51,225 research outputs found

    A characterization of trees with equal 2-domination and 2-independence numbers

    Full text link
    A set SS of vertices in a graph GG is a 22-dominating set if every vertex of GG not in SS is adjacent to at least two vertices in SS, and SS is a 22-independent set if every vertex in SS is adjacent to at most one vertex of SS. The 22-domination number γ2(G)\gamma_2(G) is the minimum cardinality of a 22-dominating set in GG, and the 22-independence number α2(G)\alpha_2(G) is the maximum cardinality of a 22-independent set in GG. Chellali and Meddah [{\it Trees with equal 22-domination and 22-independence numbers,} Discussiones Mathematicae Graph Theory 32 (2012), 263--270] provided a constructive characterization of trees with equal 22-domination and 22-independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum 22-dominating and maximum 22-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.Comment: 17 pages, 4 figure

    Dominating 2-broadcast in graphs: complexity, bounds and extremal graphs

    Get PDF
    Limited dominating broadcasts were proposed as a variant of dominating broadcasts, where the broadcast function is upper bounded. As a natural extension of domination, we consider dominating 2-broadcasts along with the associated parameter, the dominating 2-broadcast number. We prove that computing the dominating 2-broadcast number is a NP-complete problem, but can be achieved in linear time for trees. We also give an upper bound for this parameter, that is tight for graphs as large as desired.Peer ReviewedPostprint (author's final draft

    Maker-Breaker domination number

    Full text link
    The Maker-Breaker domination game is played on a graph GG by Dominator and Staller. The players alternatively select a vertex of GG that was not yet chosen in the course of the game. Dominator wins if at some point the vertices he has chosen form a dominating set. Staller wins if Dominator cannot form a dominating set. In this paper we introduce the Maker-Breaker domination number γMB(G)\gamma_{{\rm MB}}(G) of GG as the minimum number of moves of Dominator to win the game provided that he has a winning strategy and is the first to play. If Staller plays first, then the corresponding invariant is denoted γMB′(G)\gamma_{{\rm MB}}'(G). Comparing the two invariants it turns out that they behave much differently than the related game domination numbers. The invariant γMB(G)\gamma_{{\rm MB}}(G) is also compared with the domination number. Using the Erd\H{o}s-Selfridge Criterion a large class of graphs GG is found for which γMB(G)>γ(G)\gamma_{{\rm MB}}(G) > \gamma(G) holds. Residual graphs are introduced and used to bound/determine γMB(G)\gamma_{{\rm MB}}(G) and γMB′(G)\gamma_{{\rm MB}}'(G). Using residual graphs, γMB(T)\gamma_{{\rm MB}}(T) and γMB′(T)\gamma_{{\rm MB}}'(T) are determined for an arbitrary tree. The invariants are also obtained for cycles and bounded for union of graphs. A list of open problems and directions for further investigations is given.Comment: 20 pages, 5 figure
    • …
    corecore