6 research outputs found

    Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots

    Get PDF
    International audienceIn many walking, running, flying, and swimming animals, including mammals, reptiles, and birds, the vestibular system plays a central role for verticality estimation and is often associated with a head sta-bilisation (in rotation) behaviour. Head stabilisation, in turn, subserves gaze stabilisation, postural control, visual-vestibular information fusion and spatial awareness via the active establishment of a quasi-inertial frame of reference. Head stabilisation helps animals to cope with the computational consequences of angular movements that complicate the reliable estimation of the vertical direction. We suggest that this strategy could also benefit free-moving robotic systems, such as locomoting humanoid robots, which are typically equipped with inertial measurements units. Free-moving robotic systems could gain the full benefits of inertial measurements if the measurement units are placed on independently orientable platforms, such as a human-like heads. We illustrate these benefits by analysing recent humanoid robots design and control approaches

    Adaptive Control of Arm Movement based on Cerebellar Model

    Get PDF
    This study is an attempt to take advantage of a cerebellar model to control a biomimetic arm. Aware that a variety of cerebellar models with different levels of details has been developed, we focused on a high-level model called MOSAIC. This model is thought to be able to describe the cerebellar functionality without getting into the details of the neural circuitry. To understand where this model exactly fits, we glanced over the biology of the cerebellum and a few alternative models. Certainly, the arm control loop is composed of other components. We reviewed those elements with emphasis on modeling for our simulation. Among these models, the arm and the muscle system received the most attention. The musculoskeletal model tested independently and by means of optimization techniques, a human-like control of arm through muscle activations achieved. We have discussed how MOSAIC can solve a control problem and what drawbacks it has. Consequently, toward making a practical use of MOSAIC model, several ideas developed and tested. In this process, we borrowed concepts and methods from the control theory. Specifically, known schemes of adaptive control of a manipulator, linearization and approximation were utilized. Our final experiment dealt with a modified/adjusted MOSAIC model to adaptively control the arm. We call this model ORF-MOSAIC (Organized by Receptive Fields MOdular Selection And Identification for Control). With as few as 16 modules, we were able to control the arm in a workspace of 30 x 30 cm. The system was able to adapt to an external field as well as handling new objects despite delays. The discussion section suggests that there are similarities between microzones in the cerebellum and the modules of this new model

    A modular approach to learning manipulation strategies from human demonstration

    Get PDF
    Object manipulation is a challenging task for robotics, as the physics involved in object interaction is com- plex and hard to express analytically. Here we introduce a modular approach for learning a manipulation strategy from human demonstration. Firstly we record a human perform- ing a task that requires an adaptive control strategy in differ- ent conditions, i.e. different task contexts. We then perform modular decomposition of the control strategy, using phases of the recorded actions to guide segmentation. Each mod- ule represents a part of the strategy, encoded as a pair of forward and inverse models. All modules contribute to the final control policy; their recommendations are integrated via a system of weighting based on their own estimated er- ror in the current task context. We validate our approach by demonstrating it, both in a simulation for clarity, and on a real robot platform to demonstrate robustness and capacity to generalise. The robot task is opening bottle caps. We show that our approach can modularize an adaptive control strategy and generate appropriate motor commands for the robot to accomplish the complete task, even for novel bottles
    corecore