2,981 research outputs found

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Self-correction of 3D reconstruction from multi-view stereo images

    Get PDF
    We present a self-correction approach to improving the 3D reconstruction of a multi-view 3D photogrammetry system. The self-correction approach has been able to repair the reconstructed 3D surface damaged by depth discontinuities. Due to self-occlusion, multi-view range images have to be acquired and integrated into a watertight nonredundant mesh model in order to cover the extended surface of an imaged object. The integrated surface often suffers from “dent” artifacts produced by depth discontinuities in the multi-view range images. In this paper we propose a novel approach to correcting the 3D integrated surface such that the dent artifacts can be repaired automatically. We show examples of 3D reconstruction to demonstrate the improvement that can be achieved by the self-correction approach. This self-correction approach can be extended to integrate range images obtained from alternative range capture devices

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    One-shot 3d surface reconstruction from instantaneous frequencies: solutions to ambiguity problems

    Get PDF
    Phase-measuring profilometry is a well known technique for 3D surface reconstruction based on a sinusoidal pattern that is projected on a scene. If the surface is partly occluded by, for instance, other objects, then the depth shows abrupt transitions at the edges of these occlusions. This causes ambiguities in the phase and, consequently, also in the reconstruction.\ud This paper introduces a reconstruction method that is based on the instantaneous frequency instead of phase. Using these instantaneous frequencies we present a method to recover from ambiguities caused by occlusion. The recovery works under the condition that some surface patches can be found that are planar. This ability is demonstrated in a simple example. \u

    Dynamic programming for multi-view disparity/depth estimation

    Get PDF

    Active Image-based Modeling with a Toy Drone

    Full text link
    Image-based modeling techniques can now generate photo-realistic 3D models from images. But it is up to users to provide high quality images with good coverage and view overlap, which makes the data capturing process tedious and time consuming. We seek to automate data capturing for image-based modeling. The core of our system is an iterative linear method to solve the multi-view stereo (MVS) problem quickly and plan the Next-Best-View (NBV) effectively. Our fast MVS algorithm enables online model reconstruction and quality assessment to determine the NBVs on the fly. We test our system with a toy unmanned aerial vehicle (UAV) in simulated, indoor and outdoor experiments. Results show that our system improves the efficiency of data acquisition and ensures the completeness of the final model.Comment: To be published on International Conference on Robotics and Automation 2018, Brisbane, Australia. Project Page: https://huangrui815.github.io/active-image-based-modeling/ The author's personal page: http://www.sfu.ca/~rha55

    Variational Disparity Estimation Framework for Plenoptic Image

    Full text link
    This paper presents a computational framework for accurately estimating the disparity map of plenoptic images. The proposed framework is based on the variational principle and provides intrinsic sub-pixel precision. The light-field motion tensor introduced in the framework allows us to combine advanced robust data terms as well as provides explicit treatments for different color channels. A warping strategy is embedded in our framework for tackling the large displacement problem. We also show that by applying a simple regularization term and a guided median filtering, the accuracy of displacement field at occluded area could be greatly enhanced. We demonstrate the excellent performance of the proposed framework by intensive comparisons with the Lytro software and contemporary approaches on both synthetic and real-world datasets

    Dense Piecewise Planar RGB-D SLAM for Indoor Environments

    Full text link
    The paper exploits weak Manhattan constraints to parse the structure of indoor environments from RGB-D video sequences in an online setting. We extend the previous approach for single view parsing of indoor scenes to video sequences and formulate the problem of recovering the floor plan of the environment as an optimal labeling problem solved using dynamic programming. The temporal continuity is enforced in a recursive setting, where labeling from previous frames is used as a prior term in the objective function. In addition to recovery of piecewise planar weak Manhattan structure of the extended environment, the orthogonality constraints are also exploited by visual odometry and pose graph optimization. This yields reliable estimates in the presence of large motions and absence of distinctive features to track. We evaluate our method on several challenging indoors sequences demonstrating accurate SLAM and dense mapping of low texture environments. On existing TUM benchmark we achieve competitive results with the alternative approaches which fail in our environments.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Local Stereo Matching Using Adaptive Local Segmentation

    Get PDF
    We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a dynamic threshold. We define a new validity domain of the fronto-parallel assumption based on the local intensity variations in the 4-neighborhood of the matching pixel. The preprocessing step smoothes low textured areas and sharpens texture edges, whereas the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical differences; and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions. It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images. It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local algorithms relying on the fronto-parallel assumption, our algorithm is the best ranked algorithm. We also demonstrate that our algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face
    corecore