208 research outputs found

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied

    Even Delta-Matroids and the Complexity of Planar Boolean CSPs

    Full text link
    The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ\Delta-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ\Delta-matroids, we then extend the tractability result to larger classes of Δ\Delta-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely co-independent, compact, local, linear and binary, with the following caveat: we represent Δ\Delta-matroids by lists of tuples, while the last two use a representation by matrices. Since an n×nn\times n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ\Delta-matroids.Comment: 33 pages, 9 figure

    Polynomials with the half-plane property and matroid theory

    Get PDF
    A polynomial f is said to have the half-plane property if there is an open half-plane H, whose boundary contains the origin, such that f is non-zero whenever all the variables are in H. This paper answers several open questions regarding multivariate polynomials with the half-plane property and matroid theory. * We prove that the support of a multivariate polynomial with the half-plane property is a jump system. This answers an open question posed by Choe, Oxley, Sokal and Wagner and generalizes their recent result claiming that the same is true whenever the polynomial is also homogeneous. * We characterize multivariate multi-affine polynomial with real coefficients that have the half-plane property (with respect to the upper half-plane) in terms of inequalities. This is used to answer two open questions posed by Choe and Wagner regarding strongly Rayleigh matroids. * We prove that the Fano matroid is not the support of a polynomial with the half-plane property. This is the first instance of a matroid which does not appear as the support of a polynomial with the half-plane property and answers a question posed by Choe et al. We also discuss further directions and open problems.Comment: 17 pages. To appear in Adv. Mat

    The Interlace Polynomial

    Full text link
    In this paper, we survey results regarding the interlace polynomial of a graph, connections to such graph polynomials as the Martin and Tutte polynomials, and generalizations to the realms of isotropic systems and delta-matroids.Comment: 18 pages, 5 figures, to appear as a chapter in: Graph Polynomials, edited by M. Dehmer et al., CRC Press/Taylor & Francis Group, LL

    Binary matroids and local complementation

    Full text link
    We introduce a binary matroid M(IAS(G)) associated with a looped simple graph G. M(IAS(G)) classifies G up to local equivalence, and determines the delta-matroid and isotropic system associated with G. Moreover, a parametrized form of its Tutte polynomial yields the interlace polynomials of G.Comment: This article supersedes arXiv:1301.0293. v2: 26 pages, 2 figures. v3 - v5: 31 pages, 2 figures v6: Final prepublication versio

    Discrete concavity and the half-plane property

    Full text link
    Murota et al. have recently developed a theory of discrete convex analysis which concerns M-convex functions on jump systems. We introduce here a family of M-concave functions arising naturally from polynomials (over a field of generalized Puiseux series) with prescribed non-vanishing properties. This family contains several of the most studied M-concave functions in the literature. In the language of tropical geometry we study the tropicalization of the space of polynomials with the half-plane property, and show that it is strictly contained in the space of M-concave functions. We also provide a short proof of Speyer's hive theorem which he used to give a new proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices.Comment: 14 pages. The proof of Theorem 4 is corrected
    corecore