1,672 research outputs found

    Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study

    Get PDF
    Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition

    Wireless Simultaneous Stimulation-and-Recording Device (SRD) to Train Cortical Circuits in Rat Somatosensory Cortex

    Get PDF
    The primary goal of this project is to develop a wireless system for simultaneous recording-and-stimulation (SRD) to deliver low amplitude current pulses to the primary somatosensory cortex (SI) of rats to activate and enhance an interhemispheric cortical pathway. Despite the existence of an interhemispheric connection between similar forelimb representations of SI cortices, forelimb cortical neurons respond only to input from the contralateral (opposite side) forelimb and not to input from the ipsilateral (same side) forelimb. Given the existence of this interhemispheric pathway we have been able to strengthen/enhance the pathway through chronic intracortical microstimulation (ICMS) in previous acute experiments of anesthetized rats. In these acute experiments strengthening the interhemispheric pathway also brings about functional reorganization whereby cortical neurons in forelimb cortex respond to new input from the ipsilateral forelimb. Having the ability to modify cortical circuitry will have important applications in stroke patients and could serve to rescue and/or enhance responsiveness in surviving cells around the stroke region. Also, the ability to induce functional reorganization within the deafferented cortical map, which follows limb amputation, will also provide a vehicle for modulating maladaptive cortical reorganization often associated with phantom limb pain leading to reduced pain. In order to increase our understanding of the observed functional reorganization and enhanced pathway, we need to be able to test these observations in awake and behaving animals and eventually study how these changes persist over a prolonged period of time. To accomplish this a system was needed to allow simultaneous recording and stimulation in awake rats. However, no such commercial or research system exists that meets all requirements for such an experiment. In this project we describe the (1) system design, (2) system testing, (3) system evaluation, and (4) system implementation of a wireless simultaneous stimulation-and-recording device (SRD) to be used to modulate cortical circuits in an awake rodent animal model

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Wireless integrated circuit for 100-channel charge-balanced neural stimulation

    Get PDF
    Journal ArticleThe authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- m 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex

    Modelling and validating an enhanced transcranial magnetic stimulator for neuroscience and clinical therapies

    Get PDF
    Transcranial magnetic stimulation (TMS) is a non-invasive technique for stimulating the nervous system. Conventional TMS devices are limited to a small set of predefined pulse shapes. Recent technological developments in TMS devices using switching circuits have allowed more control over the TMS parameters. Our group has introduced a new TMS device, the programmable TMS (pTMS), which uses pulse-width modulation (PWM) to rapidly switch between voltage levels, allowing the approximation of pulses of arbitrary shape. In the first part of this thesis, I validated the PWM method by using computational modelling to compare the neuronal response to stimuli generated by the pTMS device and by a conventional transcranial magnetic stimulator. The computational models predicted highly correlated activation thresholds for both stimulator types, showing that the pTMS can approximate existing pulses. Second, I validated the model and the pTMS by assessing the comparability of the effects of PWM and conventional pulses on motor evoked potentials in a first-in-human validation study. Resting motor thresholds showed a strong correlation between the stimulation pulses, with a consistently lower threshold for the PWM pulses, corroborating the results of the computational model. No significant differences in other motor response measures were found between the pulse types. Third, I exploited the capabilities of the pTMS device by designing and conducting an in-human study where I investigated a previously unfeasible stimulation pattern, monophasic theta burst stimulation (TBS). Comparing the effects of monophasic TBS with conventional biphasic TBS on corticospinal excitability, the monophasic pulses induced larger plasticity effects than biphasic pulses and than an anatomical control. Finally, I explored the sources of variability of resting motor thresholds in a large data set collected across TMS clinics, in particular investigating the effects of time of day. The results indicated that the majority of the observed differences in thresholds across the day were due to differences between clinics, highlighting the need to control for and standardise methods across clinics. In summary, this thesis demonstrates and validates the capabilities of the programmable TMS device, to firstly mimic the stimulation effects of conventional stimulators but importantly to also expand the parameter set to new stimulation protocols with the potential to have stronger effects on the stimulated neurons, and investigates the origins of variance in clinical practice

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain

    Get PDF

    Intermittent Theta Burst Stimulation: Application to Spinal Cord Injury Rehabilitation and Computational Modeling

    Get PDF
    Loss of motor function from spinal cord injuries (SCI) results in loss of independence. Rehabilitation efforts are targeted to enhance the ability to perform activities of daily living (ADLs), but outcomes from physical therapy alone are often insufficient. Neuromodulation techniques that induce neuroplasticity may push the limits on recovery. Neuromodulation by intermittent theta burst transcranial magnetic stimulation (iTBS) induces neuroplasticity by increasing corticomotor excitability, though this has most frequently been studied with motor targets and on individuals not in need of rehabilitation. Increased corticomotor excitability is associated with motor learning. The response to iTBS, however, is highly variable and unpredictable, while the mechanisms are not well understood. Studies have proposed brain anatomy and individual subject differences as a source of variability but have not quantified the effects. Existing models have not incorporated known neurotransmitter changes at the synaptic level to pair mechanisms to cell output in a neural circuit. To use iTBS in practical rehabilitative efforts, the technique must either be consistent, have a predictable responsiveness, or present with enough mechanistic understanding to improve its efficacy. To that effect, this study has two primary objectives for the improvement of rehabilitation techniques. The first is to establish how iTBS affects both a motor target and population that typically undergoes physical rehabilitation often with unsatisfactory outcomes, in this case the biceps brachii in individuals with SCI and relate the empirical effects of iTBS to individual anatomy. This will establish the consistency of the technique and predictability of its effects, relevant to rehabilitative efforts. The secondary objective is to create the foundation of a model that exhibits circuit organization, which would start the development of a motor neuroplasticity functional unit with simulation of the synaptic long-term potentiation (LTP) like effects of iTBS. Summary of Methods: iTBS was performed targeting the biceps, on multiple cohorts, with changes in motor evoked potential amplitude (MEP) tracked after sham and active intervention. This was compared between nonimpaired individuals and those with SCI. Furthermore, iTBS of both biceps and first dorsal interosseus (FDI) was compared to simulation of TMS on MRI derived head models to establish the impact of individualized neuroanatomy. Finally, a motor canonical neural circuit was programmed to display fundamental physiological spiking behavior of membrane potentials. Summary of Results: iTBS did facilitate corticomotor excitability in the biceps of nonimpaired individuals and in those with SCI. iTBS had no group-wide effect on the FDI, highlighting the variability in response to the protocol. TMS response (motor thresholds) and iTBS response (change in MEPs) both were related to parameters extracted from MRI-derived head models representing variations in individual neuroanatomy. The neural circuit model represents a canonical networked unit. In the future, this can be further tuned to exhibit biological variability and generate population-based values being run in parallel, while matching the understood mechanisms of neuroplasticity: disinhibition and LTP. Conclusion: These studies provide missing information of iTBS responsivity by (1) determining group-wide responsiveness in a clinically relevant target; (2) establishing individual level influences that affect responsivity which can be measured prior to iTBS; and (3) beginning design of a tool to test a single neural circuit and its mechanistic responses
    • …
    corecore