3,638 research outputs found

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    The perceptual and attentive impact of delay and jitter in multimedia delivery

    Get PDF
    In this paper we present the results of a study that examines the user’s perception—understood as both information assimilation and subjective satisfaction—of multimedia quality, when impacted by varying network-level parameters (delay and jitter). In addition, we integrate eye-tracking assessment to provide a more complete understanding of user perception of multimedia quality. Results show that delay and jitter significantly affect user satisfaction; variation in video eye path when either no single/obvious point of focus exists or when the point of attention changes dramatically. Lastly, results showed that content variation significantly affected user satisfaction, as well as user information assimilation

    A user perspective of quality of service in m-commerce

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2004 Springer VerlagIn an m-commerce setting, the underlying communication system will have to provide a Quality of Service (QoS) in the presence of two competing factors—network bandwidth and, as the pressure to add value to the business-to-consumer (B2C) shopping experience by integrating multimedia applications grows, increasing data sizes. In this paper, developments in the area of QoS-dependent multimedia perceptual quality are reviewed and are integrated with recent work focusing on QoS for e-commerce. Based on previously identified user perceptual tolerance to varying multimedia QoS, we show that enhancing the m-commerce B2C user experience with multimedia, far from being an idealised scenario, is in fact feasible if perceptual considerations are employed

    Video streaming

    Get PDF

    Adaptive delivery of real-time streaming video

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 87-92).While there is an increasing demand for streaming video applications on the Internet, various network characteristics make the deployment of these applications more challenging than traditional Internet applications like email and the Web. The applications that transmit data over the Internet must cope with the time-varying bandwidth and delay characteristics of the Internet and must be resilient to packet loss. This thesis examines these challenges and presents a system design and implementation that ameliorates some of the important problems with video streaming over the Internet. Video sequences are typically compressed in a format such as MPEG-4 to achieve bandwidth efficiency. Video compression exploits redundancy between frames to achieve higher compression. However, packet loss can be detrimental to compressed video with interdependent frames because errors potentially propagate across many frames. While the need for low latency prevents the retransmission of all lost data, we leverage the characteristics of MPEG-4 to selectively retransmit only the most important data in order to limit the propagation of errors. We quantify the effects of packet loss on the quality of MPEG-4 video, develop an analytical model to explain these effects, and present an RTP-compatible protocol-which we call SR-RTP--to adaptively deliver higher quality video in the face of packet loss. The Internet's variable bandwidth and delay make it difficult to achieve high utilization, Tcp friendliness, and a high-quality constant playout rate; a video streaming system should adapt to these changing conditions and tailor the quality of the transmitted bitstream to available bandwidth. Traditional congestion avoidance schemes such as TCP's additive-increase/multiplicative/decrease (AIMD) cause large oscillations in transmission rates that degrade the perceptual quality of the video stream. To combat bandwidth variation, we design a scheme for performing quality adaptation of layered video for a general family of congestion control algorithms called binomial congestion control and show that a combination of smooth congestion control and clever receiver-buffered quality adaptation can reduce oscillations, increase interactivity, and deliver higher quality video for a given amount of buffering. We have integrated this selective reliability and quality adaptation into a publicly available software library. Using this system as a testbed, we show that the use of selective reliability can greatly increase the quality of received video, and that the use of binomial congestion control and receiver quality adaptation allow for increased user interactivity and better video quality.by Nicholas G. Feamster.M.Eng
    • 

    corecore