3 research outputs found

    Opportunistic radar imaging using a multichannel receiver

    Get PDF
    Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver where one or both are moving. Besides the advantages of reduced procurement and maintenance costs, the receiving system can sense passively while remaining covert which offers obvious tactical advantages. In this work, spaceborne monostatic SARs are used as emitters of opportunity with a stationary ground-based receiver. The imaging mode of SAR systems over land is usually a wide-swath mode such as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to image a larger swath at the expense of degraded cross-range resolution compared to the conventional stripmap mode. In the bistatic geometry considered here, the signals from the sidelobes of the scanning beams illuminating the adjacent sub-swath are exploited to produce images with high cross-range resolution from data obtained from a SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem is rigorously formulated and solved using a Maximum A Posteriori estimation method providing enhanced cross-range resolution compared to that obtained by classical burst-mode SAR processing. This dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. As a comparison, a compressive sensing-based method is critically analysed and proves more sensitive to off-grid targets and only suited to sparse scene. The novel SAR imaging method is demonstrated using simulated data and real measurements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2, ENVISAT and Sentinel-1A. In addition, this thesis analyses the main technological issues in bistatic SAR such as the azimuth-variant characteristic of bistatic data and the effect of imperfect synchronisation between the non-cooperative transmitter and the receiver

    The effect of recovery algorithms on compressive sensing background subtraction

    No full text
    Background subtraction is a key method required to aid processing surveillance videos. Current methods require storing each pixel of every video frame, which can be wasteful as most of this information refers to the uninteresting background. Compressive sensing can offer an efficient solution by using the fact that foreground is often sparse in the spatial domain. By making this assumption and applying a specific recovery algorithm to a trained background, it is possible to reconstruct the foreground, using only a low dimensional representation of the difference between the current frame and the estimated background scene. Although new compressive sensing background subtraction algorithms are being created, no study has been made of the effect of recovery algorithms on performance of background subtraction. This is considered by applying both Basis Pursuit and Orthogonal Matching Pursuit (OMP) to a standard test video, and comparing their accuracy
    corecore