {%8), {@‘I, md. 

Let the vertices of Kzs be 
- - 

(0, 1, . . . 7 12) U (0, 1, . . . ,12} U {ml, m2}. 
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The edges of the C,-factor 

(0, 1, 3, 6, 10, 5, b, o){i, 2,4, lo, 9, ii, 7, i){w,, ii, 4,3,7,12, % 03~) 

{% 12, & 29% g,& 12) 

represent every pure and mixed difference, with respect to Z13, except for the 
mixed difference 5, and every infinite difference except for the differences 

f( ml - ~0~). Letting HI3 act on this factor generates a &-factorization of 
Kzs - F. 0 

We now proceed to construct such initial &-factors for every odd integer k. To 
this end, let k = 2t + 1, and consider the graph I&f+4 having vertex set 

(0, l,..., 4t}u{O, i ,..., Z}u{m1,~2}. 

The first cycle is 

(0, i, -1, 2, -2, 3, -3,. . . ,i, -t, 0). 

The edges of this (2t + l)-cycle have mixed differences 1,2, . . . ,2t as well as the 
pure difference ft. (As before, we say g - h is the mixed difference d if g - h = d 

in &+*.) The second cycle is 

{--t - 2, t + 1, --t - 3, f + 2, . . . ). -2t + 1, 2t - 2, -2t, 
-_- 
2t - 1, 0,2t, -2t - 1, --t - 2). 

Its edges have mixed differences 2t + 3, 2t + 4, 2t + 5, . . . , 4t - 1 and 0, and pure 
differences f(2t - l), f% and k(t - 1). The third cycle is 

- - 
{m,,4t_1,,+,4t )..., 3t-1,3t,t-2,C41} 

having mixed difference 2t + 2 and pure differences ki, kz, . . . , k(2t - 2). It 
also has the two differences involving ~0~. 

These three cycles are represented schematically in Fig. 1. This diagram may 
help the reader recognize the pattern being employed in the above construction. 
Observe that the vertices in the right-hand column are in ascending order 0, i, 
2,. . . , %, whereas those in the left-hand column are in descending order 0, -1, 
-2,. , . ) -4t. Note that Fig. 1 also indicates how we get t + 3 of the edges of the 
fourth cycle. 

Table 1 summarizes the differences that are contained in these three cycles. 
Let K’ be the subgraph of K8t+4 induced by the set of vertices which are not in 

any of these three cycles, namely the vertices 

({1,2,. . .,2t-l}\{t-2})U{-t-1,4t,~,}. 

Since no edge in K’ has mixed difference 4t, the edges 

(0, 1>, Ii, 21, . . . , (4t - 1, 4t}, {%, 0} and {aI, ~0~) 
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Fig. 1. 

constitute the l-factor F of Ks1+4 - F. Let the fourth cycle contain the path 

1 t + 1, -t - 1, t - 1, a2,4t, 2t - 1, 1, 

t-4 3t+2 t-2 3t 
2t-2,2 )...) -y9’,‘2 

when t is even, and the path 

t + 1, -t - 1, t - 1, 9,4t, 2t - 1, 1, 

3t+3 t-3 3t+l t-l 
2t-2,2 )...) 2’,‘2 
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pure differences mixed differences 

1st cycle l t 1, 2, . . , 2t 

2nd cycle f (1 - l), f (2t -1),f?t 0, 2t + 3, 2t + 4, . , 4t - 1 

3rd cycle *T, 4, , f(2t - 2) 2t + 2 

when t is odd. The edges of this path represent the two differences involving m2, 
the mixed differences 2t + 1, and the pure differences 

*2t, f(2t - l), f(2t - 2) . . . ) l :(t + 1). 

When t is even, we adjoin the path 

r 

3t 3t - 2 3t -6 --- 
2’ 2 ’ 2 I 

which has differences fl and f2. Then adjoin paths of the form 

Pa,6 = {a, b, a + 1, b + 2, a - 1, b + 1, a - 3). 

Path Pa,b starts at vertex a, ends at vertex a - 3, and passes through vertices 
a + 1, a - 1, b, b + 1, b + 2; furthermore, its edges represent the six consecutive 
pure differences 

f (a -b + l), f (a -b), f (a - b - l), f (a - b - 2), 

f (a - b - 3) f (a -b - 4). 

We string together paths Pa,b for 

(a, b) = (y, ;), (!!j??, q), (!!$!, !+!?), . . . 

as long as a > t + 4 and b < t - 7 or (a, b) = (t + 3, t - 6). We now consider three 
cases. 

Case 1: t=O(mod6). 
Consider the union of paths Pa,b for all 

3t - 6i t - 6 + 6i 
(a, b) ~((7 2 ): i = 1,2,. . . , 7). 

(Notice that, when t = 6, this set of pairs is empty and, hence, no paths Pa,b are 
used.) This union is a path of length (t - 6) which starts at vertex (3t - 6)/2, ends 
at the vertex t, and passes through all the vertices 

3t - 4 - 3t 8 3t - 10 3t - 12 
2’ 2 > 2 >*..3 t + 2, 
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and 
t t+2 t+4 --- 
2’ 2 ) 2 ‘...) 

t - 4. 

Furthermore, the edges of this path represent all the pure differences 

f (t -2), f (t - 3) f (t - 4) . . . , f-5. 

When (a, 6) = (t, t - 3) complete the cycle by adding the path {t, t - 3, t + l}. It 
can be seen that this is, in fact, a cycle of length 2t + 1 which spans the graph K’ 

and includes all the required differences. Letting Z,,,, act on this cycle and the 
three defined earlier produces a &,+,-factorization of Ksr+4 - F when 
tEO(mod6). 

Case 2: t = 2 (mod 6). 
The argument proceeds as in Case 1, taking the union of paths Pn,b for all 

(a, 6) E {(y, t - :+ 6i): i = 1,2, . . . , y} . 

When (a, b) = (t + 4, t - 7) complete the cycle by adding the path 

{t + 4, t - 7, t + 5, t - 5, t + 2, t - 6, t + 3, t - 3, t, t - 4, t + l}. 

As before, it can be shown that this cycle spans K’ and includes all the required 
differences. 

When t = 8, (3t - 6)/2= 9< 12= t +4. Hence, this technique cannot be 
applied. In this case, one possible fourth cycle is 

{co*, 5, 15, 1, 14, 2, 13, 3, 12, 10, 11, 5, 8, 4, 9, 24, 7, 00~). 

When t = 2, 8t + 4 = 20 and existence is resolved in Lemma 2.1. 
Case 3: t=4(mod6). 
When (a, b) = (t + 2, t - 5), complete the fourth cycle by adding the path 

{t + 2, t - 5, t + 3, t - 3, t, t - 4, t + l}. 

When t =4, (3t- 6)/2= 3<6= t +2. As before, this case must be handled 
separately. A fourth cycle is 

{mz,% 7,1,6,4,3,12,5, mz). 

When t is odd, we adjoin the path 

{ 

t-l 3t-5 3t-13t-3 t+3 
7j-?‘-p’2’, 

I 

which has pure differences f (t - 2), f2, fl, f (t - 3), to the path 

t + 1, -t - 1, t - 1, 002, z, 2t - 1, 1, 2t - 2, 

2 
3t+3 t-3 3t+l 

,...,- - - - 
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Then adjoin paths of the form 

Q.,b = {b, a, b - 1, a - 2, b + 1, a - 1, b + 3). 

Path Q.,b starts at vertex b, ends at vertex b + 3, and passes through vertices 
b - 1, b + 1, a, a - 1, a - 2; furthermore, its six edges represent the consecutive 
pure differences 

f (a - b + l), f (a - b), f (u - b - l), f (a - b - 2), 

f (a - b - 3), f (a - b - 4). 

We string together such paths Qa,b for 

3t-7 t+3 
(a, b) = (7 T), (y, y), (y, F), . . . 

as long as a > t + 3 and b < t - 5. We now consider three more cases. 
Case 4: t = 1 (mod 6). 
When (a, b) = (t + 3, t - 5), complete the cycle by adding the path 

{t - 5, t + 2, t - 6, t + 3, t - 3, t, t - 4, t + 1). 

When t = 7, (3t - 7)/2 = 7 < 10 = t + 3. Hence, this approach fails. In this case, a 
possible fourth cycle is 

{a+, 28, 13, 1, 12, 2, 11, 3, 8, 21, 6, 10, 9, 7, 4, mZ}. 

When t = 1, Kotzig and Rosa [5] have shown that a C,-factorization of K,, - F 

does not exist. 
Cuse5: t=3(mod6). 
When (a, b) = (t + 1, t - 3), complete the fourth cycle by adding the path 

{t - 3, t, t - 4, t + l}. 

This technique fails when t = 3, since (3t - 7)/2 = 1 < 4 = t + 1. However, as 
8t + 4 = 28, Lemma 2.1 resolves the question of existence. 

Case 6: t = 5 (mod 6). 
When (a, b) = (t + 2, t - 4), complete the cycle by adding the path 

{t - 4, t + 2, t - 5, t, t - 3, t + 1). 

This does not work when t = 5 since (3t - 7)/2 = 4 < 7 = t + 2. In this case, 

(~2, 20, 9, I, 8, 2, 5, 7, 6, 15, 4, mz> 

is a suitable fourth cycle. 
This establishes the following result. 

Theorem 2.2. If k > 3 is an odd integer, then Kdk - F has a C,-factorization. 

This also completely resolves the existence question for Ck-factorizatio.ns of 
K,-F. 
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Theorem 2.3. For any integer k > 2, if k divides 2n, then Kz, - F has a 

C,-factorization, except when k = 3 and 2n E (6, 12). 

Proof. Alspach and Haggkvist [l] establish this result when k is an even integer. 

Kotzig and Rosa [5] show that K6 - F and K12 - F do not have C,-factorizations. 

Alspach, Schellenberg, Stinson and Wagner [2] resolve the existence question for 

k an odd integer and n # 2k. The techniques of [2] do not apply to the case when 

n = 2k because K4 - F cannot be decomposed into 2-factors consisting of cycles of 

odd length. Theorem 2.2 resolves the case when k is odd and n = 2k. 0 
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