156 research outputs found

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes

    Get PDF
    Our main result is to prove almost-sure convergence of a stochasticapproximation algorithm defined on the space of measures on a noncompact space. Our motivation is to apply this result to measure-valued Pólya processes (MVPPs, also known as infinitely-many Pólya urns). Our main idea is to use Foster-Lyapunov type criteria in a novel way to generalize stochasticapproximation methods to measure-valued Markov processes with a noncompact underlying space, overcoming in a fairly general context one of the major difficulties of existing studies on this subject. From the MVPPs point of view, our result implies almost-sure convergence of a large class of MVPPs; this convergence was only obtained until now for specific examples, with only convergence in probability established for general classes. Furthermore, our approach allows us to extend the definition of MVPPs by adding "weights"to the different colors of the infinitelymany- color urn. We also exhibit a link between non-"balanced"MVPPs and quasi-stationary distributions of Markovian processes, which allows us to treat, for the first time in the literature, the nonbalanced case. Finally, we show how our result can be applied to designing stochasticapproximation algorithms for the approximation of quasi-stationary distributions of discrete- and continuous-time Markov processes on noncompact spaces

    Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes

    Get PDF
    Our main result is to prove almost-sure convergence of a stochastic-approximation algorithm defined on the space of measures on a non-compact space. Our motivation is to apply this result to measure-valued P\'olya processes (MVPPs, also known as infinitely-many P\'olya urns). Our main idea is to use Foster-Lyapunov type criteria in a novel way to generalize stochastic-approximation methods to measure-valued Markov processes with a non-compact underlying space, overcoming in a fairly general context one of the major difficulties of existing studies on this subject. From the MVPPs point of view, our result implies almost-sure convergence of a large class of MVPPs, this convergence was only obtained until now for specific examples, with only convergence in probability established for general classes. Furthermore, our approach allows us to extend the definition of MVPPs by adding "weights" to the different colors of the infinitely-many-color urn. We also exhibit a link between non-"balanced" MVPPs and quasi-stationary distributions of Markovian processes, which allows us to treat, for the first time in the literature, the non-balanced case. Finally, we show how our result can be applied to designing stochastic-approximation algorithms for the approximation of quasi-stationary distributions of discrete- and continuous-time Markov processes on non-compact spaces

    Degrees in random mm-ary hooking networks

    Full text link
    The theme in this paper is a composition of random graphs and P\'olya urns. The random graphs are generated through a small structure called the seed. Via P\'olya urns, we study the asymptotic degree structure in a random mm-ary hooking network and identify strong laws. We further upgrade the result to second-order asymptotics in the form of multivariate Gaussian limit laws. We give a few concrete examples and explore some properties with a full representation of the Gaussian limit in each case. The asymptotic covariance matrix associated with the P\'olya urn is obtained by a new method that originated in this paper and is reported in [25].Comment: 21 pages, 5 figure

    Dynamical models for random simplicial complexes

    Get PDF

    Dynamical models for random simplicial complexes

    Get PDF
    We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d>2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315]

    Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms

    Full text link
    This monograph provides an overview of the mathematical theories and computational algorithm design for contagion source detection in large networks. By leveraging network centrality as a tool for statistical inference, we can accurately identify the source of contagions, trace their spread, and predict future trajectories. This approach provides fundamental insights into surveillance capability and asymptotic behavior of contagion spreading in networks. Mathematical theory and computational algorithms are vital to understanding contagion dynamics, improving surveillance capabilities, and developing effective strategies to prevent the spread of infectious diseases and misinformation.Comment: Suggested Citation: Chee Wei Tan and Pei-Duo Yu (2023), "Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms", Foundations and Trends in Networking: Vol. 13: No. 2-3, pp 107-251. http://dx.doi.org/10.1561/130000006
    corecore