530 research outputs found

    Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays

    Get PDF
    Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation

    Verification and Validation of Encapsulation Flow Models in GOMA, Version 1.1

    Full text link

    Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    Get PDF
    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions

    Epoxy/triazine based high performance molding compound for next generation power electronics packaging

    Get PDF
    The power electronics industry has been actively seeking encapsulant materials that can serve in harsher environments. For example, with the power semiconductors leading into SiC era, the higher operation temperature (250 ºC) have proposed great challenges on the packaging materials especially on epoxy molding compound (EMC) technologies, since the temperature exceeds the stability limit of typical epoxy (EP) chemistry. In this thesis, EP/triazine system was selected to develop high temperature stable resin system that can meet the temperature requirement of next generation power electronics packaging. In the first part of the thesis, different approaches were discussed to enhance the high temperature performance of a previously studied cyanate ester (CE)/ biphenyl EP blend which is impaired by the hydrolysis degradation of remaining cyanate groups. Firstly, the effects of different metal catalyst on the CE properties were discussed. Secondly, a triazine containing molecule triglycidyl isocyanurate (TGIC) was employed to increase the triazine content without increasing CE feed ratio to circumstance problem of unreacted cyanate groups. Finally, the high heat resistant novolac type CE was employed to form the NCE/EP blend, and their blends with different feed ratio were systematically evaluated. In the second part, a detailed characterization of a high heat resistant CE/novolac type EP blends and the investigation on their degradation under long-term high temperature storage were summarized. The effects of the CE concentration on the thermomechanical properties of the copolymer were explored, where a tradeoff behavior between the triazine content and crosslink density was accounted for the property change. In addition, the distinguished thermal degradation mechanisms in copolymer with different compositions were identified and illustrated. The knowledge obtained in this work can serve as a reference in the future to formulate EP/triazine based resin system for high temperature applications.M.S

    Materials-based process tolerances for neutron generator encapsulation.

    Full text link

    Focussed microwave heating using degenerate and non-degenerate cavity modes

    Get PDF
    Microwave ovens have long been recognised as a means of reducing heating times versus conventional convection ovens. The principle design feature is based on the procurement of uniform heating within any material placed in the interior of the microwave cavity oven. Materials within the oven are subjected to a degree of heating dependent on their electromagnetic properties. For many applications, it is desirable to maintain control over the distribution of heat deposition. This can be achieved through focussing of the electromagnetic field within the cavity. Two new mechanisms are identified where an increased level of control over the heating pattern and its location could be advantageous. The research described within this thesis aims to improve heating selectivity in microwave cavity ovens by the identification and enhanced control of modal patterns in degenerate and non-degenerate resonators. This is achieved through the analysis of two novel oven arrangements. The first of these addresses the requirement for highly selective heating in hyperthermia treatment. It is demonstrated that proper selection of a forced degenerate mode set can lead to an enhancement in field focussing within the centre of the cavity through constructive and destructive interference of the fields in each mode pattern. It is found that a highly selective peak of field can be produced within the centre of a large cylindrical waveguide cavity for the purpose of hyperthermia treatment. The peak is produced using a quasi degenerate mode set excited at approximately 1:3GHz. The second example presents an open oven design for the curing of epoxy and encapsulant materials within the micro-electronics packaging industry. It is intended that the oven be placed on the arm of a precision alignment machine such that the curing and placement stages of production be combined, suggesting an increase in production efficiency. Two excitation schemes are presented based on the coupling of quasi degenerate mode sets through a wide frequency range and the excitation of a single high order mode enabling uniform field distribution for heating of encapsulant material and increased selective heating through spatial alignment of modal field peaks, respectively. Experimental results demonstrate the viability of the open-ended microwave oven for curing. Both proposed excitation methods within the open oven design are investigated with results presented. Optimisation of the heating fields is achieved through inclusion of lowloss materials within the oven. Curing of an encapsulant material covering a commercial chip package is achieved and the overall design validated

    Spacecraft high-voltage power supply construction

    Get PDF
    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing

    Literature review on thermo-mechanical behavior of components for LED system-in-package

    Get PDF

    Development and evaluation of superconducting circuit elements

    Get PDF
    An approach to the application of high Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid-conductor process (RCP), involves the combination of a pre-formed, sintered, and tested superconductor material with an appropriate, rigid substrate via an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Emphasis was on the practical means to achieve functional, reliable, and reproducible components. Although all of the work described in this report involved a YBa2Cu3Osub(7-x) high Tc superconductor material, the techniques developed and conclusions reached are equally applicable to other high Tc materials
    corecore