8,056 research outputs found

    Agent-based transportation planning compared with scheduling heuristics

    Get PDF
    Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. We use simulation to compare the on-time delivery percentage and the vehicle utilization of an agent-based planning system to a traditional system based on OR heuristics (look-ahead rules, serial scheduling). Numerical experiments show that a properly designed multi-agent system may perform as good as or even better than traditional methods

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths

    Get PDF
    In this paper, the benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths is presented (AC-VRP-SPDVCFP). This problem is a specific multi-attribute variant of the well-known Vehicle Routing Problem, and it has been originally built for modelling and solving a real-world newspaper distribution problem with recycling policies. The whole benchmark is composed by 15 instances comprised by 50–100 nodes. For the design of this dataset, real geographical positions have been used, located in the province of Bizkaia, Spain. A deep description of the benchmark is provided in this paper, aiming at extending the details and experimentation given in the paper A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy (Osaba et al.) [1]. The dataset is publicly available for its use and modification.Eneko Osaba would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK

    Applying revenue management to agent-based transportation planning

    Get PDF
    We consider a multi-company, less-than-truckload, dynamic VRP based on the concept of multi-agent systems. We focus on the intelligence of one vehicle agent and especially on its bidding strategy. We address the problem how to price loads that are offered in real-time such that available capacity is used in the most profitable way taking into account possible future revenues. We develop methods to price loads dynamically based on revenue management concepts.\ud We consider a one leg problem, i.e., a vehicle travels from i to j and can wait at most Ï„ time units in which it can get additional loads from i to j. We develop a DP to price loads given a certain amount of remaining capacity and an expected number of auctions in the time-to-go. Because a DP might be impractical if parameters change frequently and bids has to be determined in real-time, we derived two approximations to speed up calculations. The performance of these approximations are compared with the performance of the DP. Besides we introduce a new measure to calculate the average vehicle utilisation in consolidated shipments. This measure can be calculated based on a limited amount of data and gives an indication of the efficiency of schedules and the performance of vehicles

    Un modelo para resolver el problema dinámico de despacho de vehículos con incertidumbre de clientes y con tiempos de viaje en arcos

    Get PDF
    Indexación: Web of Science; ScieloIn a real world case scenario, customer demands are requested at any time of the day requiring services that are not known in advance such as delivery or repairing equipment. This is called Dynamic Vehicle Routing (DVR) with customer uncertainty environment. The link travel time for the roadway network varies with time as traffic fluctuates adding an additional component to the dynamic environment. This paper presents a model for solving the DVR problem while combining these two dynamic aspects (customer uncertainty and link travel time). The proposed model employs Greedy, Insertion, and Ant Colony Optimization algorithms. The Greedy algorithm is utilized for constructing new routes with existing customers, and the remaining two algorithms are employed for rerouting as new customer demands appear. A real world application is presented to simulate vehicle routing in a dynamic environment for the city of Taipei, Taiwan. The simulation shows that the model can successfully plan vehicle routes to satisfy all customer demands and help managers in the decision making process.En un escenario real, los pedidos de los clientes son solicitados a cualquier hora del día requiriendo servicios que no han sido planificados con antelación tales como los despachos o la reparación de equipos. Esto es llamado ruteo dinámico de vehículos (RDV) considerando un ambiente con incertidumbre de clientes. El tiempo de viaje en una red vial varía con el tiempo a medida que el tráfico vehicular fluctúa agregando una componente adicional al ambiente dinámico. Este artículo propone un modelo para resolver el problema RDV combinando estos dos aspectos dinámicos. El modelo propuesto utiliza los algoritmos Greedy, Inserción y optimización basada en colonias de hormigas. El algoritmo Greedy es utilizado para construir nuevas rutas con los clientes existentes y los otros dos algoritmos son usados para rutear vehículos a medida que surjan nuevos clientes con sus respectivos pedidos. Además, se presenta una aplicación real para simular el ruteo vehicular en un ambiente dinámico para la ciudad de Taipei, Taiwán. Esta simulación muestra que el modelo es capaz de planificar exitosamente las rutas vehiculares satisfaciendo los pedidos de los clientes y de ayudar los gerentes en el proceso de toma de decisiones.http://ref.scielo.org/3ryfh
    • …
    corecore