41 research outputs found

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Quadratic diameter bounds for dual network flow polyhedra

    Full text link
    Both the combinatorial and the circuit diameters of polyhedra are of interest to the theory of linear programming for their intimate connection to a best-case performance of linear programming algorithms. We study the diameters of dual network flow polyhedra associated to bb-flows on directed graphs G=(V,E)G=(V,E) and prove quadratic upper bounds for both of them: the minimum of (V1)E(|V|-1)\cdot |E| and 16V3\frac{1}{6}|V|^3 for the combinatorial diameter, and V(V1)2\frac{|V|\cdot (|V|-1)}{2} for the circuit diameter. The latter strengthens the cubic bound implied by a result in [De Loera, Hemmecke, Lee; 2014]. Previously, bounds on these diameters have only been known for bipartite graphs. The situation is much more involved for general graphs. In particular, we construct a family of dual network flow polyhedra with members that violate the circuit diameter bound for bipartite graphs by an arbitrary additive constant. Further, it provides examples of circuit diameter 43V4\frac{4}{3}|V| - 4

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Geometric Combinatorics of Transportation Polytopes and the Behavior of the Simplex Method

    Full text link
    This dissertation investigates the geometric combinatorics of convex polytopes and connections to the behavior of the simplex method for linear programming. We focus our attention on transportation polytopes, which are sets of all tables of non-negative real numbers satisfying certain summation conditions. Transportation problems are, in many ways, the simplest kind of linear programs and thus have a rich combinatorial structure. First, we give new results on the diameters of certain classes of transportation polytopes and their relation to the Hirsch Conjecture, which asserts that the diameter of every dd-dimensional convex polytope with nn facets is bounded above by ndn-d. In particular, we prove a new quadratic upper bound on the diameter of 33-way axial transportation polytopes defined by 11-marginals. We also show that the Hirsch Conjecture holds for p×2p \times 2 classical transportation polytopes, but that there are infinitely-many Hirsch-sharp classical transportation polytopes. Second, we present new results on subpolytopes of transportation polytopes. We investigate, for example, a non-regular triangulation of a subpolytope of the fourth Birkhoff polytope B4B_4. This implies the existence of non-regular triangulations of all Birkhoff polytopes BnB_n for n4n \geq 4. We also study certain classes of network flow polytopes and prove new linear upper bounds for their diameters.Comment: PhD thesis submitted June 2010 to the University of California, Davis. 183 pages, 49 figure

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
    corecore