6 research outputs found

    The Effect of Sub-Threshold Pre-Pulses on Neural Activation Depends on Electrode Configuration

    Get PDF
    IEEE Objective: Published research on nerve stimulation with sub-threshold conditioning pre-pulses is contradictory. Like most early research on electrical stimulation (ES), the pioneer work on the use of pre-pulses was modelled and measured only for monopolar electrodes. However, many contemporary ES applications, including miniaturized neuromodulation implants, known as electroceuticals, operate in bipolar mode. Methods: We compared depolarizing (DPPs) and hyperpolarizing (HPPs) pre-pulses on neural excitability in rat nerve with monopolar and bipolar electrodes. The rat common peroneal nerve was stimulated with biphasic stimuli with and without ramp and square DPPs or HPPs of 1, 5 and 10ms duration and 10% - 20% of the amplitude of the following pulse. Results: The effects were opposite for the monopolar and bipolar configurations. With monopolar electrodes DPPs increased the amplitude required to activate 50% of the motoneuron pool (between 0.7% and 10.3%) and HPPs decreased the threshold (between 1.7% and 4.7%). With bipolar electrodes both pre-pulse types had the opposite effect: DPPs decreased thresholds (between 1.8% and 5.5%) whereas HPPs increased thresholds (between 0.5% and 4.1%). Electroneurograms from the stimulated nerve revealed spatial and temporal differences in action potential generation for monopolar and bipolar electrodes. In bipolar biphasic stimulation, excitation first occurred at the return electrode as a response to the transition between the cathodic and anodic phase. Conclusion: These data help to resolve the contradictions in the published data over two decades. Significance: They also show that fundamental research carried out in monopolar configuration is not directly applicable to contemporary bipolar ES applications

    Selective electrical stimulation of peripheral nerve fibers:accommodation based methods

    Get PDF
    project was motivated by the idea of using and adapting accommodation-based methods for selective electrical stimulation of motor fibers to the study of the human nociceptive system. This has not been without difficulties, but it has still been a rewarding process, as it has provided the opportunity to study interesting biophysical mechanisms and to enhance the understanding of accommodation based methods. Throughout this project, I am indebted to all the co-workers and friends at the Center of Sensory Motor Interaction and at the Faculty of Dentistry, University of Toronto that I have had the fortune to work with and learn from. I wish to express my sincerest gratitude to my supervisor Associate Prof. Ole K. Andersen and Professor Lars Arendt-Nielsen, the head of Center for Sensory Motor Interaction, for their never failing interest and enthusiasm. I will also like to express my deepest gratitude to my hosts at the Faculty of Dentistry, University of Toronto, Professor Barry J. Sessle and Professor James W. Hu. Furthermore, I will like to thank Dr. Alexandra Vuckovic for graciously offering her volume conducto

    Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current

    Get PDF
    Publisher's version (útgefin grein)Background Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. Results In this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as "stabbing", "shooting", and "sharp". Conclusion These results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121)."Peer Reviewed

    Optimal strategies for electrical stimulation with implantable neuromodulation devices

    Get PDF
    Electrical stimulation (ES) is a neuromodulation technique that uses electrical pulses to modulate the activity of excitable cells to provide a therapeutic effect. Many past and present ES applications use rectangular current waveforms that have been well studied and are easy to generate. However, an extensive body of scientific literature describes different stimulation waveforms and their potential benefits. A key measure of stimulation performance is the amplitude required to reach a certain percentual threshold of activation, as it directly influences important ES parameters such as energy consumption per pulse and charge density. The research summarized in this thesis was conducted to re-examine some of the most-commonly suggested ES waveform variations in a rodent in-vivo nerve-muscle preparation. A key feature of our experimental model is the ability to test stimulation with both principal electrode configurations, monopolar and bipolar, under computer control and in randomized order. Among the rectangular stimulation waveforms, we investigated the effect of interphase gaps (IPGs), asymmetric charge balanced pulses, and subthreshold conditioning pre-pulses. For all these rectangular waveforms, we surprisingly observed opposite effects in the monopolar compared to the bipolar stimulation electrode configuration. The rationale for this consistent observation was identified by analyzing electroneurograms (ENGs) of the stimulated nerve. In the monopolar configuration, biphasic pulses first evoked compound action potentials (eCAPs) as a response to the first field transition. In the bipolar electrode configuration, that is the mode in which many contemporary ES devices, including the envisioned miniaturized electroceuticals, operate, eCAPs were first elicited at the return electrode in response to the middle field transition of biphasic pulses. As all rectangular waveform variations achieve their effect by modulating the amplitude and timing of cathodic (excitatory) and anodic (inhibitory) field transitions, the inverted current profile at the bipolar return electrode explains these observed opposite effects. Further we investigated the claimed benefits of non-rectangular, Gaussian stimulation waveforms in our animal model. In our study only moderate energy savings of up to 17% were observed, a finding that is surprising in light of the predicted range of benefits of up to 60% energy savings with this novel waveform in question. Additionally, we identified a major disadvantage in terms of substantially increased maximum instantaneous power requirements with Gaussian compared to rectangular stimuli. We examined physiological changes in fast twitch muscle following motor nerve injury, and optimal stimulation strategies for activation of denervated muscle. While a high frequency doublet has previously been identified to enhance stimulation efficiency of healthy fast twitch muscle, an effect that has been termed “doublet effect”, we here show that this benefit is gradually lost in muscle during denervation. Lastly, the effect of long duration stimulation pulses, that are required to activate denervated muscle, on nerve is examined. We show that these long pulses can activate nerves up to three times when the three field transition within the biphasic pulses are separated by more than (i.e., when the phase width is above) the refractory period of that nerve. This observation challenges state-of-the-art computational models of extracellular nerve stimulation that do not seem to predict such multiple activations. Further, an undesired up to threefold co-activation of innervated structures nearby the denervated stimulation target warrants further research to study whether these co-activations can be lessened with alternative stimulation waveforms such as ramped sawtooth pulses

    The effect of subthreshold prepulses on the recruitment order in a nerve trunk analyzed in a simple and a realistic volume conductor model

    Get PDF
    The influence of subthreshold depolarizing prepulses on the threshold current-to-distance and the threshold current-to-diameter relationship of myelinated nerve fibers has been investigated. A nerve fiber model was used in combination with both a simple, homogeneous volume conductor model with a point source and a realistic, inhomogeneous volume conductor model of a monofascicular nerve trunk surrounded by a cuff electrode. The models predict that a subthreshold depolarizing prepulse will desensitize Ranvier nodes of fibers in the vicinity of the cathode and thus cause an increase in the threshold current of a subsequent pulse to activate these fibers. If the increase in threshold current of the excited node is large enough, the excitation will be accompanied by a strong hyperpolarization of adjacent nodes, preventing the propagation of action potentials in these fibers. As fibers close to the electrode are more desensitized by prepulses than more distant ones, it is possible to stimulate distant fibers without stimulating such fibers close to the electrode. Moreover, as larger fibers are more desensitized than smaller ones, smaller fibers have lower threshold currents than larger fibers up to a certain distance from the electrode. The realistic model has provided an additional condition for the application of this method to invert nerve fiber recruitment, i.e., real or virtual anodes should be close to the cathode. When using a cuff electrode for this purpose, in the case of monopolar stimulation the cuff length (determining the position of the virtual anodes) should not exceed twice the internodal length of the fibers to be blocked. Similarly, the distance between cathode and anodes should not exceed the internodal length of these fibers when stimulation is to be applied tripolarly
    corecore