1,963 research outputs found

    Access network selection schemes for multiple calls in next generation wireless networks

    Get PDF
    There is an increasing demand for internet services by mobile subscribers over the wireless access networks, with limited radio resources and capacity constraints. A viable solution to this capacity crunch is the deployment of heterogeneous networks. However, in this wireless environment, the choice of the most appropriate Radio Access Technology (RAT) that can Tsustain or meet the quality of service (QoS) requirements of users' applications require careful planning and cost efficient radio resource management methods. Previous research works on access network selection have focused on selecting a suitable RAT for a user's single call request. With the present request for multiple calls over wireless access networks, where each call has different QoS requirements and the available networks exhibit dynamic channel conditions, the choice of a suitable RAT capable of providing the "Always Best Connected" (ABC) experience for the user becomes a challenge. In this thesis, the problem of selecting the suitable RAT that is capable of meeting the QoS requirements for multiple call requests by mobile users in access networks is investigated. In addressing this problem, we proposed the use of Complex PRoprtional ASsesment (COPRAS) and Consensus-based Multi-Attribute Group Decision Making (MAGDM) techniques as novel and viable RAT selection methods for a grouped-multiple call. The performance of the proposed COPRAS multi-attribute decision making approach to RAT selection for a grouped-call has been evaluated through simulations in different network scenarios. The results show that the COPRAS method, which is simple and flexible, is more efficient in the selection of appropriate RAT for group multiple calls. The COPRAS method reduces handoff frequency and is computationally inexpensive when compared with other methods such as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW) and Multiplicative Exponent Weighting (MEW). The application of the proposed consensus-based algorithm in the selection of a suitable RAT for group-multiple calls, comprising of voice, video-streaming, and file-downloading has been intensively investigated. This algorithm aggregates the QoS requirement of the individual application into a collective QoS for the group calls. This new and novel approach to RAT selection for a grouped-call measures and compares the consensus degree of the collective solution and individual solution against a predefined threshold value. Using the methods of coincidence among preferences and coincidence among solutions with a predefined consensus threshold of 0.9, we evaluated the performance of the consensus-based RAT selection scheme through simulations under different network scenarios. The obtained results show that both methods of coincidences have the capability to select the most suitable RAT for a group of multiple calls. However, the method of coincidence among solutions achieves better results in terms of accuracy, it is less complex and the number of iteration before achieving the predefined consensus threshold is reduced. A utility-based RAT selection method for parallel traffic-streaming in an overlapped heterogeneous wireless network has also been developed. The RAT selection method was modeled with constraints on terminal battery power, service cost and network congestion to select a specified number of RATs that optimizes the terminal interface utility. The results obtained show an optimum RAT selection strategy that maximizes the terminal utility and selects the best RAT combinations for user's parallel-streaming for voice, video and file-download

    Context-aware multi-attribute decision multi - attribute decision making for radio access technology selection in ultra dense network

    Get PDF
    Ultra Dense Network (UDN) is the extreme densification of heterogeneous Radio Access Technology (RAT) that is deployed closely in coordinated or uncoordinated manner. The densification of RAT forms an overlapping zone of signal coverage leading to the frequent service handovers among the RAT, thus degrading overall system performance. The current RAT selection approach is biased towards network-centric criteria pertaining to signal strength. However, the paradigm shift from network-centric to user-centric approach necessitates a multi-criteria selection process, with methodology relating to both network and user preferences in the context of future generation networks. Hence, an effective selection approach is required to avoid unnecessary handovers in RAT. The main aim of this study is to propose the Context-aware Multiattribute decision making for RAT (CMRAT) selection for investigating the need to choose a new RAT and further determine the best amongst the available methods. The CMRAT consists of two mechanisms, namely the Context-aware Analytical Hierarchy Process (CAHP) and Context-aware Technique for Order Preference by Similarity to an Ideal Solution (CTOPSIS). The CAHP mechanism measures the need to switch from the current RAT, while CTOPSIS aids in decision making to choose the best target RAT. A series of experimental studies were conducted to validate the effectiveness of CMRAT for achieving improved system performance. The investigation utilises shopping mall and urban dense network scenarios to evaluate the performance of RAT selection through simulation. The findings demonstrated that the CMRAT approach reduces delay and the number of handovers leading to an improvement of throughput and packet delivery ratio when compared to that of the commonly used A2A4-RSRQ approach. The CMRAT approach is effective in the RAT selection within UDN environment, thus supporting heterogeneous RAT deployment in future 5G networks. With context-aware selection, the user-centric feature is also emphasized

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Network access selection in heterogeneous wireless networks

    Get PDF
    In heterogeneous wireless networks (HWNs), both single-homed and multi-homed terminals are supported to provide connectivity to users. A multiservice single-homed multi-mode terminal can support multiple types of services, such as voice call, file download and video streaming simultaneously on any one of the available radio access technologies (RATs) such as Wireless Local Area Network (WLAN), and Long Term Evolution (LTE). Consequently, a single-homed multi-mode terminal having multiple on-going calls may need to perform a vertical handover from one RAT to another. One of the major issues in HWNs is how to select the most suitable RAT for multiple handoff calls, and the selection of a suitable RAT for multiple-calls from a single-homed multi-mode terminal in HWNs is a group decision problem. This is because a single-homed multi-mode terminal can connect to only one RAT at a time, and therefore multiple handoff calls from the terminal have to be handed over to the same RAT. In making group decision for multiple-calls, the quality of service (QoS) requirements for individual calls needs to be considered. Thus, the RAT that most satisfies the QoS requirements of individual calls is selected as the most suitable RAT for the multiple-calls. Whereas most research efforts in HWNs have concentrated on developing vertical handoff decision schemes for a single call from a multi-mode terminal, not much has been reported in the literature on RAT-selection for multiple-calls from a single-homed multi-mode terminal in next generation wireless networks (NGWNs). In addition, not much has been done to investigate the sensitivity of RAT-selection criteria for multiple-calls in NGWNs. Therefore, this dissertation addresses these issues by focusing on following two main aspects: (1) comparative analysis of four candidate multi-criteria group decision-making (MCGDM) schemes that could be adapted for making RAT-selection decisions for multiple-calls, and (2) development of a new RAT-selection scheme named the consensus RAT-selection model. In comparative analysis of the candidate RAT-selection schemes, four MCGDM schemes namely: distance to the ideal alternative-group decision making (DIA-GDM), multiplicative exponent weighting-group decision making (MEW-GDM), simply additive weighting-group decision making (SAW-GDM), technique for order preference by similarity to Ideal solution-group decision making (TOPSIS-GDM) are considered. The performance of the multiple-calls RAT-selection schemes is evaluated using the MATLAB simulation tool. The results show that DIA-GDM and TOPSIS-GDM schemes are more suitable for multiple handoff calls than SAW-GDM and MEW-GDM schemes. This is because they are consistent and less-sensitive in making RAT-selection decision than the other two schemes, with regards to RAT-selection criteria (service price, data rate, security, battery power consumption and network delay) in HWNs. In addition, the newly developed RAT-selection scheme incorporates RAT-consensus level for improving RAT-selection decisions for multiple-calls. Numerical results conducted in MATLAB validate the effectiveness and performance of the newly proposed RAT-selection scheme for multiple-calls in HWNs

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed
    • …
    corecore