8,319 research outputs found

    The Effect of Recombination on the Neutral Evolution of Genetic Robustness

    Full text link
    Conventional population genetics considers the evolution of a limited number of genotypes corresponding to phenotypes with different fitness. As model phenotypes, in particular RNA secondary structure, have become computationally tractable, however, it has become apparent that the context dependent effect of mutations and the many-to-one nature inherent in these genotype-phenotype maps can have fundamental evolutionary consequences. It has previously been demonstrated that populations of genotypes evolving on the neutral networks corresponding to all genotypes with the same secondary structure only through neutral mutations can evolve mutational robustness [Nimwegen {\it et al.} Neutral evolution of mutational robustness, 1999 PNAS], by concentrating the population on regions of high neutrality. Introducing recombination we demonstrate, through numerically calculating the stationary distribution of an infinite population on ensembles of random neutral networks that mutational robustness is significantly enhanced and further that the magnitude of this enhancement is sensitive to details of the neutral network topology. Through the simulation of finite populations of genotypes evolving on random neutral networks and a scaled down microRNA neutral network, we show that even in finite populations recombination will still act to focus the population on regions of locally high neutrality.Comment: Accepted for publication in Math. Biosci. as part of the proceedings of BIOCOMP 200

    Phenotypic robustness can increase phenotypic variability after non-genetic perturbations in gene regulatory circuits

    Full text link
    Non-genetic perturbations, such as environmental change or developmental noise, can induce novel phenotypes. If an induced phenotype confers a fitness advantage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initiate evolutionary innovation. Genetic variation that is not usually phenotypically visible may play an important role in this process. Populations under stabilizing selection on a phenotype that is robust to mutations can accumulate such variation. After non-genetic perturbations, this variation can become a source of new phenotypes. We here study the relationship between a phenotype's robustness to mutations and a population's potential to generate novel phenotypic variation. To this end, we use a well-studied model of transcriptional regulation circuits. Such circuits are important in many evolutionary innovations. We find that phenotypic robustness promotes phenotypic variability in response to non-genetic perturbations, but not in response to mutation. Our work suggests that non-genetic perturbations may initiate innovation more frequently in mutationally robust gene expression traits.Comment: 11 pages, 5 figure

    Fundamental Properties of the Evolution of Mutational Robustness

    Full text link
    Evolution on neutral networks of genotypes has been found in models to concentrate on genotypes with high mutational robustness, to a degree determined by the topology of the network. Here analysis is generalized beyond neutral networks to arbitrary selection and parent-offspring transmission. In this larger realm, geometric features determine mutational robustness: the alignment of fitness with the orthogonalized eigenvectors of the mutation matrix weighted by their eigenvalues. "House of cards" mutation is found to preclude the evolution of mutational robustness. Genetic load is shown to increase with increasing mutation in arbitrary single and multiple locus fitness landscapes. The rate of decrease in population fitness can never grow as mutation rates get higher, showing that "error catastrophes" for genotype frequencies never cause precipitous losses of population fitness. The "inclusive inheritance" approach taken here naturally extends these results to a new concept of dispersal robustness.Comment: 17 pages, 1 figur

    The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks

    Full text link
    We investigate how scale-free (SF) and Erdos-Renyi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SFout topologies are also more robust to mutations than ER networks. Furthermore, the SFout topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.Comment: 16 pages, 15 figure

    Critical mutation rate has an exponential dependence on population size in haploid and diploid populations

    Get PDF
    Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events

    Selective pressures on genomes in molecular evolution

    Get PDF
    We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.Comment: 16 pages, 3 figures, to be published in J. theor. Biolog

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Degeneracy: a design principle for achieving robustness and evolvability

    Full text link
    Robustness, the insensitivity of some of a biological system's functionalities to a set of distinct conditions, is intimately linked to fitness. Recent studies suggest that it may also play a vital role in enabling the evolution of species. Increasing robustness, so is proposed, can lead to the emergence of evolvability if evolution proceeds over a neutral network that extends far throughout the fitness landscape. Here, we show that the design principles used to achieve robustness dramatically influence whether robustness leads to evolvability. In simulation experiments, we find that purely redundant systems have remarkably low evolvability while degenerate, i.e. partially redundant, systems tend to be orders of magnitude more evolvable. Surprisingly, the magnitude of observed variation in evolvability can neither be explained by differences in the size nor the topology of the neutral networks. This suggests that degeneracy, a ubiquitous characteristic in biological systems, may be an important enabler of natural evolution. More generally, our study provides valuable new clues about the origin of innovations in complex adaptive systems.Comment: Accepted in the Journal of Theoretical Biology (Nov 2009
    corecore