69 research outputs found

    Exposing Fake Images with Forensic Similarity Graphs

    Full text link
    We propose new image forgery detection and localization algorithms by recasting these problems as graph-based community detection problems. To do this, we introduce a novel abstract, graph-based representation of an image, which we call the Forensic Similarity Graph, that captures key forensic relationships among regions in the image. In this representation, small image patches are represented by graph vertices with edges assigned according to the forensic similarity between patches. Localized tampering introduces unique structure into this graph, which aligns with a concept called ``community structure'' in graph-theory literature. In the Forensic Similarity Graph, communities correspond to the tampered and unaltered regions in the image. As a result, forgery detection is performed by identifying whether multiple communities exist, and forgery localization is performed by partitioning these communities. We present two community detection techniques, adapted from literature, to detect and localize image forgeries. We experimentally show that our proposed community detection methods outperform existing state-of-the-art forgery detection and localization methods, which do not capture such community structure.Comment: 16 pages, under review at IEEE Journal of Selected Topics in Signal Processin

    EXIF as Language: Learning Cross-Modal Associations Between Images and Camera Metadata

    Full text link
    We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions "zero shot" by clustering the visual embeddings for all of the patches within an image.Comment: Project link: http://hellomuffin.github.io/exif-as-languag

    A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for Image Forgery Detection

    Full text link
    Due to limited computational and memory resources, current deep learning models accept only rather small images in input, calling for preliminary image resizing. This is not a problem for high-level vision problems, where discriminative features are barely affected by resizing. On the contrary, in image forensics, resizing tends to destroy precious high-frequency details, impacting heavily on performance. One can avoid resizing by means of patch-wise processing, at the cost of renouncing whole-image analysis. In this work, we propose a CNN-based image forgery detection framework which makes decisions based on full-resolution information gathered from the whole image. Thanks to gradient checkpointing, the framework is trainable end-to-end with limited memory resources and weak (image-level) supervision, allowing for the joint optimization of all parameters. Experiments on widespread image forensics datasets prove the good performance of the proposed approach, which largely outperforms all baselines and all reference methods.Comment: 13 pages, 12 figures, journa

    Digital forensic techniques for the reverse engineering of image acquisition chains

    Get PDF
    In recent years a number of new methods have been developed to detect image forgery. Most forensic techniques use footprints left on images to predict the history of the images. The images, however, sometimes could have gone through a series of processing and modification through their lifetime. It is therefore difficult to detect image tampering as the footprints could be distorted or removed over a complex chain of operations. In this research we propose digital forensic techniques that allow us to reverse engineer and determine history of images that have gone through chains of image acquisition and reproduction. This thesis presents two different approaches to address the problem. In the first part we propose a novel theoretical framework for the reverse engineering of signal acquisition chains. Based on a simplified chain model, we describe how signals have gone in the chains at different stages using the theory of sampling signals with finite rate of innovation. Under particular conditions, our technique allows to detect whether a given signal has been reacquired through the chain. It also makes possible to predict corresponding important parameters of the chain using acquisition-reconstruction artefacts left on the signal. The second part of the thesis presents our new algorithm for image recapture detection based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD approach to learn distinctive blurring patterns from sets of single captured and recaptured images. An SVM classifier is then built using dictionary approximation errors and the mean edge spread width from the training images. The algorithm, which requires no user intervention, was tested on a database that included more than 2500 high quality recaptured images. Our results show that our method achieves a performance rate that exceeds 99% for recaptured images and 94% for single captured images.Open Acces

    Image Forensics in the Wild

    Get PDF

    Lightweight MobileNet Model for Image Tempering Detection

    Get PDF
    In recent years, there has been a wide range of image manipulation identification challenges and an overview of image tampering detection and the relevance of applying deep learning models such as CNN and MobileNet for this purpose. The discussion then delves into the construction and setup of these models, which includes a block diagram as well as mathematical calculations for each layer. A literature study on Image tampering detection is also included in the discussion, comparing and contrasting various articles and their methodologies. The study then moves on to training and assessment datasets, such as the CASIA v2 dataset, and performance indicators like as accuracy and loss. Lastly, the performance characteristics of the MobileNet and CNN designs are compared. This work focuses on Image tampering detection using convolutional neural networks (CNNs) and the MobileNet architecture. We reviewed the MobileNet architecture's setup and block diagram, as well as its application to Image tampering detection. We also looked at significant literature on Image manipulation detection, such as major studies and their methodologies. Using the CASIA v2 dataset, we evaluated the performance of MobileNet and CNN architectures in terms of accuracy and loss. This paper offered an overview of the usage of deep learning and CNN architectures for image tampering detection and proved their accuracy in detecting manipulated images

    Detecting Image Brush Editing Using the Discarded Coefficients and Intentions

    Get PDF
    This paper describes a quick and simple method to detect brush editing in JPEG images. The novelty of the proposed method is based on detecting the discarded coefficients during the quantization of the image. Another novelty of this paper is the development of a subjective metric named intentions. The method directly analyzes the allegedly tampered image and generates a forgery mask indicating forgery evidence for each image block. The experiments show that our method works especially well in detecting brush strokes, and it works reasonably well with added captions and image splicing. However, the method is less effective detecting copy-moved and blurred regions. This means that our method can effectively contribute to implementing a complete imagetampering detection tool. The editing operations for which our method is less effective can be complemented with methods more adequate to detect them
    corecore