27,578 research outputs found

    Computer-mediated knowledge communication

    Get PDF
    New communication technologies enable an array of new working and learning scenarios in which knowledge is being communicated. This article deals with the question to what extent these technologies can impede or facilitate knowledge communication. First, the various computer-based communication technologies will be classified. Second, effects of the medium on knowledge communication will be discussed based on results of studies of the current special priority program "Net-based Knowledge Communication in Groups". Third and last, computer-based possibilities to facilitate computer-mediated knowledge communication will be reviewNeue Kommunikationstechnologien ermöglichen eine Reihe neuer Arbeits- und Lernszenarien in denen Wissen kommuniziert wird. Dieser Beitrag beschäftigt sich damit, inwiefern diese Technologien Wissenskommunikation einschränken oder fördern können. Dazu werden in einem ersten Schritt die verschiedenen computerbasierten Kommunikationstechnologien untergliedert. In einem zweiten Schritt werden Wirkungen des Mediums auf die Wissenskommunikation diskutiert. Dazu werden u. a. die Ergebnisse von Studien des aktuellen Forschungsschwerpunkts "Netzbasierte Wissenskommunikation in Gruppen" berichtet. In einem dritten und letzten Schritt werden computerbasierte Möglichkeiten zusammengefasst, computervermittelte Wissenskommunikation zu förd

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles

    The F@ Framework of Designing Awareness Mechanisms in Instant Messaging

    Get PDF
    This paper presents our research on awareness support in Instant Messaging (IM). The paper starts with a brief overview of empirical study of IM, using an online survey and face-to-face interviews to identify user needs for awareness support. The study identified a need for supporting four aspects of awareness, awareness of multiple concurrent conversations, conversational awareness, presence awareness of a group conversation, and visibility of moment-to-moment listeners and viewers. Based on the empirical study and existing research on awareness, we have developed the F@ (read as fat) framework of awareness. F@ comprises of the abstract level and the concrete level. The former includes an in-depth description of various awareness aspects in IM, whilst the latter utilises temporal logic to formalise fundamental time-related awareness aspects. F@ helps developers gain a better understanding of awareness and thereby design usable mechanisms to support awareness. Applying F@, we have designed several mechanisms to support various aspect of awareness in IM

    Good vibrations: Guiding body movements with vibrotactile feedback

    Get PDF
    We describe the ongoing development of a system to support the teaching of good posture and bowing technique to novice violin players. Using an inertial motion capture system we can track in real-time a player’s bowing action and how it deviates from a target trajectory set by their music teacher. The system provides real-time vibrotactile feedback on the correctness of the student’s posture and bowing action. We present the findings of an initial study that shows that vibrotactile feedback can guide arm movements in one and two dimension pointing tasks. The advantages of vibrotactile feedback for teaching basic bowing technique to novice violin players are that it does not place demands on the students’ visual and auditory systems which are already heavily involved in the activity of music making, and is understood with little training

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    Chat Communication in a Command and Control Environment: How Does It Help?

    Get PDF
    Military command and control (C2) teams are often faced with difficult, complex, and distributed operations amidst the fog and friction of war. To deal with this uncertainty, teams rely on clear and effective communication to coordinate their actions; two current conduits for communication in distributed military teams include voice and chat. Chat communication is regarded by many in the C2 world as the premier method of communicating with the power to lessen some of the traffic and disturbances of current voice communication, and its usage continues to exponentially increase. Despite this operational view, countless laboratory studies have demonstrated detrimental effects of chat communication relative to voice communication. The current study investigates the gap between laboratory research results and usage in complex environments, and empirically tests the effect that chat communication has on tactical C2 performance through an air battle management synthetic task environment. Results demonstrate that participants performed better on time-critical, emergent events with voice communication and better on preplanned missions when they had access to archival information. Voice communication is a valuable, high bandwidth channel that is essential for coordination in highly complex situations, while chat communication is a nonintrusive form of communication that allows the operator flexibility in prioritizing the information flow through the use of archival information. The challenge in operational settings with overcrowded radio channels, however, is to protect the voice channel to ensure it is available when the situation demands it. With careful implementation, voice and chat communication can be complementary technologies to facilitate complex work
    corecore