4 research outputs found

    Dilation, Transport, Visibility and Fault-Tolerant Algorithms

    Get PDF
    Connecting some points in the plane by a road network is equivalent to constructing a finite planar graph G whose vertex set contains a predefined set of vertices (i. e., the possible destinations in the road network). The dilation between two vertices p and q of graph G is defined as the Euclidean length of a shortest path in G from p to q, divided by the Euclidean distance from p to q. That is, given a point set P, the goal is to place some additional crossing vertices C such that there exists a planar graph G = (P âˆȘ C, E) whose dilation is small. Here, the dilation of G is defined as the maximum dilation between two vertices in G. We show that, except for some special point sets P, there is a lower bound Δ(P) > 1, depending on P, on the dilation of any finite graph containing P in its vertex set. The transportation problem is the problem of finding a transportation plan that minimizes the total transport cost. We are given a set of suppliers, and each supplier produces a fixed amount of some commodity, say, bread. Furthermore, there is a set of customers, and each customer has some demand of bread, such that the total demand equals the amount of bread the suppliers produce. The task is to assign each unit of bread produced to some customer, such that the total transportation cost becomes a minimum. A first idea is to assign each unit of bread to the client to which the transport cost of this unit is minimal. Clearly, this gives rise to a transportation plan which minimizes the total transportation cost. However, it is likely that not every customer will obtain the required amount of bread. Therefore, we need to use a different algorithm for distributing the supplier's bread. We show that if the bread produced by the suppliers is given by a continuous probability density function and the set of customers is discrete, then every optimal transport plan can be characterized by a unique additively weighted Voronoi diagram for the customers. When managing the construction process of a building by a digital model of the building, it is necessary to compute essential parts between walls of the building. Given two walls A and B, the essential part between A and B is the set of line segments s where one endpoint belongs to A, the other endpoint belongs to B, and s does not intersect A or B. We give an algorithm that computes, in linear time, the essential parts between A and B. Our algorithm is based on computing the visibility polygon of A and of B, and two shortest paths connecting points of A with points of B. We conclude the thesis by giving fault-tolerant algorithms for some fundamental geometric problems. We assume that a basic primitive operation used by an algorithm fails with some small probability p. Depending on the results of the primitive operations, it is possible that the algorithm will not work correctly. For example, one faulty comparison when executing a sorting algorithm can result in some numbers being placed far away from their true positions. An algorithm is called tolerant, if with high probability a good answer is given, if the error probability p is small. We provide tolerant algorithms that find the maximum of n numbers, search for a key in a sorted sequence of n keys, sort a set of n numbers, and solve Linear Programming in R2

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen reprĂ€sentieren die Kreuzungen und die Kanten sind die Straßen. Letztere mĂŒssen nicht geradlinig sein, sondern können beliebig gekrĂŒmmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die LĂ€nge des kĂŒrzesten Pfades ĂŒber Straßen, d_G(p,q), lĂ€nger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser BrĂŒche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß fĂŒr die QualitĂ€t des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen grĂ¶ĂŸeren Umweg zwischen beliebigen zwei Punkten gibt. FĂŒr eine gegebene endliche Punktmenge S wĂŒrden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthĂ€lt. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke fĂŒr die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke fĂŒr eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefĂ€hr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunĂ€chst geschlossene Kurven. Ihre Dilation hĂ€ngt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher LĂ€nge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein StabilitĂ€tsresultat fĂŒr die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes ZusĂ€tzlich enthĂ€lt diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen GrĂ¶ĂŸen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore