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Abstract 

This thesis details the results of investigations into bounds on some distance-based 

topological indices. 

The thesis consists of six chapters. In the first chapter we define the standard 

graph theory concepts, and introduce the distance-based graph invariants called 

topological indices. We give some background to these mathematical models, and 

show their applications, which are largely in chemistry and pharmacology. To com­

plete the chapter we present some known results which will be relevant to the work. 

Chapter 2 focuses on the topological index called the eccentric connectivity index. 

We obtain an exact lower bound on this index, in terms of order, and show that this 

bound is sharp. An asymptotically sharp upper bound is also derived. In addition, 

for trees of given order, when the diameter is also prescribed, tight upper and lower 

bounds are provided. 

Our investigation into the eccentric connectivity index continues in Chapter 3. 

We generalize a result on trees from the previous chapter, proving that the known 

tight lower bound on the index for a tree in terms of order and diameter, is also 

valid for a graph of given order and diameter. 

In Chapter 4, we turn to bounds on the eccentric connectivity index in terms of 

order and minimum degree. We first consider graphs with constant degree (regular 

graphs). Recently Dosli6, Saheli & Vukicevi6, and Ili6 posed the problem of deter­

mining extremal graphs with respect to our index, for regular (and more specifically, 

cubic) graphs. In addressing this open problem, we find upper and lower bounds 
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for the index. We also provide an extremal graph for the upper bound. Thereafter, 

the chapter continues with a consideration of minimum degree. For given order and 

minimum degree, an asymptotically sharp upper bound on the index is derived. 

In Chapter 5, we turn our focus to the well-studied Wiener index. For trees 

of given order, we determine a sharp upper bound on this index, in terms of the 

eccentric connectivity index. With the use of spanning trees, this bound is then 

generalized to graphs. 

Yet another distance-based topological index, the degree distance, is considered 

in Chapter 6. We find an asymptotically sharp upper bound on this index, for a 

graph of given order. This proof definitively settles a conjecture posed by Tomescu 

in 1999. 
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0.1 Index for notation 

G= (V, E) 

dega(v) 

datu, v) 

r = rad(G) 

d = diam(G) 

eca(v) 

avec(G) 

(N[v]) N(v) 
(N[S]) N(S) 

Da(v) 

G(G) 
A~B 

lSI 
G[S] 

graph G with vertex set V and edge set E. 

degree of a vertex v E V. 

distance between u, v E V in G. 

radius of G. 

diameter of G. 

eccentricity of vertex v E V. 

average eccentricity of G. 

(closed) neighbourhood of vertex v E V. 

(closed) neighbourhood of subset S <;;; V. 

total distance of vertex v E V. 

the set of central vertices of G. 

{x E A I x ¢ B}. 

cardinality of a set S. 

subgraph induced by S in G, S <;;; V. 
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Chapter 1 

Introduction and Preliminaries 

1.1 Introduction 

In this first chapter, we define the standard graph theoretical terms that will be used 

in the thesis, and introduce a mathematical model called a topological index. We 

then provide motivation for our work, and also present some relevant background 

results. 

1.2 Graph Theory Terminology 

A graph G = (V, E), consists of a finite, non-empty set, V, of vertices, together with 

a (possibly empty) set, E, of unordered pairs of vertices, called edges. The number 

of elements in the vertex set V is called the order of G, and the number of elements 

in the edge set E is called its size. If G has an order of 1, then we say G is trivial; 

otherwise G is called nontrivial. 

For e E E, if edge e = {u, v} (or, more simply e = uv,) we say that u and v are 

adjacent vertices, whereas e is said to be incident with u (or v). We also say that e 

joins vertices u and v. An edge with identical ends, e = uu is called a loop. When 

two or more edges join the same pair of vertices, these are called multiple edges. A 
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graph is simple if it has no loops or multiple edges. 

A subgraph of a graph G is a graph in which all its vertices belong to V( G) and 

all its edges belong to E(G). If a subgraph of G contains precisely all the vertices 

of G, it is called a spanning subgraph of G. For S c::; V(G), the induced subgraph of 

Sin G is the maximal subgraph of G which has vertex set S. For edge e E E(G), 

the subgraph G - e is the graph obtained from G by deleting the edge e. Similarly, 

for vertex u E V (G), the subgraph G - u is the graph obtained from G by deleting 

vertex u, along with all edges which are incident to u. 

A walk, W, is a finite sequence W : Un, ell UlJ e2, U2,· .. , ek, Uk of terms which are 

alternately vertices and edges, where, for i = 1,2, ... , k the ends of edge ei are Ui-l 

and Ui. The integer k is called the length of the walk. Since in a simple graph a walk 

can be uniquely determined by stating only its vertices, we can equivalently denote 

W by UO, Ul, U2,' .. , Uk, instead of Un, ell UI, e2, U2,' .. , ek, Uk. If all the vertices (and 

hence, also all the edges) of a walk are distinct, we call it a path. A path P : 

Uo, U" U2,' .. ,Uk which starts at Uo and finishes at Uk is called a Uo - Uk path. For 

k 2: 3, identifying the vertices Uo and Uk in the path P yields a cycle, denoted by 

Ck' 

A graph G is connected if every pair of vertices is connected by a path; otherwise 

it is disconnected. Disconnected graphs are thus split up into a number of connected 

subgraphs, called components. That is, a component of G is a maximal connected 

subgraph of G. A vertex of a connected graph is a cut-vertex if its removal discon­

nects the graph. More generally, for any simple graph G, v is a cut-vertex if G - v 

has more components than the number of components in G. A tree is a connected 

graph with no cycles. 

The degree of a vertex W E V(G), dega(w), is the number of edges incident to 
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w. We denote by 0 and ~ the minimum and maximum degrees of the vertices of 

G, respectively. A vertex of degree 1 is called an end vertex. A graph is k-regular if 

the degree of every vertex is k; and in particular, a 3-regular graph is called a cubic 

graph. And finally, a graph with a maximum vertex degree of four is known as a 

chemical graph, due to its application in the study of chemical molecules. 

The neighbours of a vertex v E V(G) are the vertices adjacent to v. The neigh-

bourhood of a vertex v E V(G), Na(v), is a set which consists of all vertices which are 

adjacent to v. So, deg(v) = INa(v)l. We define the closed neighbourhood, Na[v], as 

Na[v] = {v}UNa(v). Similarly, for H <;; V(G), the neighbourhood of H, Na(H), is 

composed of the neighbours of all the vertices in H; while the closed neighbourhood 

of H, Na[H], consists of Na(H) U H. 

The distance between uand v in V(G), datu, v), is the length of a shortest u - v 

path in G. The eccentricity, eca(u), of a vertex u E V(G) is the distance between 

u and a furthest vertex from u. The diameter of G, d, is defined as the maximum 

value of the eccentricities of the vertices of G. Similarly, the radius of G is defined 

as the minimum value of the eccentricities of the vertices of G. A spanning tree T of 

graph G is radius-preserving if the radius of T is equal to the radius of G. A shortest 

Uo - Uk path is called a diametral path if k = d, i.e., if da(uo, Uk) = d, the diameter. 

It immediately follows that ec(uo) = ec(uk) = d. For vertex v E V(G), an eccentric 

vertex of v is a vertex which lies furthest away from v. A central vertex of G is 

any vertex whose eccentricity is equal to the radius of G. The centre of a graph is 

the subgraph induced by its central vertices. We denote by C( G) the set of central 

vertices of G. The average eccentricity, avec( G), of G is the mean eccentricity of the 

vertices in G, i.e., 

1 
avec(G) = - L: eca(u), 

n uEV(a) 
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where n is the order of G. 

If no ambiguity is possible, the subscript G may be omitted in these notations. 

We list here a few more of the most common classes of graphs. A (n ~ I)-regular 

graph of order n is called a complete graph, and is denoted by Kn. A graph is 

bipartite if its vertex set V(G) can be partitioned into two subsets V, and V2 , and 

every edge has one end in Vi and the other in V2 . In particular, if every vertex in V, 

is joined to every vertex in %, the graph is called a complete bipartite graph, and is 

denoted as Ka,b, where IViI = a and 1%1 = b. Often the complete bipartite graph 

K',n-' is called the star graph, Sn. 

For terms not defined here, the reader is referred to any introductory Graph 

Theory book, such as [12]. More specialized terminology not presented here will be 

defined as needed, in the relevant chapter. Throughout this thesis, G will refer to a 

graph which is nontrivial, simple and connected. 

1.3 Topological Indices 

In this section, we introduce a graph parameter called a molecular descriptor or 

topological index (TI). It is a numerical value which is calculated from the molec­

ular graph representation of a chemical compound, and is used to characterize the 

'topology' of the molecule. Designed to find relationships between the structure of 

an organic molecule and its physical properties, it is valued as an important tool for 

predicting the physicochemical, biomedical, environmental and toxicological prop­

erties of a compound, directly from its molecular structure. Over a hundred such 

indices have been used in the literature [32, 38]. Here we present some of the most 

commonly cited TI's. 

The oldest of these topological indices, dating back to 1947, is the well-known 
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Wiener index 

1 
W(G):= - L L d(u, v) 

2 uEV(G) vEV(G) 
L d(u, v). 

(u,v}£;V(G) 

Note that the factor of 1/2 is required in the first definition since each unordered pair 

{u, v}, u "" v, appears twice in LUEV(G) LVEV(G) d(u, v). This index was proposed 

by the chemist Harold Wiener [77J when he was analyzing the chemical properties 

of paraffins (alkanes). It is a distance-based index, and its mathematical properties 

have been much studied. 

A modification is the generalized Wiener index (see [38]) 

Wk(G) := L{u,v}£;V(G) [d(u, V)Jk. In particular, for k = -1 it is called the 'reciprocal 

Wiener index' and for k = -2 it is the 'Harary index' or 'Harary number'. Sometimes 

the reciprocal Wiener index is also referred to as the Harary index. 

Other topological indices based only on distance are the following (see [57]). 

The Szeged Index Sz(G):= L nu(v) nv(u), 
uvEE(G) 

where Nu(v) = {w E V I d(u, w) > d(v, w)} and nu(v) = INu(v)l; 

and the Padmakar-Ivan (PI) Index, in which we find the sum over all edges e = uv 

of G, of the number of edges which are not equidistant to the two ends of the edge 

e (vertices u and v). Precisely, PI(G):= L n~(v) + n~(u), where 
e=uvEE(G) 

N~(v) = {e EEl d'(u,e) > d'(v,e)}, n~(v) = IN~(v)1 

and for edge e = ab , d'(u, e) = min{ d(u, a), d(u, b)}. 

Some popular indices (see [8]) which deal only with the degrees of vertices include 

the Zagreb Index M(G):= L [deg(v)J2, and the 
VEV(G) 

Randic Index or (Molecular) Connectivity Index 

X(G):= L [deg(u) deg(v)t'/2. Related indices have been defined for exponents 
uvEE(G) 
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other than -1/2. 

The Schultz index includes both distance and degree in its definition. Described 

as a weighted version of the Wiener index, it was introduced independently by 

Dobrynin and Kochetova [21], and Gutman [36], in 1994. 

Schultz Index or Degree Distance 

D'(G) := ~ 2:= 2:= [deg(u)+deg(v)] d(u,v) = 2:= [deg(u)+deg(v)] d(u,v). 
uEV(G) vEV(G) {u,v}<:;V(G) 

This index is also found in the molecular topological index, which had previously 

been defined by H. P. Schultz [72], and can be expressed as the sum of the Zagreb 

and Schultz indices. 

A related index, which uses the product, rather than the sum of the degrees, is the 

Gutman Index [36] Gut(G):= 2:= [deg(u) . deg(v)] d(u, v). 
{u,v}<:;V(G) 

A large part of this thesis deals with the eccentricity of vertices. Here we list the 

most commonly used topological indices which are eccentricity-based. 

We begin with the Eccentric Connectivity Index (ECI), which was put forward 

by Sharma, Goswami and Madan [73] in 1997. 

t;C(G):= 2:= eCG(v) degG(v). 
vEV(G) 

It is called an adjacency-cum-distance index. Some refinements on the ECI are as 

follows. 

1. AUGMENTED Eccentric Connectivity Index (see [6, 7]). 

This sums the quotients of the product of adjacent vertex degrees, and the eccen-

tricity of the concerned vertex. That is, 

A C( )._" M t; G .- ~ -(-)' 
vEVec v 

where M is the product of the degrees of all vertices in 
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the neighbourhood of v. 

2. SUPERAUGMENTED Eccentric Connectivity Indices (see [23]) 

SAc C ._ '" M 
~k (e) .-~ [ec(v)Jk+l ; k = 1,2,3, where M is defined as above. 

We mention three other indices which contain eccentricity in their definitions. 

Connective Eccentricity Index (see [34]) c«e):= L deg((v)) 
vEV(G) ec v 

The eccentric distance sum was conceptualized by Gupta, Singh and Madan [35J in 

2002. 

Eccentric Distance Sum ~DS(G):= LVEV(G) ec(v) D(v), 

where D(v) = L d(v, w) and finally, we have the 
wEV(G) 

ADJACENT Eccentric Distance Sum [70J eV(e):= L 
uEV(G) 

ec(u) . D(u) 

deg(u) 

In this thesis, we focus much of our efforts on the eccentric connectivity index, 

although in the latter chapters we also investigate mathematical properties of the 

Wiener index and the Schultz index. 

1.4 Literature Review 

1.4.1 Motivation 

Topological indices have important uses in medical, industrial and environmental 

research. Here we present some background material and give various applications, 

with emphasis on the ECI, Wiener and Schultz indices. 

In chemistry, a molecular graph represents the topology of a molecule, by con-

sidering how the atoms are connected. This can be modelled by a graph, where the 

vertices represent the atoms, and the edges symbolize the covalent bonds between 
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the atoms. Often these molecular graphs ignore or 'suppress' the hydrogen atoms, 

for example, as chemists often represent the benzene ring as a simple hexagon [4]. 

These graphs can be characterized by graph invariants, viz., parameters which 

are invariant under graph isomorphism. The invariant can be a polynomial, a se­

quence of numbers, or just a single number. When a single numerical value is used to 

characterize the structure of a molecule, this model is called a topological index [8]. 

Chemical graph theory uses these topological indices as a powerful tool for estab­

lishing relationships between the structure of the molecular graph, and its properties 

or activities. For instance, structural features such as size, shape, branching, sym­

metry, bonding patterns and the neighbourhood patterns of atoms in the molecules 

can be measured by a topological index [8, 9, 23, 54]. The Wiener index has suc­

cessfully characterized properties such as the boiling point, density, critical pressure, 

refractive indices, heats of isomerizaton and vaporization of various hydrocarbons 

[21]. 

This quantitative relationship between the structure of a molecule and its proper­

ties (or activities) is the basis of the so-called Quantitative Structure versus Property 

(Activity) Relationship (QSPR, QSAR) studies. Here the term 'property' means 

physicochemical properties, whereas 'activity' refers to biological and pharmaco­

logical activities of the chemical compound [75]. When the emphasis is on the 

environmental hazard assessment of chemicals, rather than molecular design and 

pharmaceutical drug design, it is termed the Quantitative Structure versus Toxicity 

Relationship (QSTR) [1]. 

Much recent work in pharmaceutical drug design has focused on identifying prop­

erties of chemicals directly from their molecular structure. In pharmaceutical re­

search, both trial and error synthesis of compounds and their random screening for 
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activity are time consuming and uneconomical [32]. So, preliminary investigations 

using QSARj QSPR are done to select the most promising compounds for a desired 

property, and hence decrease the number of compounds which need to be synthesized 

during the process of designing new drugs [7, 32, 53]. 

Topological indices are 'one of the oldest and most widely used descriptors in 

QSAR' [28]. They have many advantages over other descriptors used in QSAR, such 

as geometrical, electrostatic, steric, electronic and quantum descriptors [25, 32]. TI's 

can be computed easily and rapidly for any known compound, or even one not yet 

synthesized. Many software programs, such as CODES SA, SciQSAR and POLLY 

are readily available for both the calculation of the descriptor values, and subsequent 

multivariate statistical analysis [32, 66]. Furthermore, not only are they powerful 

tools for drug design and environmental toxicology assessment, but they are also 

being used for virtual screening, lead optimization, isomer discrimination, chemical 

documentation and combinatorial library design [23]. 

First generation TI's are mathematical models which result in only integer out­

puts (e.g., Wiener, ECI). Indices such as the Harary index or the molecular con­

nectivity index are considered to be second generation TI's, since they allow only 

integral graph parameters as variables, but might give a real output. Third genera­

tion indices allow input of real-valued graph parameters [23, 31]. For instance, the 

original 'topostructural' indices defined above are refined to 'topochemical' indices, 

which consider not only the topology (or connectivity of the atoms) of the molecule, 

but also the chemical nature of the atoms and bonds. A heteroatom is an atom, such 

as N, 0 or Cl, which is different from carbon or hydrogen [5]. When heteroatoms 

(vertices) are assigned their relative atomic weights (with respect to the carbon 

atom), this gives rise to calculations using 'chemical distances', 'chemical eccentric-
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ities' and 'chemical degrees' [10, 23, 25J. Thus we have the Wiener topochemical 

index, eccentric connectivity topochemical index etc., which again have been suc­

cessfully used in QSAR investigations [23, 24, 25, 26, 27J. Other third generation 

TI's consider the presence of multiple bonds. They weight the bonds (edges) ac­

cording to the inverse of their bond order, so, for example, a value of 1/3 would be 

given to a triple bond [5J. 

In this thesis we investigate mathematical properties of some molecular descrip­

tors, and more specifically, we study their extremal values. The investigation of 

extremal values is closely linked to isomer enumeration [55J. Suppose an integral 

index X (i.e., a first generation TI) is shown to have minimum and maximum values 

of Xm and X M respectively, and that a particular class of chemical compounds under 

consideration has N isomers. If N > (XM - Xm) , then two or more isomers will 

have the same value of the chosen index X. This type of (operational) 'degeneracy' 

is a serious problem encountered with topological indices [5J. 

Features such as low degeneracy, high sensitivity towards minor changes in the 

branching of molecules, and high discriminating power (such as XM/Xm) are all 

considered measures of a 'good' TI [28, 70J. The eccentric connectivity index and 

its refinements, for instance, have been found to have low degeneracy [22], very high 

discriminating power [7], and extreme sensitivity towards branching [28J. 

Gutman and Tomivic [38J commented in 2000 that it would be valuable to demon­

strate that some mathematical relations exist between various TI's being used in the 

chemical literature. Many such relationships, usually linear, have been identified. 

Inequalities relating the Eel with the eccentric distance sum, Schultz and Zagreb 

indices are given in [19, 40, 42, 81J. Khalifeh et aI. [43J present relationships between 

the Wiener and Schultz indices. In the case of trees, the Wiener and Schultz indices 
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actually determine each other (see, for example [18]). 

D'(T) = 4 WiT) - n(n - 1), (Ll) 

where T is a tree of order n. Considering the three TI's at the core of this work, 

we have the following relationships [81] which follow directly from the various defi­

nitions. 

D'(G) :s; (n - 1) f,C(G) and f,C(G) 2: n ~ 1 WiG), 

where G is a graph of order n 2: 2 and minimum degree 15. 

In QSAR studies, no single TI has been identified as the best predictor for 

all the various chemicals investigated [5], and hence many indices have been pro­

posed over the years. Indeed, since many are interrelated, they are typically used 

in various (linear) combinations in multivariate regression analyses [64, 65]. The 

chemical literature contains many studies comparing the degree of predictability of 

two or more different TI's. For instance, in drugs which counteract inflammation, 

the prediction of anti-inflammatory activity (of pyrazole carboxylic acid hydrazide 

analogues) using the eccentric connectivity index was found to be far superior to 

that using the Wiener index [33]. In [54] both the eccentric connectivity index and 

the Wiener index were found to have a high degree of prediction of HIV-protease in­

hibitory activity of tetrahydropyrimidin-2-ones, giving a vast potential for providing 

lead structures for the development of potent safe and potent anti-HIV compounds. 

Comparisons between these two topological models have been made for other drugs, 

such as those used in Alzheimer's disease [49], Huntington's disease and schizophre­

nia [52], hypertension [71], bacterial conditions [68], and as diuretics [69]. Other 

chemical compounds have been similarly considered in [47, 48, 50, 51]. 

Another active area of chemical research deals with nanotubes, nanotori, nanos­

tars, and other dendrimers. These polymeric materials are of major chemical im-
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portance as they are finding applications in a variety of high technology uses, both 

biomedical (such as MRI diagnostics, coating agents to protect or deliver drugs to 

specific parts of the body, as anti-bacterial and anti-viral agents, as vectors in gene 

therapy) and industrial [44J. Explicit values for various topological indices, and in 

particular, the eccentric connectivity index, are being calculated for these classes of 

compounds (see, for example [2, 3, 67, 78]). 

1.4.2 Relevant Background Results 

In the first chapters of this thesis we focus on the eccentric connectivity index. In 

chapters 2 and 3 we derive some upper and lower bounds on the ECI, for both trees 

and graphs. 

The following straightforward observations will be used in these chapters, and 

indeed, throughout the thesis. Consider a graph G of order n and diameter d, and let 

P : Vo, VI, ... ,Vd be a diametral path. Then any vertex x rt V(P) can be adjacent 

to at most 3 (consecutive) vertices on P. Otherwise, a shorter path from Vo to Vd, 

through x, could be found, which contradicts the definition of a diametral path. 

Using similar reasoning, dividing the vertices on P into groups of 3, we claim 

that N[ViJ n N[Vi+3J = 0. To show this claim, assume by contradiction that there 

exists a vertex u which lies in both these closed neighbourhoods. Then a shorter 

Vo - Vd path can be found going through u, again contradicting the definition of a 

diametral path. 

The result r:S: d :s: 2r which links the radius, r, and diameter, d, of a graph G, 

is well-known. The right hand inequality is easily shown by applying the triangle 

inequality to a central vertex c and a pair of vertices u, v for which da( u, v) = d. 

Thus, 
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Claim 1.1 For all graphs G of radius r and diameter d, r:;" r~l. 

From this claim, in Chapter 3 we will observe that for any vertex w in a graph, 

ec( w) :;,. r~l, since the radius is the lowest of all the eccentricities of the vertices of 

the graph. 

In Chapter 4 we focus on a different graph invariant, the minimum degree, and 

find extremal values on the ECI for graphs of given order and minimum degree. 

We will need the following bound proved by Dankehnann, Goddard and Swart 

[15J in 2004, on the average (mean) eccentricity of a graph. 

Theorem 1.1 Let G be a connected graph of order n and minimum degree 0. Then 

9n 15 
avec(G) :'0 4(0 + 1) +"4. 

In the first part of this chapter we look specifically at graphs with constant 

degree, viz., regular graphs. Recently, Doiilie, Saheli and VukiCevie [22J stated that it 

would be interesting to determine extremal cubic graphs with respect to the eccentric 

connectivity index; and more generally, Ilie [40J has posed the same question for all 

regular graphs, with emphasis on cubic graphs. We completely solve this open 

problem for the upper bound. 

Extremal graphs for the lower bound seem related to Moore graphs. If G has 

diameter d and maximum degree ~ :;,. 2, then an upper bound on the order of G 

can be found as follows [18, 58J. Let v be any vertex of G. There can be at most ~ 

vertices at a distance 1 from v. Then each of these ~ vertices can be adjacent to at 

most (~ - 1) other vertices, at distance 2 from v. At a distance 3 from v there can 

be at most ~(~ - 1)2 vertices, and so on. Recalling that the graph has diameter 

d, we add up this maximum number of vertices in each of the 'distance layers', to 
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arrive at the following upper bound on the number of vertices of G. 

d (t>-1)d-1 
n:-:; 1 + t> + t>(t> - 1) + t>(t> - 1)2 + ... + t>(t> - 1) -1 = 1 + t> t> _ 2 ' 

if t> :::': 3. (In the case when t> = 2, we have n :-:; 1 + 2d.) The right hand side of this 

inequality is called the 'Moore bound', and is denoted by M", d. Any extremal graph, 

i.e., a graph whose order is equal to the Moore bound, is called a Moore Graph. By 

the derivation of this bound, every Moore graph must be a regular graph. There are 

very few Moore graphs. For d = 1, we have the complete graphs K"+1' When d = 2, 

the Moore graphs are the cycle graph C5 (with t> = 2), the Petersen graph (t> = 3) 

and the Hoffman-Singleton graph (t> = 7). The only other possible Moore graph 

of diameter two would be t> = 57-regular, and have order n = 3250; its existence 

is an outstanding problem in this field. Once d :::': 3, there are no Moore graphs, 

other than the cycle graphs C2d+1' Hence, for all other values of d and t>, graphs 

must be of order strictly less than the Moore bound. Finding graphs of maximum 

order which are close to this upper bound, viz., graphs of order M",d - 8, for some 

small integer value of 8 :::': 1 is called the degree-diameter problem, which is a topic 

of much research. 

In our search for regular graphs which minimize the ECI, we derive a bound 

which uses the Moore bound. Hence, in the cubic case (t> = 3) the Petersen graph 

meets our lower bound. However, when the diameter is larger than 2, our bound 

clearly carmot be sharp, and our search for extremal graphs might be related to the 

degree-diameter problem in distances. 

In the second part of Chapter 4 we generalize our investigations of the ECI to 

graphs of given order and minimum degree. Several authors have studied the av-

erage distance, a variant of the Wiener index. For instance, Kouider and Winkler 
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[46], Beezer, Iliegsecker and Smith [11], and Dankelmann and Entringer [14J inde-

pendently proved that the average distance of a connected graph of order n and 

minimum degree 0 is at most '~I + 0(1). In terms of the Wiener index, this is 

equivalent to the bound 

W(G) <:: 

Thus we have an upper bound on the Wiener index in terms of order and minimum 

degree. In light of the comparisons between the 'Wiener and ECI being made in the 

pharmacological world, it is natural to ask how an upper bound on the eccentric 

connectivity index in terms of order and minimum degree would differ from this 

Wiener bound. We answer this question by deriving a corresponding bound for the 

ECl. For the derivation, we will need the following theorem presented in 1989 by 

Erdos, Pach, Pollack and 'Thza [30J. 

Theorem 1.2 Let G be a connected graph with n vertices, minimum degree, 0 and 

diameter d. Then, 

3n 
d<---1. 

-0+1 

Proof. Let P : Vo, VI, . .. , Vd be a diametral path. It was shown above that 

N[ViJ n N[Vi+3J = 0. Define k as the integer for which d = 3k + r, where 

r E {O, 1, 2}. Then, N[vo], N[V3J, N[V6],"" N[V3kJ are all pairwise disjoint sets. 

Fnrther, note that IN[ViJI 2: Ii + 1. A lower bound on the number of vertices of G 

is then 
k 

n 2: L IN[V3iJI 2: (k + 1) (0 + 1). 
i=O 

Solving for k, we have k <:: '~I - 1. But k = d'S" 2: d'S2, and upon simplification we 

have d <:: ,":'1 - 1. o 
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We remark that this upper bound is asymptotically sharp. For example, when 

r = 0, i.e., when d = 3k for some integer k, consider the graph constructed as 

follows. Let G '.d be the graph with vertex set V (G "d) = Va U V, U ... U v"k. where 

if i == 0 or 2 mod 3, 

if i = 1 or 3k - 1, 

otherwise 

and two distinct vertices v E V;, v' E 11; are joined by an edge if and only if 

Ij - i 1 ::; 1. See Figure 1.1. 

V8 Vg 

Vl1 

Figure 1.1: Example of an extremal graph, G4,12 

The graph G'.d has order n = '1' (d + 3). Hence, 

3n 3n 
d= 0+1 -3 = 0+1 +0(1), 

and so it asymptotically meets the upper bonnd. 

In the next chapter we use spanning trees of a graph to continue our stnd-

ies comparing the Eel and the Wiener index. Spanning trees have been nsed by 

Dankelmann and Entringer [14] as an excellent tool for deriving upper bounds on 

the average distance, which is a variant of the Wiener index. Since the deletion of 

edges of a graph cannot decrease the distance between vertices, we have the following 

well-known property of the Wiener index. 
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For any connected graph G, every spanning tree T of G satisfies the inequality 

W(G) :s; W(T). 

We investigate the relationship between the eccentric connectivity index of a graph 

and its spanning trees. Continuing in Chapter 5, we determine an upper bound on 

the Wiener index of a tree, in terms of its eccentric connectivity index. Applying 

our spanning tree relationship, this will imply an upper bound on the Wiener index 

of a general graph, in terms of the ECl. 

In Chapter 6 we consider the degree distance (Schultz) topological index. Since 

it was proposed several years before the ECI, mathematical investigations into this 

index are more advanced. For example, in the case of unicyclic and bicyclic graphs, 

upper and lower bounds for the degree distance have been derived [39, 74], and 

their properties in terms of other graph parameters have been investigated [41]. In 

[13, 75], for specified order and size, the graph which attains the minimum value for 

the Schultz index is presented. For other results, see [18]. 

Studies into the relationship between the Wiener Index and the degree distance 

parameter abound (see, for example [20, 36, 37, 45]). For a given order, the Wiener 

index attains its minimum value for the complete graph, and maximum for the path. 

That is, 

(For a proof, see, for instance, [56].) When considering trees, the lower bound 

becomes the star graph, and we have 

W(Sn) = (n - 1)' < W(T) < W(Pn). 

19 



Applying equation (1.1), it follows [75] that 

D'(Sn) = 3n2 
- 7n + 4::; D'(T) ::; ~n(n - 1)(2n - 1) = D'(Pn). 

These two bounds on the degree distance have been derived using other ap­

proaches in [13, 43, 76]. However, extremal values on this index for graphs in 

general have proved to be more difficult to obtain. Indeed, in 1999, Tomescu [76] 

conjectured the asymptotic upper bound D'(G) ::; 2~n4 + O(n3) for a connected 

graph G of order n. Nine years later, Bucicovschi and Cioabii [13] commented that 

Tomescu's conjecture 'seems difficult at present time.' In the following year Dankel­

mann, Gutman, Mukwembi and Swart [16] considered this problem and though they 

came close to proving the conjecture, their proof was inadequate to meet the O(n3
) 

error term. In Chapter 6 we present an asymptotically tight upper bound on the 

Schultz index of a graph, in terms of order and diameter. Thereafter, a corollary 

will definitively confirm the Tomescu conjecture. 
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Chapter 2 

The Eccentric Connectivity Index 

2.1 Introduction 

We begin by recalling the definition of the eccentric connectivity index, ~c (G) of G, 

which was introduced in 1997 by Sharma, Goswami and Madan [73]. 

~C(G) = I: ec(v) deg(v), 
VEV(G) 

where ec( v) and deg (v) are the eccentricity and degree of vertex v in G, respectively. 

For several special classes of graphs, straightforward calculations give us the 

following useful values for our parameter. We begin with the complete graph Kn, 

and the complete bipartite graph Ka,b' 

~C(Kn) = n(n - 1) (for n ~ 2) ; 

~C(Ka,b) = 4ab (for a, b i- 1) 

and the index reaches its maximum for K a•b when a = b = n/2. 

For the star, cycle and paths of order n, 

for n even 

for n odd; 
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{ 
! (3n2 

- 6n + 4) for n even 

~C(Pn) = 
~ (n - 1)2 for n odd. 

Furthermore, we calculate the eccentric connectivity index for three other classes 

of graphs which will be important in our theorems. Recall that d denotes the 

diameter of the graph. 

The broom graph Bn,d consists of a path Pd, together with (n - d) end vertices all 

adjacent to the same end vertex of Pd' The lollipop graph Ln,d is obtained from a 

complete graph Kn~d and a path Pd , by joining one of the end vertices of Pd to all 

the vertices of Kn~d. See Figure 2.1. 

• • • • • • • • • • 
B l1 ,6 L l1 ,6 

Figure 2.1: Graphs B ll ,6, L",6 

Particularly relevant to our studies is the volcano graph Vn,d. It is the graph obtained 

from a path Pd+! and a set S of n - d - 1 vertices, by joining each vertex in S to a 

central vertex of Pd+!' Note that for a fixed value of n, when d is even, the volcano 

graph Vn,d is unique; whereas when d is odd, there may be several non-isomorphic 

volcano graphs Vn,d. See Figure 2.2. 

. .X. • 
Figure 2.2: Volcano Graphs Vi5,9, and Vl1 ,6 
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Straightforward calculations show that 

1
2dn - n - d2 /2 - d + 1 

,C(Bn,d) = 

~ (3 - 2d - rP - 2n + 4dn) 

for d even 

for dodd; 

I 
~ (2 - 2d + rP + 2d3 - 2n + 2dn - 4rPn + 2dn2

) 

,C(Ln,d) = 

~ (3 - 2d + d2 + 2d3 - 2n + 2dn - 4rPn + 2dn2
) 

I 
nd + n + d2/2 - 2d - 1 

,c(Vn,d) = 

nd + 2n + rP /2 - 3d - 3/2 

for d even 

for dodd. 

for d even 

for dodd; 

We now present upper and lower bounds on our index, initially for general graphs 

G, and then for trees T. (See [62].) 

2.2 Bounds for General Graphs 

Our first theorem shows that the eccentric connectivity index is minimized with the 

star graph. 

Theorem 2.1 Let G = (V, E) be a connected graph of order n, n 2: 4. Then 

and the bound is tight. 

Proof. Let A = {v E V I deg(v) = n -I}, B = {v E V I n - 22: deg(v) 2: 2} and 

C = {v E V I deg(v) = I}. Then letting IAI = a, IBI = band ICI = c, we obtain 

a+b+c = n (2.1) 

Since deg( v) <:: n - 2 for every vertex v in B U C, it follows that, for n 2: 4, 

ec(v) 2: 2 for all v E B U C. (2.2) 
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CASE 1 A ¥ 0; i.e., a:2: 1. Then (2.1) and (2.2) in conjunction with n > 3, give 

~C(G) = I: ec(v) deg(v) + I: ec(v) deg(v) 
vEA vEBuC 

> I: 1 . (n - 1) + I: 2·1 
vEA vEBuC 

a(n-1)+2(b+c) 

2n +a(n - 3) 

> 2n+n-3, 

as claimed. 

CASE 2 A = 0; i.e., a = O. We claim that for all v E C, ec( v) :2: 3. To see this, if 

there exists an x E C for which ec( x) = 2, its neighbour would have to have degree 

(n - 1), a contradiction to A = 0. Otherwise, ec(x) = 1, which implies n = 2, a 

contradiction to our assumption that n :2: 4. Hence, ec( v) :2: 3 for all v E C. This, 

together with (2.1) and (2.2) yields 

~C(G) = I: ec(v) deg(v) + I: ec(v) deg(v) 
vEB vEC 

> I:2.2+I:3.1 
vEB vEe 

4b+3c 

3n+b, 

and the bound is established. The bound is attained by the star graph. 0 

We now derive an asymptotic upper bound on the ECI, when G has order n. 

We initially consider a graph of given order and diameter, and thereafter obtain, as 

a corollary, an upper bound of the ECI in terms of order. 
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Theorem 2.2 Let G be a connected graph of order n and diameter d. Then 

and this bound is best possible. 

Proof. Let P : uo, u" ... , Ud be a diametral path, and let M C;; V be the set of the 

remaining vertices which are not on P. Call m = IMI. 

Claim 2.1 I: ec(x) deg(x) <:: O(n2
). 

XEV(P) 

Proof of Claim 2.1: We partition the vertices of Pas V(P) = Vo U Vi U \12, where 

Va, V, and V2 are defined as follows: 

\12 = {U2' U5, us, ... }. 

Let x, y E Vi, for some i = 0, 1, 2. Since the distance between x and y along P is at 

least 3, and P is a diametral path, we have that N[x] n N[y] = 0, where N[v] is the 

closed neighbourhood of v in G. Thus I: deg(x) <:: n -lVii, for each i = 0, 1, 2. 
xE\Ii 

Now 

I: ec(x) deg(x) 
xEV(P) 

I: ec(x) deg(x) + I: ec(x) deg(x) + I: ec(x) deg(x) 
xEVO 

< I: ddeg(x) + I: ddeg(x) + I: ddeg(x) 
xEVo 

d (I: deg(x) + I: deg(x) + I: deg(X)) 
xEVo xEVl XEV2 

< d (n-IVaI +n-!V,I +n-!V21) 

d(3n-d-l) 
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Thus Claim 2.1 is proven. 

Claim 2.2 ec(v)deg(v):C; d(n~d) +O(n) for all v E M. 

Proof of Claim 2.2: Since P is a diametral path, v E M is adjacent to at most 3 

vertices of P. Hence, deg(v) :c; n ~ d + 1 and so 

ec(v)deg(v) :c; d(n~d+l) :c; d(n~d)+O(n), 

as required. 

Finally, combining Claims 2.1 and 2.2 we obtain 

~C(G) = L ec(v) deg(v) + L ec(x) deg(x) 
vEM xEP 

< m [d(n ~ d) + O(n)] + O(n2) 

(n ~ d - I)d(n ~ d) + O(n2
) 

d(n ~ d)2 + O(n2
). 

which proves the bound. 

Our bound is sharp, since the lollipop graph attains this upper value. In fact, 

straightforward calculation of the ECI value shows that 

o 

Differentiating with respect to the diameter, the bound in Theorem 2.2 results in a 

maximum ECI value at d = n/3, and hence we have 

Corollary 2.3 Let G be a connected graph of order n. Then 

and the bound is sharp. 

Again, the lollipop graph, Ln ,n/3 shows that this bound is best possible. 
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2.3 Bounds for Trees 

Turning now to trees, we show that the path gives the maximum eccentric connec­

tivity index value, amongst all trees of a given order. We will need the following 

fact and lemma. 

Fact 2.1 Let T be a tree and x a vertex ofT. Ifec(x) = d(x,y) for some yin T, 

then y must be an end vertex. 

To show this fact, let P : x, v" V2, . .. , Vk, Y be the unique x - y path in T. If, by 

contradiction, deg(y) 2: 2, then there exists a vertex z, z of Vk, which is adjacent to 

y. Then d(x, z) = d(x, y) + dry, z) = ec(x) + 1, which contradicts thedefinition of 

the eccentricity of x as the maximum distance between x and any other vertex of 

the graph. Therefore, y must be an end vertex. 

Lemma 2.4 Let T be a tree, w a vertex ofT, and let P : va, V" ... ,Vd be a diametral 

path ofT. Then ec(w) = max{d(w, va), d(w, Vd)}. 

Proof. First, note by the definition of eccentricity, that ec( w) 2: d( w, va), d( w, Vd). 

By way of contradiction, suppose that 

ec(w) > d(w, va) and ec(w) > d(w, Vd). (2.3) 

Let a be an eccentric vertex of w, i.e., ec(w) = d(w, a). Thus, 

d(w, a) = ec(w) > d(w, va) and d(w, a) > d(w, Vd). (2.4) 

By Fact 2.1, a is an end vertex. But, by (2.4), we have that a of va, Vd. So, a is not 

on P. 

We consider two cases separately. 

CASE 1 w is on P 
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By (2.4) and the definition of a diametral path, w oF VA, Vd. Since w is on P, we 

have w = Vi, for some i = 1,2, ... , d - 1. Let Vj be the vertex on P closest to a. 

Assume, without loss of generality, that j ~ i. Then 

d(vo,a) d(vo,w) + d(w, a) 

d(vo, w) + d(w, a) + d(w, Vd) - d(w, Vd) 

[d(vo, w) + d(w, Vd)] + [d(w, a) - d(w, Vd)] 

d + [d(w, a) - d(w, Vd)]. 

But from (2.4), d(w, a) - d(W,Vd) > O. Thus, d(vo,a) > d, a contradiction to the 

fact that T has diameter d. 

CASE 2 w is not on P 

Then, for some i = 1,2, ... , d -1, let Vi be the vertex on P closest to w. Since a 

is an end vertex, it cannot lie on the W-Vi path. Let Vj be the vertex on P closest to 

a. Assume, without loss of generality, that j ~ i. Again, since d(w, a) -d(w, Vd) > 0, 

we have 

d(vo, a) d(vo, Vj) + d(Vj, a) 

d(vo, Vj) + d(Vj, a) + d(w, Vd) - d(w, Vd) 

d(vo, Vj) + d(Vj, a) + [d(w, Vi) + d(Vi' Vj) + d(Vj, Vd)] - d(w, Vd) 

[d(vo, Vj) + d(Vj, Vd)] + d(Vj, a) + d(w, Vi) + d(Vi' Vj) - d(w, Vd) 

d+ [d(w, Vi) + d(Vi' Vj) +d(vj,a)] -d(W,Vd) 

> d+d(w,a)-d(w,Vd) 

> d, 

and again we find that d( va, a) > d, a contradiction to the fact that T has diameter 

d. 

28 



Thus (2.3) is impossible, so either ec(w) = d(w, vol or ec(w) = d(w, Vd). Using 

the definition of eccentricity, the lemma follows. 0 

Theorem 2.5 Let T be a tree of order n, n ?: 2. Then 

I ~(3n2 -, 6n + 4) 

i(n - 1)2 

for n even 

(2.5) 

for n odd. 

Proof. (By reverse induction on the diameter d of T.) If d = n - 1, then T = Pn 

and the theorem is true. Hence, we need only to consider trees other than the path, 

and thus it follows that T contains at least 3 end vertices. The theorem also holds 

for n = 2 or 3. So, assume that n ?: 4, d:S n - 2. The induction hypothesis is that 

(2.5) holds if d = k + 1 , for some k, 2:S k :S n - 3. 

Now, consider a tree T with diameter d = k. Let P : xo, Xl, ... , Xd be a 

diametral path in T and let y be an end vertex of T, where y ¢'. {xo, Xd}. Let v be 

the unique neighbour of y in T. By Lemma 2.4, assume, without loss of generality, 

that eCT(v) = dr(v, xo). 

Consider the tree T' obtained from T by 'moving' y and attaching it to xo, i.e., 

T' = (T - vy) U yXo. Then d(T') = k + 1 and !V(T') I = n, so by the induction 

hypothesis 

Fact 2.2 (i) If Z E V(T) - {v,y}, then eCT'(z)?: eCT(z), 

(ii) eCT'(v) ?: eCT(v) + 1, 

(iii) eCT'(Y) ?: eCT(y) + 1, 

(iv) degT'(v) = degT(v) - 1; degT'(xo) = degT(xo) + 1, 

(v) degT'(x) = degT(x) for all X E V(T) - {xo,v}. 
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To see that (i) holds, let z E V(T) - {v, V}. Then by Lemma 2.4, eCT(z) = dT(z, xo) 

or eCT(z) = dT(z, Xd). In the former case, we have eCT'(z) ::> dr,(y, z) = dr,(y, xo) + 

dr, (xo, z) = 1 + dT(xo, z) = 1 + eCT(z), and (i) follows. In the latter, we have 

eCT'(z) ::> dT,(z, Xd) = dr(z, Xd) = eey(z), as desired. 

We now prove (ii). Recall that eCT(v) = dT(v,xo). It follows that eCT'(v) ::> 

dT,(v,y) = dT,(v,xo) + dr,(xo,y) = dT(v,xo) + 1 = eCT(v) + 1, and (ii) is proven. 

Next, we note that eCT'(y) ::> dT,(y,Xd) = d + 1 ::> eey(y) + 1, and so (iii) holds. 

Finally, by the construction of T', (iv) and (v) hold, and so the fact is proven. 

Letting S = {v, y, xo}, and using Fact 2.2 (i) and (v), we have 

L [ecT'(u) degT'(u) - eCT(u) degT(u)] ::> o. (2.7) 
UEV(T)-S 

Summing over the set S, and using Fact 2.2 (i), (ii), (iii) and (iv), and degT(v) ::> 2, 

we have 

L [ecT'(u) degT'(u) - eey(u) degT(u)] 
uES 

This, in conjunction with (2.7), yields 

> [degT(v) - eCT(v) -1] + [1] + [ecT(xO)] 

> [2 - eCT(v) - 1] + [1] + [d] 

2 - eCT(v) + d 

::> 2. 
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2.:: [eer'(u) degT,(u) - eer(u) degT(u)] 
uEV(T)-B 

+ 2.:: [ecT'(u) degT'(u) - eCT(u) degT(u)] 
uEB 

> 2. 

Combining this inequality with (~.6), we conclude that ~C(T) < ~C(T') < 

~C(Pn)' and the proof of the theorem is complete. o 

We complete this chapter by finding upper and lower bounds on our parameter 

for a tree T, when both the order and diameter are prescribed. We begin with the 

upper bound. 

Theorem 2.6 1fT is a tree of order n and diameter d, then ~C(T) :S ~C(Bn,d). 

Proof. Let P : Xo, X" ... , Xd be a diametral path in T. 

If T = Bn,d, then there is nothing to be proved; so assume that there exists an 

end vertex v of T, vof Xo, such that v is adjacent to a vertex u, where u of Xd-l' (It 

is possible that u lies on P.) Denote by {VI, V2, ... , Vk} the set of end vertices which 

areadjacenttou; and Vi of Xo fori = 1,2, ... ,k. Letdeg(u) =r+k, for somer 2': 1. 

Form another tree, T', by replacing the kedges u Vi with Xd-l Vi for 

i = 1,2, ... , k. Note that T' has the same order and diameter as T. 

We show that T' has a larger eccentric connectivity index than T. 

k 

~c(T) = 2.:: eer(vi) degT( Vi) + eCT(u) degT(u) + (d - 1) degT(xd-l) + N 
i=l 

:S k· (d) (1) + eCT(u) (r + k) + (d - 1) degT(xd_,) + N, 

where N = L X EV(T)-{Vl,V2, ... ,Vk.U ,Xd_l} eCT(x) degT(x). 
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In comparison, 

~C(T') = k· (d) (1) + eCT(u) r + (d - 1) (k + degT(xd~I)) + N. 

So, since ecru) ::; d - 1, 

Continue this procedure, forming new trees, until all the end vertices in V(T) -

{xo} are adjacent to Xd~l' Thus, a broom Bn,d is obtained, of order n and diameter 

d, with the property that ~C(Bn,d) 2: ~C(T). This completes the proof. D 

Theorem 2.7 If T is a tree of order n 2: 3 and diameter d, then 

(2.8) 

Proof. The inequality (2.8) holds if n = 3 or 4. It also holds if d = n - 1, since in 

this case T = Vn,d = Pm i.e., T is a path. Let us assume that there exists a tree T 

with ~c (T) < ~c (Vn,d), where d is the diameter of T and, of such counterexamples 

to (2.8), choose T to have the smallest possible order, n. 

Let P: Xo, X" ... , Xd be a diametral path in T. Since T is not the path graph, 

let X be an end vertex in V(T) - V(P). Label as y the vertex adjacent to x, and let 

T' = T - x. Then, since n(T') < n(T) we have 
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However, nT) _~G(T') > ec(x) . 1 + ec(y) . 1 

> ([ d/21 + 1) + r d/21 

{ d+l 
for d even 

> 
d+2 for dodd. 

This is a contradiction, and the theorem is proven. o 

An extension of the result of Theorem 2.7 will be presented in the next chapter.' 

1 We remark that soon after the publication of the results presented in this chapter, we learnt 
that [22,79,81] also independently, obtained results similar to some of our bounds. 
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Chapter 3 

A Lower Bound on the Eccentric 

Connectivity Index 

3.1 Introduction 

In the previous chapter, we presented a tight lower bound on the eccentric connec­

tivity index for a tree, in terms of order and diameter. We proved that if T is a tree 

of order n ~ 3 and diameter d, then 

(3.1) 

In this chapter we generalize this result, proving that the volcano graph, Vn,d, 

achieves the lowest value for the eccentric connectivity index over all general graphs 

(rather than only trees), of fixed order n and diameter d. (See [59J.) 

This simple generalization has been quite challenging to prove. The difficulty in 

achieving the sharp bound lies with some 'problem vertices'. 

From Claim 1.1 and the observation that the eccentricity of any vertex is bounded 

below by the radius of the graph, we have that 

for all vertices w E V(G), ec(w) ~ rdj2l (3.2) 

The problem vertices have degree two, and precisely meet this eccentricity lower 
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bound. 

Notation 

Given a connected graph G with diameter d, we denote by t( G) the number of 

vertices in G of degree 2 and eccentricity precisely r d/21, i.e., 

t(G) := I{x E V(G) I deg(x) = 2 and ec(x) = r d/2l}1· 

Consider a connected graph G of order n and diameter d. If d = 2, note that 

from Theorem 2.1, (C(G) 2 (C(Sn) = (c(Vn,2)' 

Hence from now onwards in this chapter, we only consider d 2 3. 

Theorem 3.1 Let G = (V, E) be a connected graph of order n, and diameter d 2 3. 

Then 

Proof. 

Due to the complexity of this proof, we subdivide it into two parts, according to 

whether G contains at least one problem vertex (Part A), or has none (Part B). In 

Part A, we subdivide the proof further, when the diameter is even or odd. 

3.2 Eccentric Connectivity Index in the Presence 

of Problem Vertices 

PART A 

We first prove that the theorem holds when G contains at least one problem 

vertex. So, assume that t(G) 2 l. We must show that (C(G) 2 (c(Vn,d). 

Suppose, to the contrary, that there exists a counterexample G, for which t(G) > 1 

and 

(C(G) < (c(Vn,d). 

35 

(3.3) 



Of all such counterexamples, choose G to have the smallest possible order, n. Hence, 

any graph G' with diameter d', at least one problem vertex, and n' < n vertices, 

will satisfy 

(3.4) 

Let P : vo, V" ... , Vd be a diametral path in G, and define S = V - V(P). 

We will need two general properties of the distance from a vertex w E G to Vo 

or Vd, for any arbitrary graph G. 

For all vertices w E V(G), d(w,vo):O: rd/21 or d(W,Vd):O: rd/2l (3.5) 

To see that (3.5) holds, suppose, by contradiction, that both d(w,vo) < rd/21 

and d( w, Vd) < r d/21. By the triangle inequality, d = d( vo, Vd) :0; d( vo, w) + d( w, Vd) 

which implies . I d- 2 
d:O; (rd/21-1) + (rd/21-1) = 2 rd/21- 2 = 

d-l 

for d even 

for dodd, 

which is impossible, and (3.5) is proven. 

It follows from the definition of eccentricity, and (3.5), that 

for w E V(G), ifec(w) = [d/21, then d(w,vo) = rd/21 or d(W,Vd) = [d/2l (3.6) 

We will apply these two general properties of graphs to our counterexample 

graph G. 

Claim 3.1 There are no end vertices in S. 

Proof of Claim 3.1: Suppose to the contrary, that S contains an end vertex x, and 

let y be the neighbour of x. Form G' by removing the vertex x, viz. set G' = G - x. 
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Fact 3.1 (i) The diameter of G' is d, since x is not on the diametral path P. 

(ii) n(G') = n - 1 < n(G). 

(iii) t( G') 2: 1. 

To establish (iii), we show that G' indeed has a problem vertex. Since t(G) 2: 1, 

let z be a problem vertex of G, i.e., dega(z) = 2 and eca(z) = r d/21. We first show 

that z of y. If z is equal to y, then dega(y) = 2. Let w be the other neighbour of 

y. Note that any path from {vo, Vd} to Y must pass through w. We can assume, 

without loss of generality, that da(w, Vd) 2: da(w, vol. Then, by (3.5), 

eca(y) 2: da(y,Vd) = da(y,w) +da(W,Vd) 2: 1 + rd/21, 

and this contradicts the fact that eca(y) = eca(z) = r d/2]' Thus, Z of y, and tills 

implies that dega'(z) = 2. 

Since eca(z) = r d/21, (3.6) implies that in G, z is at distance r d/21 from one of 

Vo or Vd, say, Vd. Then, since x is not on any such shortest path between z and Vd, 

r d/21 = da(z, Vd) = da,(z, Vd). So, eca'(z) 2: r d/2]' But the removal of an end vertex 

cannot increase the eccentricity of any other vertex in the graph (ecG'(z) ::; eca(z)), 

so we conclude that eCa'(z) = rd/21, and hence z is a problem vertex of G'. This 

completes the proof of Fact 3.1. 

From Fact 3.1, G' is not a counterexample, and thus by (3.4) 

(3.7) 

Note that for all U E ViGIl - {v}, dega(u) = degG'(u), and eca(u) 2: ecG'(u). 

Also, eca(y) = eca'(Y). These observations, as well as (3.2), imply 

EC(G) - EC(G') > dega(x) eca(x) + dega(y) eca(y) - dega'(Y) ecG'(y) 

= 1· eca(x) + dega(y) eca(y) - (dega(y) - 1) ecG'(y) 
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Thus 

ecc(x) + 1· ecc(Y) 

> (id/21 + 1) + id/21 

2(1 d/21) + 1. 

Combining this with (3.7) yields 

and since G is a counterexample, (3.3) gives 

But, straightforward calculatious yield 

( 

(n-1)(d+1)+d2/2-2d-1 + (d+1) 

(n-1)(d+2)+d2/2-3d-3/2 + (d+2) 

( 

n(d+1)+d2/2-2d-1 

n(d + 2) + d2/2 - 3d - 3/2 

for d even 

for dodd 

(3.8) 

for d even 

for dodd 

So (3.8) reduces to e(Vn,d) < ~c(Vn,d)' a contradiction. Therefore, Claim 3.1 is 

proven. 

Fact 3,2 Every vertex in G has degree at least 2, except possibly for Vo and Vd. 
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To see that Fact 3.2 holds, recall that V = SU {V"V2, ... ,Vd-d U {va, Vd}. Then, 

observe that by Claim 3.1, every vertex in S has degree at least 2. Also, for every 

Vi, i = 1, ... , (d -1), on P, we have deg(vi) ~ 2, and hence, Fact 3.2 is established. 

We now look at two cases separately, depending on the parity of d. In each case 

we will partition the vertex set of the counterexample graph G into several sets, in 

order to calculate a lower bound on the eccentric connectivity index of G in terms 

of the index value of the volcano graph Vn , d, to thus arrive at a contradiction. 

3.2.1 Even Diameter 

CASE 1 d is even 

Here r d/21 = d/2. Let Q be the set of problem vertices, i.e., 

Q:= {x E V(G) I deg(x) = 2, ec(x) = d/2}. 

Claim 3.2 Every vertex u E Q is adjacent to some vertex u' satisfying 

ec( u') ~ (d/2) + 1. 

Proof of Claim 3.2: Consider a problem vertex u E Q. Since ec(u) = rd/21, (3.6) 

implies that u is at a distance d/2 from one of Va or Vd, say, Vd. Consider a shortest 

path connecting u and Vd : U, Ul, Uz, ... ,Vd. Since d(u, Vd) = d/2, and u, Ul, U2,"" Vd 

is a shortest path, then d(u" Vd) = (d/2) - 1. We show that d(u" va) ~ (d/2) + 1. 

If not, then by the triangle inequality, 

d = d(vo, Vd) .s d(vo, u,) + d(u" Vd) .s (d/2) + ((d/2) - 1) = d - 1 

which is impossible. Thus, d(u" va) ~ (d/2) + 1, and hence ec(u,) ~ (d/2) + 1. 

Setting u' = u" completes the proof of Claim 3.2. 

For every u E Q, choose a vertex u' as found in Claim 3.2, and denote it by f(u). 
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Let Q' := {flu) I u E Q}, and set IQI = q and IQ'I = q'. Since the mapping 

flu) = u' is not necessarily injective, we have that q':'O q. 

Observe that Claim 3.2 gives ec(f(u)) 2: (d/2) + 1, and this implies that Q' 

cannot contain any problem vertices. Therefore, Q n Q' = 0. 

Fact 3.3 deg( u') 2: 2 for all u' E Q'. 

To prove this fact, it suffices, by Fact 3.2, to show that if u' E Q', then u' rf {vo, Vd}. 

Suppose, to the contrary, that u' E {vo, Vd}. Then ecru') = d. Also, since u' E Q', 

u' is a neighbour of some problem vertex u E Q. Thus I ecru') - ec(u) I :'0 1, i.e., 

I d - d/21 :'0 1, which contradicts the fact that d 2: 3. Hence, Fact 3.3 is proven. 

We now find a lower bound for L ec(w) deg(w). 
wEQ' 

By Fact 3.3, L deg( w) 2: 2 q'. On the other hand, since every vertex in Q 
WEQ' 

is adjacent to some vertex in Q', we have L deg(w) 2: q. Summing these two 
wEQ' 

inequalities gives 2 L deg( w) 2: 2 q' + q. Therefore, 
wEQ' 

L deg(w) 2: q' + q/2. 
WEQ' 

(3.9) 

For wE Q', by Claim 3.2, we have that ec(w) 2: (d/2) + 1. This, in conjunction with 

(3.9), yields 

L ec(w) deg(w) > L ((d/2) + 1) deg(w) 
WEQ' wEQ' 

((d/2) + 1) L deg(w) 
WEQ' 

> ((d/2) + 1) (q' + q/2). 
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Hence, from the definition of Q, and the above inequality, we have 

L ec(v) deg(v) 
VE(QUQ') 

L ec(v) deg(v) + L ec(w) deg(w) 
vEQ wEQ' 

> 2q(d/2) + ((d/2) +l)(q' +q/2) 

q. ((5d + 2)/4) + q'. ((d/2) + 1). (3.10) 

Next, set P' := {va, ... , V(d/2)-2, V(d/2)+2, ... , Vd}. (If d = 4, then P' := {va, V4}.) 

It can be seen that Q, Q' and P' are all pairwise disjoint. Note that IP'I = d ~ 2. 

A bound for the eccentric connectivity index of P' can be found by direct calcu-

lation. If d ~ 6 we have: 

L ec(v) deg(v) = ec(va) deg(va) + ec(vd) deg(vd) 
vEP' 

(d/2)-2 d-l 

+ L ec(vi) deg(vi) + L ec(vi) deg(vi) 
i~l i~(d/2)+2 

(d/2)-2 

> d· 1 + d· 1 + 2 L (d ~ i)· 2 
i=l 

(d/2)-2 

= 2d +4· L (d~i) 
i=l 

(3.ll) 

(And if d = 4, (3.ll) still holds.) 

Define S' = V ~ (P' u Q U Q'). 

Since Va, Vd E P', then Va, Vd rj S', and it follows from Fact 3.2 that S' has no 

end vertices. This allows us to partition S' as follows: 

let A = {x E S' I deg(x) = 2}, B = {x E S' I deg(x) ~ 3}. Setting IAI = a, 

and IBI = b, we obtain 

a + b + (d ~ 2) + q + q' = n. (3.12) 
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Combining (3.2) with the fact that there are no problem vertices in S', we have that 

for all vertices x in A, ec(x) :::: (d/2) + 1. Applying this inequality, (3.2), (3.10) and 

(3.11), we calculate 

t;,C(G) = L ec(x) deg(x) + L ec(u) deg(u) 
xEA uEB 

+ L ec(v) deg(v) + L ec(v) deg(v) + L ec(w) deg(w) 
vEP' vEQ wEQ' 

> 2a (d/2 + 1) + 3b (d/2) + (3d2/2 - 3d - 4)+ q. ((5d + 2)/4) + q' . ((d/2) + 1) 

1 
a (d + 2) +b (3d/2) + (3 d2/2 - 3d - 4) + q ((5d + 2)/4) + q' (2d + 1). (3.13) 

We will minimize (3.13) by optimizing the coefficients a, b, q and q' in two stages. 

First, recall that q' :S q. Fixing a and b, the sum of the last two terms in (3.13) is 

as small as possible when q' is as large as possible, i.e., when q' = q. This gives 

t;,C(G) :::: a(d + 2) + b(3d/2) + (3/2) d 2 
- 3d - 4 + q. ((7d + 6)/4), (3.14) 

and now (3.12) has been reduced to a + b + 2q = n - d + 2. 

Second, if d :::: 4, (3.14) is minimized for b = 0, q = 0, and a = n - d + 2. Thus, 

EC(G) > (n-d+2)(d+2)+(3/2)d 2 -3d-4 

n(d + 1) + n - d2 
- 2d + 2d + 4 + (3/2) d 2 

- 3d - 4 

n(d+l) +d 2/2-2d-l + n-d+l 

t;,c(Vn,d) + n - d + 1. 

Since n :::: d + 1 > d - 1, we have t;,C(G) :::: t;,c(Vn,d) + n - d + 1> t;,C(Vn,d), which 

contradicts (3.3). It follows that for d even, t;,C(G) :::: t;,c(Vn,d)' 

Continuing in Part A, we now turn to the case with dodd. 
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3.2.2 Odd Diameter 

CASE 2 d is odd 

Here rd/21 = (d + 1)/2. In this case, a class of problem vertices with both 

neighbours in the centre of the graph, will require special attention. So, it will now 

be necessary to partition the vertex set of the counterexample graph C into even 

more sets than were needed in the d even case. 

Let R = {x E V I deg(x) = 2, ec(x) = r d/2l}. So R is the set of problem 

vertices of C, and clearly, I RI = t :2: l. 

Partition R as follows: R = Q U H, where 

Q := {x E R I x is adjacent to a vertex outside C(C)} and 

H:= {x E R I both neighbours of x are in C(C)}. 

Since they partition R, we have that 

QnH=0. 

Claim 3.3 Every vertex u E Q is adjacent to some vertex u' satisfying 

ec(u'):2: ((d+l)/2)+l. 

(3.15) 

Proof of Claim 3.3: Consider u E Q. By the definition of Q, the problem vertex u 

is adjacent to a vertex, u', which is not a central vertex. So, ecru') 2: (d + 1)/2 + 1, 

and Claim 3.3 is proven. 

For every u E Q, choose a vertex u' as found in Claim 3.3, and denote it by f (u). 

Let Q' := {J(u) I u E Q}, and set IQI = q and IQ'I = q'. Since the mapping 

f(u) = u' is not necessarily injective, we have that q' :::; q. Also, Claim 3.3 gives 

ec(J(u» 2: ((d + 1)/2) + 1, while all vertices in Q have eccentricity (d + 1)/2, so 

QnQ' = 0. (3.16) 
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Claim 3.4 

L ec(w) deg(w) ~ q((d+3)/4) + q'((d+3)/2) -3. (3.17) 
WEQ' 

Proof of Claim 3.4: Since every vertex in Q is adjacent to some vertex in Q', we 

have 

L deg(w) ~ IQI = q. (3.18) 
wEQ' 

Then, Claim 3.3 and (3.18) give 

L ec(w) deg(w) ~ (((d + 1)/2) + 1) q. (3.19) 
WEQ' 

Observe that by Fact 3.2, Q' can contain at most 2 end vertices, possibly Vo or Vd. 

We look at three cases, separately: 

(il If Q' contains no end vertices, then L deg( w) ~ L 2 = 2q'. Summing 
wEQ' WEQ' 

this inequality with (3.18) gives 2 L deg(w) ~ q + 2q', and therefore 
wEQ' 

L deg(w) ~ q/2 + q'. From this result, and Claim 3.3, it follows that 
wEQ' 

L ec(w) deg(w) > L (((d + 1)/2) + 1) deg(w) 
wEQ' WEQI 

and (3.17) holds for case (i). 

> (((d + 1)/2) + 1) (q/2+ q') 

q((d+3)/4) + q'((d+3)/2) 

> q((d + 3)/4) + q'((d + 3)/2) - 3 

(ii) If Q' contains exactly one end vertex, say, without loss of generality, vo, then, 

by Claim 3.3, 

L ec(w) deg(w) 
WEQ' 

ec(vo) deg(vo) + L ec(w) deg(w) 
WEQI_{VO} 
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> d· 1 + 2· (q' - l)(((d + 1)/2) + 1). 

Summing this with (3.19) gives 

2 L ec(w) deg(w) > d + 2· (q' -l)((d + 1)/2 + 1) + q (((d + 1)/2) + 1) 
wEQ' 

q'(d+3) + q((d+3)/2) - 3 

and this simplifies to 

L ec(w) deg(w) > q ((d + 3)/4) + q' ((d + 3)/2) - 3/2 
WEQ' 

> q((d + 3)/4) + q'((d + 3)/2) - 3 

and (3.17) holds for case (ii). 

The final case is 

(iii) if both Vo and Vd are in Q', and they both have degree 1. Proceeding as in 

case (ii), we have that 

L ec(w) deg(w) > 2d + 2· (q' - 2)(((d+ 1)/2) + 1). 
WEQ' 

Summing this with (3.19) gives 

2 L ec(w) deg(w) ~ 2d + 2· (q'-2)((d+1)/2+1)+q((d+3)/2) 
wEQ' 

and this simplifies to 

L ec(w) deg(w) ~ q((d+3)/4) + q'((d+3)/2) - 3, 
wEQ' 

which completes case (iii), and hence, Claim 3.4 is proven. 

Thus, from the fact that Q <;:: R, and Claim 3.4, 

L ec(v) deg(v) 
VE(QUQ') 

= L ec(v) deg(v) + L ec(v) deg(v) 
vEQ VEQI 
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> 2q((d + 1)/2) + q((d + 3)/4) + q'((d + 3)/2) ~ 3 

q((5d + 7)/4) + q'((d + 3)/2) ~ 3. (3.20) 

Next we consider the extra vertex set H and define its neighbourhood, H' := 

N(H). Note that by the definition of H, N(H) c:: C(G). Set IHI = h and IH'I = h'. 

Since each vertex in H has degree 2, and H' is the neighbourhood of H, we have 

that h' S; 2h. Also note that by Claim 3.3, ec(u') :::: ((d+l)/2) +1, for each u' E Q'; 

whereas all the vertices in H, and in H' are central vertices. This implies that 

Q'n(HUH') =0. (3.21 ) 

In order to find a bound on the degrees of the vertices in H', we need the following 

two claims. 

Claim 3.5 Let x E H. Then its two neighbours each have degree at least 3. 

Proof of Claim 3.5: Let wand y be the two neighbours of x. So, by the definition 

of H, they are both central vertices, i.e., ec(w) = (d+l)/2 "" ec(y). This immediately 

implies 

d(w, vol, d(w, Vd) S; (d + 1)/2. (3.22) 

Also, by (3.6) we have that y lies at a distance (d + 1)/2 from Vo or Vd. Assume, 

without loss of generality, that 

d(y, Vd) = (d + 1)/2. (3.23) 

First, we show that d(w, vol :::: (d ~ 1)/2. If not, then by (3.22) and the triangle 

inequality 

d = d(vo, Vd) S; d(vo, w) + d(w, Vd) S; ((d ~ 1)/2 ~ 1) + ((d + 1)/2) d ~ 1, 
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which is impossible. So, 

d(w,vo) ::>: (d - 1)/2. (3.24) 

Similarly, 

d(w, Vd) ::>: (d - 1)/2. (3.25) 

Now, continuing the proof of Claim 3.5, assume by contradiction, that deg(y) -c: 2. 

Since y E G(G), y of Va, Vd, and hence, by Fact 3.2, deg(y) of 1. 

It follows that deg(y) = 2. Then label as z, the second neighbour of y. 

If z = w, then w is a cut-vertex, since its removal would disconnect the edge xy 

from the rest of the graph. Thus, every path from {vo, Vd} to Y must go through w. 

But then (3.5) implies that ec(y) ::>: 1 +max{d(w,vo), d(W,Vd)} ::>: 1 + (d+ 1)/2, 

which contradicts the fact that ec(y) = (d + 1)/2. So, z of w. 

Next, by (3.24) and (3.25), any shortest path from {va, Vd} to y which goes 

through w and x, has length at least (d-l)/2+d(w, x)+d(x, y) = (d+l)/2+1. 

Hence, since ec(y) = (d+ 1)/2, we have that any shortest {vo, Vd} to y path cannot 

pass through w and x. Note again that since y E G(G), y of VO, Vd' Hence, any 

shortest path from y to {vo, Vd} must pass through z. Thus, from (3.23), and since 

any shortest y - Vd path must pass through z, we have that d(z, Vd) = (d + 1)/2-1. 

However, this then gives that d(z, vol ::>: (d + 1)/2, since otherwise, by the triangle 

inequality 

d=d(vo,Vd) -c: d(vo,z)+d(z,Vd) -c: ((d+l)/2-1)+(((d+l)/2)-I) = d-l 

which is impossible. So, d(z, vol ::>: (d + 1)/2, which in turn implies that a shortest 

y-vo path which passes through z must have length at least ((d+l)/2)+ 1, contrary 

to the fact that ec(y) = (d + 1)/2. Therefore, a shortest Vo - Y path cannot pass 

through z, a contradiction. So, deg(y) of 2. 
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Thus, deg(y) i 2, i.e., deg(y) ~ 3. By an equivalent argument, deg( w) ~ 3, 

which completes the proof of Claim 3.5. 

From Claim 3.5 we have that all the vertices of H' have degree at least 3; whereas 

all the vertices in H and Q have degree 2, since they are problem vertices. Thus, 

H' n (Q U H) = 0. (3.26) 

Summarizing, thus far, by (3.15), (3.16), (3.21) and (3.26) we have shown that 

Q, Q', H and H' are all pairwise disjoint. 

Claim 3.6 L deg(x) ~ h + (3/2)h'. 
xEH' 

Proof of Claim 3.6: On the one hand, since by Claim 3.5, deg(x) ~ 3, for all 

x E H', we have that L deg(x) ~ 3h' . On the other hand, since every vertex 
xEH' 

in H has two neighbours in H', we have L deg(x) ~ 2h. Summing these two 
xEH' 

inequalities, we get 2 L deg( x) ~ 2h + 3h' , and upon division by 2, Claim 3.6 is 
xEH' 

proven. 

Claim 3.6, and the definitions of H and H', give a lower bound for the eccentric 

connectivity index over H U H' as follows: 

L ec(x) deg(x) 
XE(HUH') 

L ec(x) deg(x) + L ec(x) deg(x) 
xEH xEH' 

h((d + 1)/2) . 2 + ((d+ 1)/2) L deg(x) 
xEH' 

> h(d + 1) + ((d + 1)/2)(h + (3/2)h') 

h(3(d + 1)/2) + h'(3(d + 1)/4). 
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Next, set P' := {va, ... , V(d-S)/2, V(d+5)/2, ... , Vd}. (If d = 3, then P' .- 0; 

whereas if d = 5, then p':= {va, vs}.) 

It can be seen that P' n (Q U Q' U HUH') = 0. Note that IP'I = d - 3. 

A bound for the eccentric connectivity index of P' can be found by direct calcu-

lation. If d 2: 7, we have: 

L ec(v) deg(v) = ec(va) deg(va) + ec(vd) deg(vd) 
vEP' 

(d-S)/2 d-J 

+ L ec(vi) deg(vi) + L ec(vi) deg(vi) 
i~J i~(d+5)/2 

(d-S)/2 

> d·l+d·1+2 L (d-i)·2 
i=l 

(d-S)/2 

2d+ 4· L (d-i) 
i=l 

3d2/2 -4d-15/2. (3.28) 

(And (3.28) also holds for d = 5.) 

For d = 3, we have 

L ec(v) deg(v) ~ o. (3.29) 
vEP' 

Define S' = V - (Q U Q' U HuH' UP'). 

For now, assume that d 2: 5. (We will consider the case for d = 3, below.) Since 

Va, Vd E P', then Va, Vd ~ S'. It follows from Fact 3.2, that S' has no end vertices, 

and this allows us to partition S' as follows: 

let A = {x E S' I deg(x) = 2}, B = {x E S' I deg(x) 2: 3}. Setting IAI = a, 

and I B I = b, we obtain 

a + b + q + q' + h + h' + (d - 3) = n. (3.30) 
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Combining (3.2) with the fact that there are no problem vertices in S', we have that 

for all vertices x in A, ec(x) 2: ((d + 1)/2) + 1. 

Applying this inequality, and (3.2), an upper bound for the index over the vertices 

of S' is 

L ec(x) deg(x) + L ec(u) deg(u) > 2a((d + 1)/2 + 1) + 3b((d + 1)/2) 
xEA vEB 

a(d + 3) + b(3(d + 1)/2). 

Combining this inequality, (3.20), (3.27) and (3.28) we have 

~C(G) = Lec(x)deg(x) + Lec(u)deg(u) 
xEA uEB 

+ L ec(v) deg(v) + L ec(w) deg(w) + L ec(v) deg(v) 
VEQ vEH 

+ L ec(v) deg(v) + L ec(v) deg(v) 
vEH' vEP' 

> a(d + 3) + b(3(d + 1)/2) + q((5d + 7)/4) + q'((d + 3)/2) - 3 

+h(3(d+1)/2)+h'(3(d+1)/4) + 3d2/2-4d-15/2. (3.31) 

We will minimize (3.31) by optimizing the coefficients a, b, q, q', h, and h' in 

three stages. First, recall that q' :s: q. Fixing a, b, h and h', (3.31) is as small as 

possible when q' is as large as possible, i.e., when q' = q. This gives 

~C(G) 2: a(d + 3) +b(3(d + 1)/2) + q ((7d + 13)/4) - 3 

+h(3(d+1)/2)+h'(3(d+1)/4) + 3d'/2-4d-15/2 (3.32) 

and now (3.30) has been reduced to 

a + b + 2q + h + h' = n - d + 3. (3.33) 

50 



Second, recall that h' :<; 2h. Fixing a, b and g, (3.32) is as small as possible when 

h' is as large as possible, i.e., when h' = 2h. This gives 

eC(G) 2: a(d + 3) + b(3(d + 1)/2) + q((7d + 13)/4) - 3 

+h(3(d+1)) +3d2/2-4d-15/2 

and now (3.33) has been reduced to a + b + 2q + 3h = n - d + 3. 

(3.34) 

Third, if d 2: 3, (3.34) is minimized for b = q = h = 0 and a = n - d + 3, to give 

eC(G) > (n - d + 3)(d + 3) - 3 + (3/2) d 2 
- 4d - 15/2 

n(d + 2) + d 2 /2 - 3d - 3/2 + n - d 

eC(Vn,d) + n-d. 

which contradicts (3.3), and Case 2, for d 2: 5 odd, is complete. 

Now, assume that d = 3. Here we partition 8' as 8' = F U A U E, where F = 

{vo, V3}, and where A and E are defined as previously, i.e., A = {x E 8' I deg(x) = 

2}, E = {x E 8' I deg(x) 2: 3}. Setting IAI = a, and lEI = b, we obtain 

(3.35) 

Notice that L ec(x) deg(x) 2: d + d. 
xEF 

Using this, (3.29), and as in (3.31), we get 

f;C(G) 2: a(d + 3) + b(3(d + 1)/2) + q((5d + 7)/4) + q'((d + 3)/2) - 3 

+h(3(d + 1)/2) + h'(3(d + 1)/4) + 0 + 2d. (3.36) 

Minimizing as above, after the second stage, (3.35) reduces to 

a + b + 2q + 3h = n - 2. 
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Then, for the third stage, we set b = q = h = 0 and a = n - 2. Thus, (3.36) becomes 

f:,C(G) > (n-2)(d+3)-3+2d 

6n - 9 

f:,c(Vn,3) + n - d, 

and as above, we get a contradiction to (3.3). Thus, Case 2, for d = 3, is complete. 

This concludes the proof for Part A, and we have shown that for t( G) :2: 1, 

f:,c (G) :2: f:,c (Vn,d). 

3.3 Eccentric Connectivity Index in the Absence 

of Problem Vertices 

PART B 

The remaining part of the proof of the theorem is for t( G) = 0 (no problem 

vertices). The proof will parallel the proof given in Part A, but with the even and 

odd cases considered simultaneously. Again we must show that f;c (G) :2: f;c (Vn, d). 

Suppose, to the contrary, that there exists a counterexample G, for which t(G) = 

0, and 

(3.37) 

Of all such counterexamples, choose G to have the smallest possible order, n. 

Hence, any graph G' with diameter d', no problem vertices, and n' < n vertices, will 

satisfy 

(3.38) 

Let P : Va, V" .. . ,Vd be a diarnetral path in G, and define S = V - V(P). 

Claim 3.7 There are no end vertices in S. 
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Proof of Claim 3.7: Suppose to the contrary, that S contruns an end vertex x, 

and let y be the neighbour of x. Set G' = G - x. 

Fact 3.4 (i) The diameter of G' is d, since x is not on the diametral path P. 

(ii) n(G') = n - 1 < n(G). 

We now show that 

(3.39) 

If on the one hand t( G') = 0, then along with Fact 3.4, we conclude that G' 

is not a counterexample, (3.38) applies, and (3.39) follows. If on the other hand 

t( G') ::>: 1, then G' satisfies the conditions of Part A, and (3.39) follows immediately. 

Continuing from this point onwards, the proof of Claim 3.7 is identical to that 

of Claim 3.1. We arrive at a contradiction, and thus Claim 3.7 is proven. 

Claim 3.7 allows us to partition S as follows: 

let A = {x E S I deg(x) = 2}, B = {x E S I deg(x) ::>: 3}. Setting IAI = a, and 

IBI = b, we obtain 

a+b+d+ 1 = n. (3.40) 

Analogous to (3.11), a simple calculation gives 

( 

~rP 

L ec(v) deg(v)::>: 2 

VEV(P) ~d2 + 1/2 

for d even 

(3.41 ) 

for dodd. 

Combining (3.2) with t(G) = 0, we have that for all vertices x in A, ec(x) ::>: 

rd/21 + 1. This inequality, in conjunction with (3.2) and (3.41), gives us 

~C(G) = L ec(v) deg(v) + L ec(x) deg(x) + L ecru) deg(u) 
VEV{P) xEA uEB 
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> L ec(v)deg(v) +2a(id/21+1)+3b(fd/21) 
vEV(P) 

( 

~ d 2 + a (d + 2) + b (3d/2) 

::>: ~d2+1/2+a(d+3)+b(3(d+1)/2) 
for d even 

(3.42) 

for dodd. 

We will minimize (3.42) by optimizing the coefficients a and b. If d ::>: 3, the right 

hand side of the inequality is minimized when a is as large as possible, so, by (3.40), 

set a = n - d - 1, and b = O. Thus, 

( 

(n-d-1)(d+2)+~d2 

~C(G) ::>: 

for d even 

(n - d - l)(d + 3) + ~ d 2 + 1/2 for dodd 

for d even 

( 

n(d + 1) + n + ~ d 2 - d2 - 2d - d - 2 

n(d + 2) + ~ d 2 + n - d" - 3d - d - 3 + 1/2 for dodd 

( 

n(d+l)+~d2-2d-1+n-d-1 

n(d + 2) + ~ d 2 - 3d - 3/2 + n - d - 1 

~c(Vn,d) + n - d - 1. 

for d even 

for dodd 

Finally, since n ::>: d + 1, we have ~C(G) ::>: ~c(Vn,d) + n - d - 1 ::>: ~c(Vn,d)' which 

contradicts (3.37). This contradiction completes the proof of Part B, and hence 

completes the proof of the theorem. o 

In the following chapter we continue our study of the eccentric connectivity index, 

and turn our attention to graphs with given order and minimum degree.' 

lWe remark that soon after the publication of the result presented in this chapter, we learnt 
that Zhang, Zhou and Liu [80] also independently, and using different methods, obtained a similar 
result. 
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Chapter 4 

Bounds on the Eccentric 

Connectivity Index in Terms of 

Minimum Degree 

4.1 Introduction 

In this chapter we focus on the eccentric connectivity index for graphs with given 

minimum degree. In the first part of the chapter we study graphs with constant 

degree, viz., regular graphs. Doslie, Saheli and Vukicevie [22] as well as Ilie [40] 

stated that it would be interesting to determine extremal regular (and, in particular, 

cubic) graphs with respect to the eccentric connectivity index. We completely solve 

this open problem for the upper bound. Thereafter a lower bound is given, which 

is attained by the Petersen graph. (See [60].) 

The remaining part of this chapter deals with graphs of given minimum degree. 

We find an asymptotic upper bound on the eccentric connectivity index, for a graph 

of given order and minimum degree. We also construct graphs which attain this 

bound. (See [17].) 

55 



4.2 Regular Graphs 

Let G be a k-regular graph of order n. For k = 2, cycle graphs are the only admissible 

class of graphs and hence in this case, the (unique) extremal graphs are the cycle 

graphs, with an index value of 

for n even 

for n odd. 

Henceforth, we consider k ::> 3. 

First, we investigate the upper bound. Recall the bound on average eccentricity 

in Theorem 1.1 

Let G be a connected graph of order n and minimum degree 0. Then 

9n 15 
avec(G) :S 4(0 + 1) + 4· 

It immediately follows that 

9n2 15n L ec(u) < +-. 
UEV(G) - 4(0 + 1) 4 

When restricted to k-regular graphs, the eccentric connectivity index simplifies 

to 

~G(G) = L deg(u) ec(u) = k L ec(u). 
uEV(G) uEV(G) 

Applying Theorem 1.1, we conclude 

(4.1) 

It remains to identifY regular graphs which meet this upper bound asymptoti-

cally. Given the pharmaceutical motivation for this topological model, we focus on 

chemical graphs. 
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For k = 3, (4.1) reduces to cG(G) < 27n
2 + 45n. 

~ - 16 4 

One class of extremal graphs in this cubic case is shown in Figure 4.1. 

Figure 4.1: An extremal 3-regular graph, R3n 

The eccentric connectivity index of these graphs is 

1
2i~2 - H15n + 33) for n "" 6 (mod 8) 

t;G(R3n ) = 

2;~2 _ i(15n + 21) for n "" 2 (mod 8). 

Modification of the two outer blocks in Figure 4.1 will generate similar extremal 

graphs for n "" 0, 4 (mod 8). 

For k = 4, (4.1) becomes 

Since maximizing the total eccentricity of a graph is closely linked to maximizing 

its diameter, we draw on work of Mukwembi [63J to provide an example of an 

extremal graph, as seen in Figure 4.2. 

. .. 

Figure 4.2: An extremal 4-regular graph, R4n 
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1
9~2 _ H38n + 112) for n even 

This graph has ~C(R4n) = 

9~2 _ !(38n + 107) for n odd. 

Finally, note that these two extremal 'sausage-like' graphs can be generalized to 

larger k values (non-chemical graphs), for both the k even and the k odd cases. 

Thus, we have proved the following theorem. 

Theorem 4.1 Let G be a k-regular graph of order n. Then, for k :;, 3, 

9kn2 

~C(G) :s; 4(k + 1) + O(n) 

and the bound is sharp. 

Second, we consider a lower bound. Here, we have 

Theorem 4.2 Let G be a k-regular (k :;, 3) connected graph of order n. Then 

Proof. We first show that, for r = rad(G), 

Let v be a vertex with eccentricity equal to the radius, r. Then, for each 

i=O,1,2, ... ,r, let Ni:={xEVld(x,v)=i} and INil=ni. 

Then, no = 1 and n, = k. Furthermore, for all i = 1,2, ... ,(r - 1), we have 

Hence, 

n no + n, + n2 + ... + nr 

< 1+k+k(k-1)+k(k-1}'+ ... +k(k-l),-1 

(k - 1)'-1 
l+k· k-2 . 
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Thus 
(n -l)(k - 2) 

(k -1)' :>: k + 1, and (4.2) follows by taking logarithms 

and rearranging. 

Next, since ec(u) :>: r for all u E V(G), we have 

~C(G) = L deg(v) ec(v) 
VEV(G) 

> k nr. 

Applying (4.2) we conclude 

log «n-l~k-2) + 1) 
> kn----':-.,:;---::-c---'-

log(k - 1) 

k n [logk_l(n(k - 2) + 2) -logk_l k], 

as desired. o 

For cubic graphs, the above theorem reduces to: 

Corollary 4.3 Let G be a connected cubic graph of order n. Then 

Since our derivation of this lower bound parallels the Moore bound, to search 

for extremal graphs we look to those which attain the Moore bound. In fact, the 

Petersen graph is a cubic graph which attains equality in the corollary. Also, the 

7-regular Hoffman-Singleton graph almost attains equality in Theorem 4.2. Note 

that both these extremal graphs have a diameter of two. 

However, when the diameter is greater than or equal to 3, the bound in Corollary 

4.3 is not best possible, since there are no (non-trivial) graphs with diameter greater 

than or equal to 3 which can attain the Moore bound [581. 
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4.3 Minimum Degree 

Turning from graphs of given regnlar degree, we now consider graphs with given 

minimum degree. We will derive an upper bound on the ECI in terms of order and 

minimum degree. 

We begin these investigations by considering the well-known Wiener index, which 

calculates the total distance between all pairs of vertices in a graph. Indeed, the 

Wiener index, W(G), of G is defined as 

W(G) = L da(u, v). 
{u,v}~V 

Several authors ([11, 14, 46]) independently showed that the average (me8J1) 

dist8J1ce of a connected graph of order n and minimum degree 0 is at most '~1 +0(1). 

Upon multiplication by (~), this immediately implies the following bound on the 

Wiener index 

W(G) 

In this section we derive a similar upper bound for the ECI, in terms of order 

and minimum degree. The leading coefficient will be 4/9, which is close to the 1/2 

value in the Wiener index. 

Here we again need Theorem 1.1, which states that the average eccentricity of a 

connected graph of order n 8J1d minimum degree 0 is at most 4(i~1) + ¥. 
Observe that now the sum is over the vertices of G, rather than the unordered 

pairs {u,v} c:; V(G). Multiplying by n to find total eccentricity, and noting that 

for all vertices v E V, deg(v) -S D., we have (see [SI]) 
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Proposition 4.1 Let G be a connected graph of order n, minimum degree 0 and 

maximum degree t.. Then 

CC(G) 9t. 2 15t.n 
, 'S 4(0+1)n + 4 . 

This Proposition gives a very good bound on the eccentric connectivity index for 

smaller values of t.. However it is not sharp for larger values of t., where 

16 
t. ::> 81 n + 0(1). 

Finally, recall our Corollary 2.3, which showed that for G of order n, 

4 
~c(G) 'S 27n3 + 0(n2

). 

The main result in this section gives a stronger bound to Proposition 4.1 for 

large t.; and it strengthens, for given 0 > 2, Corollary 2.3. 

Theorem 4.4 Let G be a connected graph of order n and minimum degree O. Then 

4 
~C(G) < n3 + 0(n2

). 
- 9(5+ 1) 

Moreover, for a fixed 0, this inequality is asymptotically tight. 

Proof. Let P : Va, VI, ... , Vd be a diametral path of G and let 5 <::: V(P) be the set 

5 := {V3i+! I i = 0,1,2, ... , l d; 1 J}-
For each vertex v E 5, choose any 0 neighbours UI, U2,' .. , u. of v and denote the 

set {v, UI, U2,"" u.} by M[v]. Let M = UvEsM[v]. See Figure 4.3. Then 
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M[V,] 

••• 

V8 

Figure 4.3: Diametral path with neighbourhoods M[v] 

Claim4.1 I:xEMec(x)dega(x):S; d(0+1)(2n-ld~IJ -1). 

Proof of Claim 4.1: We need to consider 'alternating' subsets of M. Let 81 C 8 

be the set 81 = {V3i+I E 8 I i = 0,2,4, ... }. Let 82 = 8 - 81 , The subsets 

M[v] c M are all disjoint, and so in particular, for each u, v E 8 1, U of v, we have 

M[u] n M[v] = 0. Writing the elements of 81 as 8 1 = {WI, W2,'" ,WIS,I}, we have 

Furthermore, for u, v E S" u of v the neigbourhoods of M[u] and M[v] are also 

disjoint. For each Wj E 817 relabel M[wj] = {Wj) U{, ... 1 u~}, where uL ... , u~ are 

neighbours of Wj' Then, for each t = 1,2, ... ,0, 

Summing these 0 + 1 inequalities, we obtain 

(0 + 1) n 2': L dega(x) + (0 + 1)181 1. 
xEM[Sd 
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Analogously, over the set 8 2 , 

(5 + 1) n:;:' L degdx)+ (5+ 1)IS21· 
XEM[S,] 

Combining (4.3) and (4.4), and ec(x) :::; d, gives 

L ec(x) degdx) 
xEM 

and Claim 4.1 is proven. 

Now let A = V - M. 

L ec(x) degdx) + L ec(x) degdx) 
xEM[S,] XEM[S,] 

< d ( L degdx) + L degdX)) 
xEM[S,] xEM[S,] 

< d ((5 + l)n - (5 + 1)IS11 + (5 + l)n - (5 + 1)IS21) 

d (2(5 + l)n - (5 + 1)ISI) 

d[2(5+1)n-(5+1) (ld;IJ +1)], 

Claim 4.2 If x E A, then 

(4.4) 

Proof of Claim 4.2: Note that x E A can only be adjacent to at most (5+ 1) +5 = 

25 + 1 vertices in M, otherwise there would be a shorter Vo - Vd path through x, 

contradicting the fact that P is a shortest path. Thus, using the definition of the 

set A, 

ld- IJ degdx) :::; (lAI - 1) + 25 + 1 = n - (5 + 1) -3- + 5 - 1. 

The claim then follows from the fact that ec( x) :::; d. 
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From Claim 4.2, we get 

= d(n-(5+1) W;IJ +1]) (n-(5+1) ld;IJ +6-1) 

d (n- (5+1) l d; IJ)2 -2d(n- (5+1) l d; IJ) 

-d(o + 1)(0 - 1). 

Combining this and Claim 4.1, we obtain 

f,C(G) = I: ec(x) degc(x) + I: ec(x) degdx) 
xEA xEM 

< d (n - (5+ 1) l d; 1 J) 2 - 2d (n - (5+ 1) l d; 1 J) - d(5+ 1)(0 - 1) 

+d(5+ 1) (2n -l d; 1 J - 1) 

< d [n- (5+ 1) (~-1)1' -2d [n- (5+ 1) (d;I)] -d(5+1)(0 -1) 

+d(o + 1) [2n - (~ - 1) - 1] 

= d(n-~(5+1)r +{2do(n-~(5+1))+d(5+1)(2n+~-~)}. 

Applying d < ,'';', from Theorem 1.2 to the term in curly brackets, we have 

2do(n-~(0+1)) +d(0+1)(2n+~-~) < 2d(0+I)n+2d(0+1)(n+l) 

< 2(0~1)(5+1)n 

+2 (0 ~ 1) (5+ 1)(n + 1) 
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12n2 + 6n. 

It follows that 

This is maximized for d = ,:, to get 

and the bound in the theorem follows. 

To see that for a fixed 0, the bound is asymptotically sharp, consider the graph G 

with diameter ,:, constructed as follows. For n a multiple of 3( 0 + 1), let k = 3('~') 

and let H be the graph with vertex set V(H) = Va U V, U ... U V3k~I' where 

IV,I = f ~ 
1" -1 

if i := 0 or 2 mod 3, 

if i = 1 or 3k - 2, 

otherwise 

and two distinct vertices v E v" Vi E V; are joined by an edge if and only if 

Ij - il -c: 1. Let G be the graph obtained from H by taking the complete graph 

Kn~IV(H)1 and joining each vertex of Kn~IV(H)1 to the vertex of V3k~l. That is, G is 

formed by joining Kn~IV(H)1 to the end vertex of H. See Figure 4.4. 

A simple calculation shows that ~c (G) = and the proof is 

complete. o 
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Kn-IV(H)I 

K 8- 1 

••• 

V3k- 5 
V3k-2 

H 

Figure 4.4: Extremal Graph for Theorem 4.4 

Thus, in this chapter we have given upper and lower bounds on the Eel for 

regular graphs, and provided extremal graphs for the upper bound. Thereafter, we 

derived an asymptotic upper bound on the index in terms of order and minimum 

degree, which was similar to the corresponding bound on the Wiener index. In the 

following chapter, we will again consider the Wiener index and its relationship to 

the eccentric connectivity index. 
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Chapter 5 

The Wiener Index and the 

Eccentric Connectivity Index 

5.1 Introduction 

In this chapter we investigate the Wiener index, and determine upper bounds on 

this well-studied topological index, in terms of the eccentric connectivity index. 

Recall that the Wiener index, W (G), of G is defined as 

W(G) = L dc(u,v), 
{u,v}<:;v 

while the eccentric connectivity index, ~c (G), of G is 

~C(G) = L ecc(v) degc(v). 
vEV 

We begin by investigating the relationship between the eccentric connectivity 

index of a graph and of its spanning trees. Then we derive a sharp upper bound on 

the Wiener index of a tree, in terms of its eccentric connectivity index. Thereafter, 

applying our spanning tree relationship, a corollary determines an upper bound on 

the Wiener index of a graph, in terms of its eccentric connectivity index. (See [17].) 

We will need Claim 1.1, which gave a relationship between the radius and diam-

eter of a graph. For every graph G, rad(G)?: r~ diam(G)l ?: ~ diam(G). 
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Furthermore, we saw in Theorem 2.7 that the volcano graph gives the lowest 

ECI for trees of fixed order and diameter. Precisely, we have 

Theorem 5.1 Let T be a tree of order n and diameter d. Then 

if d is even, 

if d is odd. 

Finally, it is well known that for every graph, a radius-preserving spanning tree 

can be found by applying a breadth-first search, starting from any central vertex of 

the graph. 

5.2 An Upper Bound for the Wiener Index in 

Terms of the Eccentric Connectivity Index 

It is folklore that for any connected graph G, every spanning tree T of G satisfies 

the inequality 

W(G) ::; W(T). (5.1) 

In contrast to (5.1), there are graphs (e.g., K 5 , Petersen) with a spanning tree 

In [29], Entringer, Kleitman and Szekely showed that it is always possible to find 

a spanning tree whose Wiener index is not much larger than that of G. They proved 

that if G is a connected graph, then there exists a spanning tree T of G such that 

W(T) ::; 2 W(G). Here we derive the corresponding property for the ECl. 

Theorem 5.2 Let G be a connected graph. Then there exists a spanning tree T of 

G for which 
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Proof. Let T be a radius-preserving spanning tree of G, and applying Claim 1.1, 

we have that for every vertex v E V, 

1 1 
ecc(v) ~ rad(G) = rad(T) ~ 2 diam(T) ~ 2 eCT(v). 

Hence eCT(v) ~ 2ecc(v) for every vertex v of G. This, in conjunction with the fact 

that degT ( v) ~ degc ( v) for every vertex v of G, yields 

f,C(T) = L eCT(v) degT(v) 
vEV 

< L 2 ecc(v) degc(v) 
vEV 

as desired. o 

We now present upper bounds on the Wiener index in terms of the eccentric 

connectivity index, for trees, and then for general graphs. 

Theorem 5.3 Let T be a tree of order n ~ 3. Then 

M oreaver, equality in the bound is attained by the star graph. 

Proof. We prove the result by induction on the order n of T. For n = 3, T is the 

path of order 3, and the result can easily be verified. Consider n > 3, and assume 

that the result holds for any tree of order less than n. Denote the diameter of T by 

d and let x be a vertex with eccentricity d. Then x is an end vertex. Let T' be the 

tree of order n - 1 obtained by removing x from T. By our induction hypothesis we 

have 

WiT') ~ ~(n-l)f,C(T') - (n-l) + 1 = ~(n-l)f,C(T') -n+2. (5.2) 
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Let v be the neighbour of x in T. Note that on one hand 

2d~ 1, 

and so 

(5.3) 

On the other hand, if all the vertices of T are as far as possible from x, we have 

so that 

2:d(x,u) < 0+1+2+···+d~l+d(n~(d~I)~I) 
uEV 

rP d 
dn~-~-

2 2' 

WeT) WeT') + 2: d(x,u) 
uEV 

< WeT') + dn ~ rP ~~. 
2 2 

This, in conjunction with (5.2) and (5.3), gives 

( ) ( ') rP d WT < WT +dn~-~-
2 2 

1 G') rPd < 3(n~I)~ (T ~n+2+dn~2~2 

1 G rP d < 3(n~1)[~ (T)~2d+1l~n+2+dn~2~2 

~ n~G(T) ~ n + 1 + {~n(d + 1) ~ rP + ~ + ~ ~ ~G(T)}. 
3 3 2 6 3 3 

To complete the proof, it is adequate to show that the term in curly brackets is at 

most zero. By Theorem 5.1, we have 
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1 rf2 d 2 ~G(T) 
;3n(d + 1) - :2 + 6" + ;3 - -3- < 

if d is even, 

if d is odd, 

-1;(4rf2 - 5d - 6) if d is even, 

= I 
-1;(4rf2 - 7d - 7 + 2n) if d is odd, 

< 0, 

for all d ::> 2, as desired. o 

Corollary 5.4 Let G be a connected graph of order n ::> 3. Then 

Proof. Let T be a radius-preserving spauning tree of G. By (5.1), W(G) ::; W(T). 

Applying Theorem 5.3, we have W(G) ::; W(T) ::; ~ nEG(T) - n + 1. Then using 

Theorem 5.2, we find W(G) ::; ~ n~G(G) - n + J., as desired. o 

We remark here that the bound proved in Corollary 5.4 is close to best possible. 

To see this, consider the star graph Sn of order n. Straightforward calculations show 

that 

This completes our studies into the eccentric connectivity index. In the following 

chapter we will consider a slightly older distance-based TI, the degree distance. 
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Chapter 6 

Degree Distance 

6.1 Introduction 

In this chapter we turn our attention to another, much studied, topological index, 

the degree distance, also known as the Schultz index. 

The degree distance of G, D' (G) , is defined as 

D'(G) = 
1 
2" I: I: [deg(u) + deg(v)] d(u, v) 

uEV(G) vEV(G) 

I: [deg(u) + deg(v)] d(u, v). 
{u,v}~V(G) 

Note that the degree distance can equivalently be expressed (see, for example, 

[41]) as D'(G) = 2::vEV D'(v), 

where D' (v) = deg( v) D (v) is the degree distance of a vertex v, and 

D( v) = I: d( v, w) is called the status, or total distance of v. 
wEV 

The purpose of this chapter is to prove a bound proposed by Tomescu [76] in 

1999, viz., 

Conjecture 6.1 For a connected graph G of order n, D'(G) <; 2'7n4 + O(n3
). 

This conjecture was almost solved by Dankelmann et al. [16J. Here we give an 
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improvement on their proof, and thus definitively resolve the Tomescu conjecture. 

(See [61].) 

6.2 An Upper Bound 

We begin by finding a bound on the degree distance, in terms of order and diameter. 

Theorem 6.2 Let G be a connected graph of order n and diameter d. Then 

D'(G) :s: ~ nd (n - d)2 + O(n3
), 

and this bound tight. 

Proof. Recall that D' (G) = L D' (v). We partition the vertex set V of G as 
vEV 

follows. Let P : uo, u" ... , Ud be a diametral path of G. For ease of notation, we will 

also refer to P as the set of vertices on this path. Let C be a maximum set of disjoint 

pairs of vertices from V - P which lie at a distance at least 3, viz., if {a, b} E C, 

then d( a, b) 2: 3. If {a, b} E C, we will say that a and b are partners. Finally, let M 

be the remaining set of vertices of G, i.e., M = V - P - {x I x E {a, b} E C}. Let 

IMI = m, ICI = c. This implies that 

n = (d + 1) + 2 c + m. (6.1) 

Fact 6.1 Let {a, b} E C. Then, deg(a) + deg(b) :s: n - d + 3. 

To establish this fact, observe that N[a] n N[b] = 0, since d(a, b) 2: 3. Also, each 

of these two vertices can be adjacent to at most 3 (consecutive) vertices on P. So, 

n 2: deg(a) + deg(b) + 2 + (d + 1) - 6, and the fact is proven. 

Claim 6.1 L D'(u) = O(n3). 

uEP 
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Proof of Claim 6.1: We partition P as P = Vo u Vi u 112, where Vo, V, and 112 are 

defined as follows: 

112 = {U2, Us, Us, ... }. 

Let x, y E Vi, for some i = 0, 1, 2. Since the distance between x and y along 

P is at least 3, and P is a diametral path, we have that N[xJ n N[yJ = 0. Thus 

I:xEv, deg(x) ::; n - lVii, for each i = 0, 1, 2. Now, since for U E V(G), D(u) :0: 

(n - 1) d::; (n - 1)2, we have 

LD'(v) L deg(v) D(v) 
vEP vEP 

L deg(v) D(v) + L deg(v) D(v) + L deg(v) D(v) 
vEVo vE\!2 

< (n - 1)2 (L deg(v) + L deg(v) + L deg(V)) 
vEVo VEVI VEV2 

< (n - 1)2 (n -IVoI + n -IViI + n -11I2i) 

(n-l)2(3n-d-l) 

= O(n3 ). 

and thus Claim 6.1 is proven. 

The remainder of the proof presents a simplified version of the work done in [16J. 

We now consider two cases. 

CASE 1 m:O: 1 

For x E M, D(x) ::; (n - 1)2, so D'(x) :0: (n - 1)"- Since m:O: 1, we conclude that 

L D'(x) = O(n3
). (6.2) 

xEM 
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Next, we show that for all {a,b} E C, 

1 
D'(a)+D'(b) :<:: Znd(n-d)+0(n2). (6.3) 

Vertex a has deg(a) vertices at distance 1; and since no vertex can be further than 

d from vertex a, the sum of the distances from a to the remaining vertices of G is 

at most 2 + 3 + ... + (d - 1) + [n - (deg(a) + d - l)](d). Then, 

D(a) < deg(a)+2+3+ ... +(d-1)+[n-(deg(a)+d-1)]d 

1 
d (n - Z d - deg(a)) + O(n), 

which implies D'(a):<:: deg(a) [d(n - ~ d - deg(a))] + 0(n2). 

Similarly, D'(b) :<:: deg(b) [d (n - ~ d - deg(b))] + 0(n2
). 

Hence, 

1 1 
D'(a) + D'(b) :<:: deg(a)[d(n - Zd - deg(a))] + deg(b) [d(n - Zd - deg(b))] + 0(n2). 

Now, define the real-valued function f(n, d, deg(a), deg(b)) as the expression on the 

right hand side of the above inequality, without the 0(n2
) term. We will maximize 

f, taking into consideration the inequality constraint of Fact 6.1. Fixing nand d, f 

becomes as large as possible when deg(a) = deg(b) = Hn - d + 3). This gives 

D'(a) + D'(b) 
1 1 

< (n - d+3) [d(n - Zd - Z(n- d+ 3))] +0(n2) 

1 
Znd(n-d)+0(n2), 

and (6.3) is shown. 

Note from (6.1) that c = 1/2 (n-d-1-m), and since m :<:: 1 here, this simplifies 

to c = 1/2 (n - d) + 0(1). Thus, summing (6.3) over all pairs in C, we have 

I: (D'(a)+D'(b)) :<:: c(~nd(n-d)+0(n2)) 
{a,b}EC 

75 



= ~nd(n-d)2+0(n3). (6.4) 

Thus, summing over the three sets, and using Claim 6.1 for the diametral path, 

(6.2) and (6.4), we have the following upper bound on the degree distance of G 

D'(G) = L (D'(a) + D'(b)) + L D'(X) + L D'(U) 
{a,b}Ee xEM uEP 

1 
< 4' nd(n - dj' + O(n3), 

and the theorem is proven for Case 1. 

CASE 2 m:2: 2 

Now the pairs of vertices in C will need to be partitioned further. 

Fix a vertex x E M. For each pair {a, b} E C, choose the vertex closer to x; 

if d(a, x) = d(b, x) arbitrarily choose one of the vertices. Let A be the set of all 

these vertices closer to x, and B to be the set of partners of these vertices in A. 

SO, IAI = IBI = c. Furthermore, let A, (B,) be the set of vertices w in A (B) whose 

partner is at a distance at most 9 from w. Let c, = IA,I = IB,I. 

Claim 6.2 For all u,v E Au M, d(u,v):S 8. 

Proof of Claim 6.2: Since C is a maximum set of pairs of vertices of distance 

at least 3, any two vertices of M must be at a distance of at most 2. Second, 

we show that for each a E A, d(a,x) :S 4. Suppose, to the contrary, that there 

exists a vertex a E A for which d(a, x) :2: 5. Let b be the partner of a. By the 

definition of A, b must also be at a distance of at least 5 from x. Now, consider 

another vertex x' E M - {x}. Since d(X,X'):S 2, the triangle inequality gives 

5 :S d(b, x) :S d(b, x') + d(x' , x) :S d(b, x') + 2 which implies that d(b, x') :2: 3. We 
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have thus identified two pairs, {a, x} and {b, x'}, neither of which lie in C because 

they contain vertices from M, but both of which consist of vertices which lie at a 

distance of at least 3. Thus, the single pair {a, b} in C, could be replaced with the 

two pairs {a, x} and {b, x'}. This contradicts the maximality of C, and hence we 

have shown that d( a, x) ::; 4, for each a E A. Third, for u, v E A, we have that 

d(u, x) :S 4 and d(x, v) :S 4, so it follows that d(u, v) :S 8, thus completing the proof 

of the claim. 

Claim 6.3 For all x E M, D'(X):S (n - d - c) d (n - ~ d - c - C, - m) + O(n2
). 

Proof of Claim 6.3: By Claim 6.2, all c+m vertices in AUM lie within a distance 

of 8 from each vertex x E M. This implies that the c, vertices in B, lie within a 

distance of 9+8 from x. Since no vertex can be further than d from vertex x, the 

total distance of x has the following bound 

D(x) :S 8(c+m)+17(cI)+18+19+ ... +(d-1) 

+[n- (c+m+cI +(d-18))]d 

1 
d (n - "2 d - c - C, - m) + O(n). 

In order to find a bound for the degree of x, we use a counting argument similar 

to the one used in Fact 6.1. Observe that x can have at most 3 (consecutive) 

neighbours on P. By the definitions of A and B, x can be adjacent to at most c 

vertices in A, and no vertices in B. So, n 2: deg(x) + 1 + (d + 1) - 3 + c, giving 

deg(x) :S n-d-c+O(l). Hence D'(x) :S (n-d-c) [d (n- ~ d-C-CI -m)]+O(n2 ), 

and this completes the proof of Claim 6.3. 

Next, in order to bound the degree distance of the pairs in C, we must consider 

two subcases. We first consider the subset A, UB" 

SUBCASE 2.1 
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Claim 6.4 Let {a,b} E C. If d(a, b) :'09, then 

D'(a) + D'(b) :'0 d (n - d) (n -!d - C - m - Cl) + O(n2). 

Proof of Claim 6.4: By Claim 6.2, any two vertices in Au M lie within a distance 

of 8 from each other. Also, for each vertex in B
" 

its partner in A, <;; A lies within 

a distance of 9. Thus there is a maximum distance of 8+9 between vertices of B, 

and M; furthermore, two vertices in B, can be joined by a path of length not more 

than 9+8+9. Hence, any two vertices in Au M U B, lie within a distance of 26 of 

each other. 

Consider a vertex wEA, UB" Since no vertex can be further than d from w, 

we have the following upper bound on the status of w. 

D(w) < 26(c+m+cl) +27+28+ ... +(d-l) + [n- (c+m+cl + (d-27))]d 

1 
d (n -"2 d - C - m - cd + O(n). 

Applying Fact 6.1 for a pair of vertices in this first subcase, the degree distance 

becomes 

D'(a) + D'(b) 
1 

< (deg(a) + deg(b)) [d (n - "2 d - C - m - Cl) + O(n)] 

< (n - d + 3) [d (n - ~ d - C - m - Cl)] + O(n2), 

and this completes the proof of the claim for this subcase. 

The other sub case considers pairs {a, b} of vertices in C which do not lie in 

A, UB" That is, pairs {a, b} with a E A - A, and b E B - B, . 

SUB CASE 2.2 

Claim 6.5 Let {a,b} EC. If d(a,b) 2: 10, then 

D'(a) + D'(b) :'0 d ((c+m) [n-! d-c-m]-c,(c+m)+c [n- ~ d-c]) +O(n2). 
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Proof of Claim 6.5: Now we must calculate an upper bound on the degree distance 

for the vertices in A - A" and B - B
" 

separately. 

For a E A - A" we parallel the proof of Claim 6.3. By Claim 6.2, all c + m 

vertices in A U M lie within a distance of 8 from a. This implies that the C1 vertices 

in B, lie within a distance of 9+8 from a. Since no vertex can be further than d 

from vertex a) we have 

D(a) < 8(c+m)+17(cI)+18+19+ ... +(d-l)+[n-(c+m+cI+(d-18))]d 

1 
d (n -"2 d - c - C1 - m) + O(n). 

We find a bound for the degree of a. Since by the definition of C, a vertex must lie 

at a distance of at least 3 from its partner, a cannot be adjacent to both another 

vertex in A U B as well as the partner of this vertex. Hence, vertex a has at most 

c-l neighbours in AUB. Further, it is adjacent to at most 3 (consecutive) vertices 

on P and has at most m neighbours in M. So, deg(a) <; c - 1 + 3 + m. 

It follows that 

D'(a) <; (c+m)[d(n-~d-c-cI-m)]+O(n2). 

For b E B - B
" 

we parallel the proof from Case 1. Vertex b has deg(b) vertices 

at distance 1; and since no vertex can be further than d from vertex b, we have, 

D(b) < deg(b) + 2 + 3 + ... + (d - 1) + [n - (deg(b) + d - 1)]d 

1 
d(n- "2d-deg(b))+O(n), 

and we have the following bound on the degree distance of b 

1 
D'(b) <; deg(b) [d (n - "2 d - deg(b))] + O(n2). 

We define the real-valued function f(x) = x [d (n - ~ d - x)]. 
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This quadratic function is increasing for x :s ~ [n- ~ d]. Note that we now have 

D'(b) :s j(deg(b)) + O(n2
). 

Bounding the degree of b, we note that b can be adjacent to at most c -1 vertices 

in Au B, and has at most 3 (consecutive) neighbours on P. Also, by Claim 6.2 and 

our assumption that d(a, b) 2: 10, vertex b cannot be adjacent to any vertices in M. 

So, deg(b):S c + 2. 

Ifdeg(b) =c+2, then j(deg(b)) = j(c+2). 

Otherwise, deg(b) :s c + 1. Observe that by (6.1), and m 2: 2, 

~ [n - ~ d] = c + ~m + ~d + ~ > c + l. 
2 2 2 4 2-

Hence, deg(b):S (c+ 1):S ~ [n - ~d], and so j(deg(b)):S j(c+ 1). 

Therefore, 

Finally, summing the bounds for the degree distances of a and b, we have 

D'(a)+D'(b):S (c+m)[d(n- ~d-c-c,-m)] +c[d(n- ~d- c)] +O(n2), 

which, upon simplification, proves the claim for the second subcase. 

Thus, summing Claims 6.4 and 6.5, Claim 6.3, and using Claim 6.1 for the 

diametral path, we have the following upper bound on the degree distance of G 

D'(G) = L (D'(a) + D'(b)) + L D'(x) + L D'(u) 
{a,blEC xEM uEP 

1 
< c, [d(n-d)(n- 2d-c-m-c,)] 

+(c- c,) d ((c+m) [n - ~d- c-m]- c, (c+m) +c[n- ~d-cJ) 

+m [(n-d-c)d(n-~d-c-c,-m)]+O(n3). 
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In order to maximize this expression, we note that (c - CI) ~ 0 and, by (6.1), 

(n - ~d - c - m) ~ 0, so we initially add an extra non-negative term: 

1 
D'(G) :s; CI [d(n-d)(n-"2d-c-m-cd] 

+(c- cI)d((c+m + 1) [n - ~ d - c - m]- cdc+m) +c[n - ~d - c]) 

1 ( 3 +m [(n - d - c) d (n - "2 d - c - CI - m)] + 0 n ). 

Call f (n, d, c, CI) the above expression, without the asymptotic error term. 

That is, D'(G) :s; f(n, d, c, CI) + O(n3
). 

First, we maximize f over CI, holding the other 3 variables fixed. Differentiating 

with respect to CI, and then substituting for the value of m from (6.1) in the first 

two terms, we find: 

df =d( - 2CI(C+1)-2c(n-d-3cj2-1)-m(n-d-c)) <0. 
dCI 

Hence, f is decreasing for CI :s; c, and we set CI = O. Thus, 

D'(G) < f(n,d,c,O) +O(n3
) 

(c) d((c+m+ 1) [n- ~d- c- m] +c[n - ~d- c]) 

+m [(n - d - c) d (n - ~ d - c - m)] + O(n3
). 

Factoring out the lower order terms, this simplifies to 

D'(G) :s; d (c2(n - ~d - c) + (n - d - c)'(c+ ~d)) + O(n3
). 

Second, maximizing the above expression (without the O(n3 ) term) over c, the 

maximum occurs at c = ~ (n - d). Substituting this value, the bound simplifies to 

1 
D'(G) :s; 4: nd(n - d)2 + O(n3

). 
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This completes Case 2, and therefore the upper bound in the theorem is proven. 

An extremal graph, as given in [16], has a barbell shape. It consists of two 

complete graphs, H, and H2 of orders rn -g+11 and l n-g+1 J, respectively; along 

with a path P of order (d -1). The graph, Gn,d, is formed by joining one end of P 

to every vertex in HI, and the other end of P to every vertex of H2 • 

To show that the bound is tight, we calculate the degree distance of Gn,d' Let 

v be one of the (n - d + 1) vertices in H, U H 2 • Then deg(v) = (n - d + 1)/2 and 

D(v) :::: d(d - 1)/2 + [~(n - d + 1)](d) = ~ nd + O(n). Hence, 

D'(Gn,d) = L deg(u)D(u) 
uEV 

> L deg(v)D(v) 
vEHIUH2 

> (n_d+l)[(n-~+I) (~nd+O(n))l 

1 4: (n - d)2 n d + O(n3
). 

which, combined with the upper bound in Theorem 6.2, gives 

D'(Gn,d) = ~ nd (n - d)2 + O(n3
), and the proof is complete. 

Corollary 6.3 Let G be a connected graph of order n. Then 

D'(G) :0: 2'7 n4 + O(n3
), 

and the bound is best possible. 

o 

A simple maximization of the bound in Theorem 6.2 in terms of diameter d, 

yields the maximum at d = n/3. Substituting this value proves the bound in the 

corollary. Again, Gn ,n/3 meets this upper bound. o 

Thus, the conjecture of Tomescu has been confirmed. 
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Chapter 7 

Conclusion 

In this thesis we have explored mathematical relatioIlBhips of some topological in­

dices, which are graph invariants with many practical applications in chemistry, 

pharmacology and even industry. In particular, we investigated three distance-based 

indices: the eccentric connectivity index, the Wiener index and the Schultz index. 

In Chapters 2 and 3 we considered the eccentric connectivity index. We showed 

that the star graph gives the minimum value of the index, for a graph of specified 

order. An asymptotically sharp upper bound was also derived. Then we proved that 

for trees of given order, the upper bound is met by the path. In the case of trees 

for which both order and diameter are prescribed, tight upper and lower bounds on 

the ECI were found. It was established in Chapter 3 that the sharp lower bound for 

trees also holds for graphs in general, for given order and diameter. 

In Chapter 4 we considered an open question posed by Doslic, Saheli and Vukicevic, 

as well as Ilic, concerning extremal graphs for the ECI in the case of regular, and 

more specifically, cubic graphs. In addressing this problem, we identified a tight 

upper bound on the ECI, and a lower bound on the index was also given. In this 

chapter we also derived an upper bound on the index in terms of order and minimum 

degree. 

In Chapter 5, spanning trees were used to find an upper bound on the Wiener 

index, in terms of the ECI, for a graph of prescribed order. 

Finally, we turned to the Schultz index and found an asymptotically tight upper 

bound for a graph of given order, thus resolving a conjecture of 1999 by Tomescu. 
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