1,005 research outputs found

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    Local dimension is unbounded for planar posets

    Get PDF
    In 1981, Kelly showed that planar posets can have arbitrarily large dimension. However, the posets in Kelly's example have bounded Boolean dimension and bounded local dimension, leading naturally to the questions as to whether either Boolean dimension or local dimension is bounded for the class of planar posets. The question for Boolean dimension was first posed by Nešetřil and Pudlák in 1989 and remains unanswered today. The concept of local dimension is quite new, introduced in 2016 by Ueckerdt. Since that time, researchers have obtained many interesting results concerning Boolean dimension and local dimension, contrasting these parameters with the classic Dushnik-Miller concept of dimension, and establishing links between both parameters and structural graph theory, path-width and tree-width in particular. Here we show that local dimension is not bounded on the class of planar posets. Our proof also shows that the local dimension of a poset is not bounded in terms of the maximum local dimension of its blocks, and it provides an alternative proof of the fact that the local dimension of a poset cannot be bounded in terms of the tree-width of its cover graph, independent of its height

    Boolean dimension and tree-width

    Full text link
    The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if PP has dimension dd, then to know whether xyx \leq y in PP it is enough to check whether xyx\leq y in each of the dd linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset PP has boolean dimension at most dd if it is possible to decide whether xyx \leq y in PP by looking at the relative position of xx and yy in only dd permutations of the elements of PP. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?Comment: one more reference added; paper revised along the suggestion of three reviewer

    Dimension of posets with planar cover graphs excluding two long incomparable chains

    Full text link
    It has been known for more than 40 years that there are posets with planar cover graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets must have large height. In fact, all known constructions of such posets have two large disjoint chains with all points in one chain incomparable with all points in the other. Gutowski and Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for every k1k\geq 1, there is a constant dd such that if PP is a poset with a planar cover graph and PP excludes k+k\mathbf{k}+\mathbf{k}, then dim(P)d\dim(P)\leq d. We settle their conjecture in the affirmative. We also discuss possibilities of generalizing the result by relaxing the condition that the cover graph is planar.Comment: New section on connections with graph minors, small correction

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    Planar posets have dimension at most linear in their height

    Full text link
    We prove that every planar poset PP of height hh has dimension at most 192h+96192h + 96. This improves on previous exponential bounds and is best possible up to a constant factor. We complement this result with a construction of planar posets of height hh and dimension at least (4/3)h2(4/3)h-2.Comment: v2: Minor change

    Nowhere Dense Graph Classes and Dimension

    Full text link
    Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for every h1h \geq 1 and every ϵ>0\epsilon > 0, posets of height at most hh with nn elements and whose cover graphs are in the class have dimension O(nϵ)\mathcal{O}(n^{\epsilon}).Comment: v4: Minor changes suggested by a refere

    Topological minors of cover graphs and dimension

    Full text link
    We show that posets of bounded height whose cover graphs exclude a fixed graph as a topological minor have bounded dimension. This result was already proven by Walczak. However, our argument is entirely combinatorial and does not rely on structural decomposition theorems. Given a poset with large dimension but bounded height, we directly find a large clique subdivision in its cover graph. Therefore, our proof is accessible to readers not familiar with topological graph theory, and it allows us to provide explicit upper bounds on the dimension. With the introduced tools we show a second result that is supporting a conjectured generalization of the previous result. We prove that (k+k)(k+k)-free posets whose cover graphs exclude a fixed graph as a topological minor contain only standard examples of size bounded in terms of kk.Comment: revised versio
    corecore