12 research outputs found

    A complete axiomatisation of reversible Kleene lattices

    Get PDF
    We consider algebras of languages over the signature of reversible Kleene lattices, that is the regular operations (empty and unit languages, union, concatenation and Kleene star) together with intersection and mirror image. We provide a complete set of axioms for the equational theory of these algebras. This proof was developed in the proof assistant Coq

    Words-to-Letters Valuations for Language Kleene Algebras with Variable Complements

    Full text link
    We investigate the equational theory of Kleene algebra terms with variable complements -- (language) complement where it applies only to variables -- w.r.t. languages. While the equational theory w.r.t. languages coincides with the language equivalence (under the standard language valuation) for Kleene algebra terms, this coincidence is broken if we extend the terms with complements. In this paper, we prove the decidability of some fragments of the equational theory: the universality problem is coNP-complete, and the inequational theory t <= s is coNP-complete when t does not contain Kleene-star. To this end, we introduce words-to-letters valuations; they are sufficient valuations for the equational theory and ease us in investigating the equational theory w.r.t. languages. Additionally, we prove that for words with variable complements, the equational theory coincides with the word equivalence.Comment: In Proceedings AFL 2023, arXiv:2309.0112

    Decidability of Identity-free Relational Kleene Lattices

    Get PDF
    National audienceFamilies of binary relations are important interpretations of regular expressions, and the equivalence of two regular expressions with respect to their relational interpretations is decidable: the problem reduces to the equality of the denoted regular languages.Putting together a few results from the literature, we first make explicit a generalisation of this reduction, for regular expressions extended with converse and intersection: instead of considering sets of words (i.e., formal languages), one has to consider sets of directed and labelled graphs.We then focus on identity-free regular expressions with intersection—a setting where the above graphs are acyclic—and we show that the corresponding equational theory is decidable. We achieve this by defining an automaton model, based on Petri Nets, to recognise these sets of acyclic graphs, and by providing an algorithm to compare such automata

    Completeness for Identity-free Kleene Lattices

    Get PDF
    We provide a finite set of axioms for identity-free Kleene lattices, which we prove sound and complete for the equational theory of their relational models. Our proof builds on the completeness theorem for Kleene algebra, and on a novel automata construction that makes it possible to extract axiomatic proofs using a Kleene-like algorithm

    Petri automata for Kleene allegories

    Get PDF
    International audienceKleene algebra axioms are complete with respect to both language models and binary relation models. In particular, two regular expressions recognise the same language if and only if they are universally equivalent in the model of binary relations.We consider Kleene allegories, i.e. Kleene algebra with two additional operations which are natural in binary relation models: intersection and converse. While regular languages are closed under those operations, the above characterisation breaks. Instead, we give a characterisation in terms of languages of directed and labelled graphs. We then design a finite automata model allowing to recognise such graphs, by taking inspiration from Petri nets.This model allows us to obtain decidability of identity-free relational Kleene lattices, i.e., the equational theory generated by binary relations on the signature of regular expressions with intersection, but where one forbids unit. This restriction is used to ensure that the corresponding graphs are acyclic. The decidability of graph-language equivalence in the full model remains open

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore