11 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    Hyper-Zagreb indices of graphs and its applications

    Get PDF
    The first and second Hyper-Zagreb index of a connected graph GG is defined by HM1(G)=uvE(G)[d(u)+d(v)]2HM_{1}(G)=\sum_{uv \in E(G)}[d(u)+d(v)]^{2} and HM2(G)=uvE(G)[d(u).d(v)]2HM_{2}(G)=\sum_{uv \in E(G)}[d(u).d(v)]^{2}. In this paper, the first and second Hyper-Zagreb indices of certain graphs are computed. Also the bounds for the first and second Hyper-Zagreb indices are determined. Further linear regression analysis of the degree based indices with the boiling points of benzenoid hydrocarbons is carried out. The linear model, based on the Hyper-Zagreb index, is better than the models corresponding to the other distance based indices

    On the Maximal Eccentric Distance Sums of Graphs

    Get PDF

    A lower bound on the eccentric connectivity index of a graph

    Get PDF
    AbstractIn pharmaceutical drug design, an important tool is the prediction of physicochemical, pharmacological and toxicological properties of compounds directly from their structure. In this regard, the Wiener index, first defined in 1947, has been widely researched, both for its chemical applications and mathematical properties. Many other indices have since been considered, and in 1997, Sharma, Goswami and Madan introduced the eccentric connectivity index, which has been identified to give a high degree of predictability. If G is a connected graph with vertex set V, then the eccentric connectivity index of G, ξC(G), is defined as ∑v∈Vdeg(v)ec(v), where deg(v) is the degree of vertex v and ec(v) is its eccentricity. Several authors have determined extremal graphs, for various classes of graphs, for this index. We show that a known tight lower bound on the eccentric connectivity index for a tree T, in terms of order and diameter, is also valid for a general graph G, of given order and diameter

    Bounds on distance-based topological indices in graphs.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.This thesis details the results of investigations into bounds on some distance-based topological indices. The thesis consists of six chapters. In the first chapter we define the standard graph theory concepts, and introduce the distance-based graph invariants called topological indices. We give some background to these mathematical models, and show their applications, which are largely in chemistry and pharmacology. To complete the chapter we present some known results which will be relevant to the work. Chapter 2 focuses on the topological index called the eccentric connectivity index. We obtain an exact lower bound on this index, in terms of order, and show that this bound is sharp. An asymptotically sharp upper bound is also derived. In addition, for trees of given order, when the diameter is also prescribed, tight upper and lower bounds are provided. Our investigation into the eccentric connectivity index continues in Chapter 3. We generalize a result on trees from the previous chapter, proving that the known tight lower bound on the index for a tree in terms of order and diameter, is also valid for a graph of given order and diameter. In Chapter 4, we turn to bounds on the eccentric connectivity index in terms of order and minimum degree. We first consider graphs with constant degree (regular graphs). Došlić, Saheli & Vukičević, and Ilić posed the problem of determining extremal graphs with respect to our index, for regular (and more specifically, cubic) graphs. In addressing this open problem, we find upper and lower bounds for the index. We also provide an extremal graph for the upper bound. Thereafter, the chapter continues with a consideration of minimum degree. For given order and minimum degree, an asymptotically sharp upper bound on the index is derived. In Chapter 5, we turn our focus to the well-studied Wiener index. For trees of given order, we determine a sharp upper bound on this index, in terms of the eccentric connectivity index. With the use of spanning trees, this bound is then generalized to graphs. Yet another distance-based topological index, the degree distance, is considered in Chapter 6. We find an asymptotically sharp upper bound on this index, for a graph of given order. This proof definitively settles a conjecture posed by Tomescu in 1999
    corecore