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DYNAMICAL MODELS FOR RANDOM SIMPLICIAL COMPLEXES

By Nikolaos Fountoulakis,∗,‡ Tejas Iyer,‡ Cécile Mailler†,§

and Henning Sulzbach. ‡

University of Birmingham ‡ and University of Bath. §

We study a general model of random dynamical simplicial com-
plexes and derive a formula for the asymptotic degree distribution.
This asymptotic formula generalises results for a number of existing
models, including random Apollonian networks and the weighted ran-
dom recursive tree. It also confirms results on the scale-free nature
of Complex Quantum Network Manifolds in dimensions d > 2, and
special types of Network Geometry with Flavour models studied in
the physics literature by Bianconi and Rahmede [Sci. Rep. 5, 13979
(2015) and Phys. Rev. E 93, 032315 (2016)].

1. Introduction. Complex networks are well known for their non-trivial features, such as being
scale-free, (having degree distribution whose tail follows a power law), and forming small or ultra-
small worlds (meaning that the diameter or typical distances between two random vertices is log-
arithmic or doubly logarithmic, respectively). As a result, numerous models have been developed
to describe these networks, including the preferential attachment model introduced in this context
by Barabási and Albert [8] and defined and studied rigorously by Bollobás, Riordan, Spencer and
Tusnády [16]. This model describes a mechanism for the growth of a complex network which re-
alises the rich-get-richer postulate: when a new vertex joins the network it is more likely to attach
to vertices that are popular, that is, having high degree.

Preferential attachment models had also been considered earlier within the context of random
evolving recursive trees; which may be described as growing labelled trees where vertices arrive one
at a time and connect to an existing vertex chosen randomly according to a certain probability
distribution. In the ordered recursive tree, introduced by Prodinger and Urbanek in [44] and studied
and rediscovered under various guises (under the name nonuniform recursive trees by Szymański
in [46], random plane oriented recursive trees in [35, 36], random heap ordered recursive trees [21]
and scale-free trees [47]), existing vertices are chosen with probability proportional to their degree,
and thus according to a the preferential attachment mechanism. Another type of randomly evolving
recursive tree is the uniform recursive tree, introduced by Na and Rapoport in [40]; here existing
vertices are chosen uniformly at random. In [34], Kuba and Panholzer derive the degree distribution
in both these trees and another type of recursive tree known as a binary increasing tree.

These models were extended by Bianconi and Barabási [10] who proposed an inhomogeneous re-
cursive tree model in which each vertex has its own fitness. In their model, a newly arrived vertex
∗Research supported by the EPSRC, grant EP/P026729/1, and the Alan Turing Institute, grant EP/N510129/1
†Research supported by the EPSRC fellowship EP/R022186/1.
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attaches to an existing vertex selected with probability proportional to the product of its fitness
and its degree (so that the popularity of a vertex is moderated by its fitness). The most significant
difference between the Bianconi-Barabási model and the Barabási-Albert model is the emergence of
condensation (observed in [10] and proved rigorously by Borgs et al. [17] and also later, in a more
general context, by Dereich and Ortgiese [25]). This means, under certain conditions on the distri-
bution of fitnesses, a small (sub-linear) number of vertices with ‘high’ fitness accumulate a positive
fraction of the total number of edges in the graph. A number of other variations of the preferential
attachment model have been proposed and studied, and for a more comprehensive overview see [47]
and [9].

The above models create random trees. However, they may be extended so that newly arriving
vertices make m ≥ 1 new connections. One way of doing this is to consider m copies of the new
vertex each throwing one new connection to the existing network and then identifying them as one
vertex (hence forming a multigraph). See Chapter 8 in [47] for a detailed description.

Higher dimensional preferential attachment mechanisms. All these models are 1-dimensional in
the sense that newly arriving vertices are attached to single vertices. Our motivation is to consider
attachment mechanisms in which newly arriving vertices join groups of vertices, where the attach-
ment takes into account intrinsic features of a group of vertices, and thus encodes more complexity.
Simplicial complexes are a natural choice for incorporating this higher dimensional complexity at
a local level. Furthermore, complex networks appearing in applications are typically locally dense:
that is, although they form sparse graphs, the neighbourhood of a typical vertex is dense. This is
usually measured by the clustering coefficient. The classic preferential attachment models do not
satisfy this, as the graph that is formed is tree-like within a short distance from a randomly chosen
vertex. However, this ‘local density’ arises naturally from the fact that simplicial complexes are
downwards closed. Hence, a preferential attachment model which involves higher order interactions
encapsulates these features naturally. Additionally, (random) simplicial complexes have already been
used in applications such as topological data analysis (see, for example, [19]), and recent theories
of quantum gravity (see, for example, [1]).

Definition 1.1. An (abstract) simplicial complex K is a family of sets that is downwards closed:
for any set σ ∈ K, if σ′ ⊆ σ, then σ′ ∈ K. Any family of sets may be turned into a simplicial complex
in the natural way by taking the downwards closure, that is, by adding the minimum number of
subsets to make the family downwards closed.

An element σ ∈ K is called a face, and we say that σ has dimension s if it has cardinality s + 1
(we also call it an s-face or an s-simplex). For s ∈ N ∪ {0,−1}, we denote by K(s) the subset of K
consisting of all its s-faces. The dimension of K is defined to be the maximum s such that K(s) is
non-empty (if K = ∅ we say it has dimension −1). We call the 0-faces of K its vertices, and K(0)

its vertex set. Finally, for a vertex v ∈ K(0) we define its degree by deg (v) :=
∣∣∣{σ ∈ K(1) : v ∈ σ

}∣∣∣
(the degree in the usual sense with regards to the simple graph underlying the complex).

One model that realises higher order interactions is the Random Apollonian Network. It was first
introduced in [4] and independently in [26] as a model for complex networks and was subsequently
extended by Zhang et al. [48, 49]. Here, in dimension d, we begin with a d-simplex, all of whose
(d − 1)-dimensional faces are active. In each step, an active (d − 1)-dimensional face is selected
uniformly at random and d new (d − 1)-faces are formed by the union of a newcoming vertex and
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each subset of the selected face of size d− 1. Subsequently, the selected (d− 1)-dimensional face is
deactivated, so that the number of active (d−1)-faces in the complex increases by d−1 at each step.
As each of the d new (d− 1)-faces, together with the selected face σ form a d-face, we can interpret
this step geometrically as a d-face being ‘glued’ onto the face σ, with the set of active faces being
the boundary of the complex (see Figure 1 below). Note that, when a node v enters the network, its
degree is equal to d and the number of active faces containing it is equal to d. Moreover, every time
an active face containing v is selected, the degree of v increases by one and the number of active
faces containing v increases by d−2. Therefore, the number of active faces containing a given vertex
v is (d− 2) deg(v)− d(d− 3). Thus, if d > 2 the number of active faces containing a vertex is pro-
portional to its degree, and hence this model gives rise to a preferential attachment mechanism. In
[33] and independently in [27], the authors determined that the degree distribution of this model for
d > 2, gives rise to a power law with exponent τ = 2d−3

d−2 = 2 + 1
d−2 .

1 For d = 3 the same model has
been studied under the name random stack-triangulations by Albenque and Marckert in [2], where
they proved that the sequence of complexes with graph distance metric rescaled by

√
n considered

as a compact metric space converges in the Gromov-Hausdorff topology to the continuum random
tree of Aldous [3].

In the Apollonian network the choice among the active (d − 1)-faces is uniform. In particular,
there is no preferential attachment mechanism directly associated with the evolution of the vertices.
This motivates us to define and study mechanisms in which these high-dimensional sub-structures
are inhomogeneous and have some intrinsic fitness which is a function of the fitness of their members.

Specific implementations of this idea were introduced by Bianconi, Rahmede, and other co-authors
motivated by applications in physics ([11, 12, 22, 13, 14, 24]). (For example, random triangulations
have been considered in the context of quantum gravity [1].) The model of Complex Quantum
Network Manifolds (CQNMs) described in [11] in dimension d > 1 can be viewed as a generalisation
of the Random Apollonian Network, where vertices are equipped with independent, identically
distributed (i.i.d.) weights (called energies in this context) and each (d − 1)-face σ of the evolving
d-dimensional simplicial complex has energy εσ given by the sum of the energies of its vertices.
The simplicial complex evolves in the same way as the Random Apollonian network, with the
only difference being that at each time-step, a new vertex selects an active (d − 1)-face σ with
probability proportional to e−βεσ (where β ≥ 0 is a fixed constant, usually interpreted as the
“inverse temperature”) instead of uniformly at random. In [11], the authors argue that when d = 2
the underlying graph has degree distribution with exponential tail whilst, when d ≥ 3 the degree
distribution follows a power law with exponent that depends on d, β and the distribution of the
weights. In this paper, we verify a rigorous version of this result when the energies are bounded (see
Subsection 2.3).

In [13], Bianconi and Rahmede introduce a more general model called the network geometry with
flavour (NGFs). The network geometry with flavour, in dimension d and flavour s ∈ {−1, 0, 1}
proceeds as follows. As before, vertices are equipped with i.i.d. energies and each (d − 1)-face σ
of the evolving d-dimensional simplicial complex has energy εσ which is equal to the sum of the
energies of its vertices. At each time-step, a new vertex selects a (d − 1)-face σ with probability
proportional to e−βεσ (1 + s degd (σ)− s), where β ≥ 0 is a fixed constant. In the case s = −1,

1Note that often in the literature surrounding Apollonian networks, rather than using the dimension of the initial
simplex, authors use the number of vertices in an ‘active’ face as the parameter of the model. Thus the Apollonian
network with parameter d is the same as the Apollonian network in dimension d− 1.



4 FOUNTOULAKIS, IYER, MAILLER AND SULZBACH.

Bianconi and Rahmede [11] argue that when d = 2 the underlying skeleton graph has degree
distribution with exponential tail, whilst when d ≥ 3 the degree distribution obeys a power law,
with an exponent that depends on d as well as on β and the distribution of the weights. Moreover,
in [12], Bianconi, Rahmede and Wu argue that for d = 2, if s = −1 the underlying skeleton graph
has degree distribution with exponential tail, whilst if s = 0, the underlying skeleton graph has
power law tails. We will prove weaker versions of both these results rigorously in this paper, in the
sense that the degree distribution has a tail bounded from above and below by a power law. See
Subsection 2.3 for more details.

There are many other models of random simplicial complexes, and for more details see the review
articles by Kahle [31] and Bobrowski and Kahle [15].

1.1. Definition of the model: the inhomogeneous dynamic simplicial complex. In this paper, we
consider a sequence of simplicial complexes (Kn)n≥0 of fixed dimension d ≥ 0. The distribution of
(Kn)n≥0 depends on two parameters: a symmetric fitness function f : [0, 1]d → R, and a probability
measure µ whose support is a subset of [0, 1] (in fact, we only require that µ only takes positive
values and has bounded support; the assumption that the essential supremum is equal to 1 can be
made without loss of generality).

For all n ≥ 0, Kn+1 is obtained by adding one vertex labelled n + 1 to Kn and assigned random
weight sampled independently according to µ. Using the weights of the vertices, we define the fitness
of a face σ as the image by f of the vector ω(σ) of the weights of the vertices that belong to that
face. Abusing notation slightly, we sometimes write f(σ) instead of f(ω(σ)). Since f is assumed to
be symmetric, the order of the coordinates of ω(σ) is not relevant.

Motivated by this symmetry, for all s ≥ 0, we view the type ω(σ) of an s-dimensional face σ as an
element of Cs := [0, 1]s+1/ ∼, where ∼ denotes the equivalence relation where vectors are the same
under permutation of their entries. Unless otherwise stated, we identify entries of Cs with the set
{(x0, . . . , xs) ∈ [0, 1]s+1 : x0 ≤ . . . ≤ xs} and equip Cs with the max-norm inherited from [0, 1]s+1.

We consider two versions of the model: Model A and Model B. These models are defined as follows:
first, let K0 be an arbitrary (d− 1)-dimensional simplicial complex, with finite vertex set V0 ⊆ −N0
and each vertex assigned a fixed weight chosen from Supp(µ) (in fact, we show that our limiting
results do not depend on this choice of weights).Then, recursively for all n ≥ 0:

(i) Define the random empirical measure

Πn =
∑

σ∈K(d−1)
n

δω(σ)

on Cd−1 and the associated probability measure on the set K(d−1)
n of (d− 1)-dimensional faces:

(1) Π̂n = 1
Zn

∑
σ∈K(d−1)

n

f(σ)δσ, where Zn :=
∫
Cd−1

f(x)dΠn(x).

We call Zn the partition function associated with the process (Kn)n≥0 at time n.
(ii) Select a face σ′ = (σ′0, . . . , σ′d−1) ∈ K(d−1)

n according to the measure Π̂n.
(iii) In both Models A and B, for each σ′′ ∈ K(d−2)

n such that σ′′ ⊂ σ′, add the face σ′′ ∪ {n + 1}
to Kn (recall that K(−1)

n = ∅). Moreover, in Model B remove the set σ′ from Kn. Then, take
the downwards closure (recall Definition 1.1) to form Kn+1.
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Note that, in Model A the existing faces always remain in the complex, whilst in Model B the
selected face is removed at every step. We call step (iii) applied to a chosen face σ′ a subdivision of
σ′ by vertex n+ 1 (equivalently we say σ′ has been subdivided by vertex n+ 1).
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Figure 1: The evolution of the model in dimension 3. At each step, a 2-face (triangle)
is chosen randomly according to step (i), and subdivided. In Model B, the chosen face
is then removed from the complex

Remark 1. For general d, Model A may be considered as a generalisation of the aforementioned
NGF (see [13]) with flavour s = 0, and bounded energies. We recall that when s = 0, each face σ
is selected with probability proportional to e−βεσ , where εσ is the (random) energy of face σ. Model
B may be considered as a generalisation of CQNMs with bounded energies. However, note that for
brevity, rather than ‘deactivating’ selected faces, we simply remove them from the complex as this
does not affect any of the results regarding degree distributions.

Remark 2. The methods in this paper also allow us to study the case where the fitnesses associated
with a (d − 1)-face do not depend on the type, but are chosen independently from an underlying
distribution. For brevity, we omit formulating explicit results for this model.

Remark 3. The models we introduced can be further generalised. For example, instead of selecting
a (d− 1)-face to subdivide, one may consider a setting where a face of dimension s may be selected
and subsequently subdivided, with the addition of an (s+ 1)-dimensional face.

Some more notation. Recall that for all s ≥ 0, Cs = {(x0, . . . , xs) ∈ [0, 1]s+1 : x0 ≤ . . . ≤ xs}.
For all x = (x0, . . . , xs) ∈ Cs and i ∈ {0, . . . , s}, we set x̃i := (x0, . . . , xi−1, xi+1, . . . , xs) ∈ Cs−1
and define the empirical measure νx =

∑s
i=0 δx̃i on Cs−1. For w ≥ 0 and y ∈ Cs, let y ∪ w ∈ Cs+1

denote the vector obtained by adding a coordinate equal to w to the vector y and reordering the
coordinates of this (s+ 1)-dimensional vector in non-decreasing order. For i ∈ {0, . . . , s}, we write
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xi←w := x̃i ∪ w. With this notation, when a face of type x is subdivided by a vertex of weight
w, we add to the complex d new (d − 1)-faces of respective types xi←w for i ∈ {0, . . . , d − 1}.
In addition, for a vector x = (x0, . . . , xj , w, xj+1 . . . , xs) ∈ Cs, we denote by x \ {w} the element
(x0, . . . , xj , xj+1, . . . , xs) ∈ Cs−1. For a vertex v in a d-dimensional simplicial complex K, we define
the star of v in K, which we denote by stv(K), to be the subset of K(d−1) consisting of those (d− 1)-
faces which contain v. Finally, we write 0 and 1 for the vectors (0, . . . , 0) and (1, . . . , 1) respectively,
in any dimension.

1.2. Main results, Part I: Convergence of the Partition Function. We will refer to the following
hypotheses throughout the text:

H1. The measure µ is finitely supported, the fitness function f is positive and |K(d−1)
n | → ∞ as

n → ∞ (where we recall that K(d−1)
n is the set of all (d − 1)-faces in the random simplicial

complex Kn at time n).
H2. The process (Kn)n≥0 evolves according to Model A and µ({1}) = 0. Moreover, the fitness

function f is continuous, monotonically increasing in each argument, positive and such that,
for a random variable W with distribution µ,

(2) E[f(10←W )] < (1 + 1/d)E[f(00←W )].

Remark 4. We do not believe that Assumption H2, and in particular Equation (2) which ensures
that the function f is not “too steep” on its domain of definition, is necessary for our results to
hold true. Our main result on the asymptotic degree distribution holds under Assumptions (a-d)
of Remark 8 below. We use Assumption H2 to show that Assumptions (c-d ) hold: this done in
Propositions 1.2 and 1.3. Their proofs, in the case of µ having infinite support, rely on recent
results of [38] on the convergence of infinitely-many colour Pólya urns; more precisely, Assumption
H2 ensures that the assumptions of [38, Theorem 1] hold.

The case when µ has continuous support is expected to be more difficult to treat; as illustrated, for
example, in [17] where the Bianconi and Barabási preferential attachment tree with fitness is studied
in both the finite support and continuous support case. Borgs et al. [17] treat the continuous support
case by coupling it with a finitely-many colour Pólya urn, but this method does not seem to work in
this case because of the added complexity introduced by the dependencies in the model (in particular
because several vertices belong to one face).

Note that |K(d−1)
n | → ∞ as long as d > 1 in Model B, and for all d ≥ 1 in Model A.

Proposition 1.2. Assume H1 or H2, and let Yn, n ≥ 1 be the Cd−1-valued random variable
that equals the type of the face chosen to be subdivided in the n-th step. Then, Yn converges to a
Cd−1-valued random variable Y∞ in distribution when n tends to infinity.

Given any sub-complex K̃ ⊆ Kn define

(3) F (K̃) :=
∑

σ∈K̃(d−1)

f(σ).

and note that F (Kn) = Zn (the partition function defined in (1)).
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Proposition 1.3. Assume H1 or H2. Then, there exists λ > 0 such that, almost surely,

Zn
n

= F (Kn)
n

−→ λ, as n→∞.

Remark 5. The distribution of the limiting random variable Y∞ and the value of λ do not depend
on the choice of the initial complex K0.

Remark 6. Because under H1 or H2, the function f is bounded, we have trivial deterministic
bounds on Zn = F (Kn), and therefore on λ: If we let

(4) fmin = min{f(x) : x ∈ Cd−1} and fmax = max{f(x) : x ∈ Cd−1}

be the minimum and the maximum respectively of the fitness function on its domain of definition,
then λ ∈ [dfmin, dfmax] in Model A, whereas λ ∈ [(d− 1)fmin, (d− 1)fmax] in Model B.

Remark 7. The monotonicity requirement and (2) in H2 may be used to cover a particular case
of the NGF in [13] (namely the case with ‘flavour’ s = 0, in which each face σ is selected with
probability proportional to e−βεσ , where εσ is the energy of face σ, and the selected faces remain in
the complex) by setting the weights wi = (1− εi) where εi are the energies assigned to the vertices.
We therefore assume that the distribution of εi does not have an atom at 0, the energies are bounded,
and (2) is satisfied, that is, the “inverse temperature” β satisfies β < 1

d−1 log
(
1 + 1

d

)
.

Both propositions are corollaries of a more general almost sure limit theorem for the empirical
measure Πn, n ≥ 0 proved in Section 3. While this result (and therefore the two propositions)
follows from standard Pólya urn theory under H1, for H2 we need to make use of general results
for measure-valued Pólya urn processes recently established in [38] to cover the general case. See,
in particular, Section 3 in this work.

1.3. The companion star process. We state our other main results in terms of a companion process
(S∗n)n≥0. Informally, this process approximates the evolution of the star of a fixed vertex i in (Kn)n≥0,
assuming that i is sufficiently large (namely large enough for the distribution of Yi, the type of the
face selected by node i when it enters the network, to be close enough to the distribution of Y∞ -
see Proposition 1.2). Let π∞ denote the distribution of the random variable Y∞ from Proposition
1.2. Sample a face type from a measure π∞, and form a (d−1)-simplex (on vertex set {1−d, . . . , 0})
with weights corresponding to this type. Subdivide this face (using the mechanisms of Model A or
B) by a new vertex labelled r with weight W sampled from µ, and form the simplicial complex S∗0
consisting of the (d− 1)-faces containing r. We call r the centre of S∗0 . Then, recursively:

(i) Select a face σ from (S∗n)(d−1) with probability proportional to its fitness, and subdivide it by
a new vertex n+ 1 obeying the subdivision rules of Model A or Model B respectively.

(ii) Form the simplicial complex S∗n+1 consisting only of the (d− 1)-faces containing r (essentially
this means removing all the (d−1)-faces formed during the subdivision step not containing r).

A more formal construction of this process is provided in Subsection 3.3. We set

(5) F (S∗n) :=
∑

σ∈(S∗n)(d−1)

f(σ).
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Figure 2: The evolution of the companion process in Model B and dimension 3. A face
with type selected from π∞ is formed on vertices {−2,−1, 0}, and subdivided with a
vertex labelled r. Subsequently, a face is chosen randomly and subdivided according to
step (i), and then faces not containing r are deleted. Since this is Model B, the chosen
face is also removed from the complex.

1.4. Main results, Part II: Convergence of the Degree Distribution.

Theorem 1.4. Assume H1 or H2 and for all n ≥ 1, k ≥ 0, let Nk(n) denote the number of nodes
of degree k + d in the random simplicial complex Kn at time n. Then, for all k ≥ 0, we have, with
convergence in probability,

lim
n→∞

1
n
Nk(n) = E

 λ

F (S∗k) + λ

k−1∏
j=0

F (S∗j )
F (S∗j ) + λ

 =: pk,

where the star process S∗ and its fitness function F are defined respectively in Subsection 1.3 and
Equation (5).

In fact, we have the more general result: suppose that N (s)
k (n) denotes the number of vertices of

s-degree
(d
s

)
+
(d−1
s−1
)
k, for 1 ≤ s < d (the s-degree of a face is the number of distinct s-faces that

contain it).

Corollary 1.5. Assume H1 or H2. For all k ≥ 0, we have, independent of the initial complex
K0, with convergence in probability,

lim
n→∞

1
n
N

(s)
k (n) = pk.

Remark 8. In fact, in the proof of Theorem 1.4, we show that the conclusion of the theorem holds
if one assumes the following instead of H1 or H2:
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(a) The measure µ is an arbitrary probability measure on [0,∞).
(b) The fitness function f is non-negative, symmetric, bounded and continuous.
(c) If for all n ≥ 1, Yn is the type of face that is subdivided at time n, then (Yn)n≥1 converges in

distribution when n→ +∞.
(d) There exists λ > 0 such that, almost surely when n→ +∞, F (Kn)/n→ λ.

Note that (a-b) above is much weaker than assuming H1 or H2 as we do in Theorem 1.4, but H1
or H2 gives a sufficient condition for (c-d) above to hold (as seen in Propositions 1.2 and 1.3).

Remark 9. Note that the boundedness of f implies that

(6)
{

(d+ (d− 1)n)fmin ≤ F (S∗n) ≤ (d+ (d− 1)n)fmax, in Model A;
(d+ (d− 2)n)fmin ≤ F (S∗n) ≤ (d+ (d− 2)n)fmax, in Model B,

where we recall that fmin and fmax are the minimum and the maximum of the fitness function f
(see Equation (4)).

Remark 10. Although Theorem 1.4 is about degrees of vertices, our approach is not restricted
only to the graph that underlies the simplicial complex but it can be used in order to study degrees
of higher order faces or degrees defined in terms of lower order faces. In the latter direction is
Corollary 1.5.

For an r-face σ with r < d− 1, the degree of σ is the number of (d− 1)-faces which contain σ. One
can derive the analogue of Theorem 1.4 for the degree distribution of r-faces by considering a star
companion process for an r-face. Here, the star of an r-face will simply consist of the (d− 1)-faces
that contain it. As long as the process is such that a.s. the total weight of the star tends to infinity,
then one could derive a formula as in Theorem 1.4.

Outline of the paper. In Section 2 we discuss the connection of our main results to existing models.
This will include classifying the values of d that ensure that the degree distributions follows a power
law, which are consistent with analysis from [11] and [13].

Section 3 is dedicated to the study of the empirical measure Πn, n ≥ 0, and in particular, to
the proofs of Propositions 1.2 and 1.3. As we remarked earlier (see Remark 4), these propositions
make use of the recent theory of measure-valued Pólya processes. To our knowledge this is the first
application of this theory in the context of evolving networks.

In Section 4 we apply the results of Section 3 to prove Theorem 1.4. The proof relies on the
simple idea of keeping track of the degree of a single typical vertex. Suppose (informally) that the
partition function of the process as well as that of the star companion process were to both evolve
deterministically, and were equal to F (n) = λ(n+1) and F ∗(n) = λ∗(n+1), respectively. Then, the
probability that the star of vertex i is subdivided precisely at times i < i1 < · · · < ik < n would be

i1−i−1∏
j=1

(
1− λ∗

λ(i+ j)

)
λ∗

λi1
·
i2−i1−1∏
j=1

(
1− 2λ∗

λ(i1 + j)

) 2λ∗

λi2
· · ·

· · ·
ik−ik−1−1∏

j=1

(
1− λ∗(k − 1)

λ(ik−1 + j)

)
λ∗(k − 1)

λik
·
n−ik∏
j=1

(
1− λ∗k

λ(ik + j)

)
.
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If i > εn and the ijs are well-spaced (as most such k-tuples are), then the above products can be
written as ratios of factorials (or Gamma functions) which, in turn, can be approximated with the
use of Stirling’s formula. Then the argument could be completed by computing the sum over the
choices of k-tuples (by applying Lemma 4.3).

However, the difficulty is that the partition functions are not exactly of this form but only in the
limit (by Propositions 1.3 and 2.2). Nevertheless, the almost sure convergence of Zn = F (Kn)
implies (by Egorov’s theorem) that when n is large, for ‘most’ evolution paths of the process, the
partition function F (Kj) is about λj for all εn < j ≤ n. The crux of our analysis is to replace the
linear functions in the above expression by the ‘almost’ linear functions which occur on a typical
evolution path. This is done in Subsections 4.2 and 4.4, where upper and lower bounds are obtained.
We believe that the conceptual simplicity of this approach makes it applicable to other evolving
random systems.

We defer the proofs of some technical probabilistic lemmas to the appendix, so as to not interrupt
the general flow of the paper.

2. Discussion and Examples.

2.1. Constant fitness function. In the case that the fitness functions are constant, so that f(x) = f0,
we have deterministic formulas for F (S∗n) and λ. These cases correspond to models where the face
chosen to be subdivided at time n+ 1 is chosen uniformly at random from the set K(d−1)

n . Here we
use the asymptotic approximation of the ratio of two gamma functions: for fixed a ∈ R as t→∞

(7) Γ (t+ a)
Γ (t) = (1 +O(1/t))ta.

This is a straightforward result of Stirling’s formula and will be used often throughout this paper.

1. In Model A we have F (S∗n) = ((d− 1)n+ d)f0, and λ = df0. Theorem 1.4 implies that

pk = d

(d− 1)k + 2d

k−1∏
j=0

(d− 1)j + d

(d− 1)j + 2d.

If d > 1, using (7)

pk =
(

1 + 1
d− 1

) Γ
(
k + d

d−1

)
Γ
(

2d
d−1

)
Γ
(
k + 1 + 2d

d−1

)
Γ
(

d
d−1

) ∼ k− 2d−1
d−1 .

This is a new result. For d = 1 we obtain pk = 2−k, which is an old result of Na and Rapoport
for the random recursive tree [41].

2. Model B with constant fitness function (with K0 given by a d-simplex) is the same as the
Random Apollonian Network. In this case, if d ≥ 2, F (S∗n) = ((d−2)n+d)f0 and λ = (d−1)f0.
Applying Theorem 1.4 we get,

pk = d− 1
(d− 2)k + 2d− 1

k−1∏
j=0

(d− 2)j + d

(d− 2)j + 2d− 1 .
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Note that if d = 1, Πn(Cd−1) = |V0| (where V0 is the set of vertices of the initial complex K0),
so Theorem 1.4 does not apply. However, in this case it is easy to see that p1 = 1. In the case
d = 2, we have pk = 2k−1

3k . For d ≥ 3, using (7), we get

pk =
(

1 + 1
d− 2

) Γ
(
k + d

d−2

)
Γ
(

2d−1
d−2

)
Γ
(
k + 1 + 2d−1

d−2

)
Γ
(

d
d−2

) ∼ k− 2d−3
d−2 .

This is the same exponent proved in [33] and [27].

2.2. Weighted Recursive Trees. The one-dimensional case in ModelA and initial simplicial complex
given by a node, is a type of the weighted recursive tree, introduced in [18] (see also [45] for some
more general results).2 In this case, the fitness of the new vertex arriving at each time is independent
of the rest of the complex, so the strong law of large numbers implies that λ in Proposition 1.3 is
given by E [f(W )]. Moreover, the simplicial complex (S∗j )j≥0 is a fixed vertex, so that F (S∗j ) = f(W )
for all j ≥ 0, where W is the weight of the vertex. Thus, Theorem 1.4 implies that

Proposition 2.1. As n→ +∞, we have

Nk(n)
n

→ E
[

λf(W )k

(f(W ) + λ)k+1

]
, in probability.

This result can be improved significantly: the convergence holds in an almost sure sense under the
much weaker assumptions that µ is a probability measure on [0,∞) and f : R → R is measurable
such that 0 < E [f(W )] < ∞. This strengthening uses the theory of Crump-Mode-Jagers (C-M-J)
processes introduced by Crump and Mode [23] and studied by, among others, Jagers [28], Nerman
[42] and Jagers and Nerman [29]. Here, λ plays the role of the so-calledMalthusian parameter crucial
to the study of C-M-J processes. We omit the details of this proof, as they detract from the main
ideas in this paper.

2.3. Tails of the Distribution. In this subsection, we will require the additional assumption that

(8)
∣∣∣K(d−2)

n

∣∣∣ n→∞−→ ∞.
Note that this assumption is satisfied as long as d > 1 in Model A and d > 2 in Model B. It is
this assumption that leads to the emergence of scale-free behaviour for d > 2 in CQNMs observed
by Bianconi and Rahmede in [11], and the scale-free behaviour for all d > 1 in NGFs in [13]. In
the case µ is not finitely supported, we will require an analogue of (2). For brevity, we define the
following additional hypotheses:

H1*. Assume H1 and (8) holds.
H2*. Assume H2 and (8) holds. Moreover, for all w ∈ Supp(µ), the function f̃x : Cd−2 → R, f̃x(v) =

f(v ∪ x) satisfies
E[f̃x(10←W )] < (1 + 1/(d−1))E[f̃x(00←W )].

(We recall that 1 is the vector of Cd−2 whose coordinates are all equal to 1. Therefore,
10←W = (W, 1, . . . , 1) and f̃x(10←W ) equals f((x,W, 1, . . . , 1)) if x < W and f((W,x, 1, . . . , 1))
otherwise.)

2Note that Model B is trivial for d = 1 as the tree is a single path.
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Remark 11. Similarly to H2, we do not believe that Assumption H2* is necessary for our results
to hold. We use it to apply [38, Theorem 1] in the proof of Proposition 2.2.

In order to analyse the tails of the distribution from Theorem 1.4, we require the following proposi-
tion, similar to Proposition 1.3. In the statement of the following proposition, we allow S∗0 to have a
centre with a fixed weight w instead of a random weight W with distribution µ. In the construction
of S∗0 , however, we still choose the face according to π∞. We use Pw and Ew for probabilities and
expectations, respectively with regards to this initial state.

Proposition 2.2. Assume H1* or H2*. Then, if the centre of S∗0 has weight w ∈ Supp(µ), there
exists λ∗w such that, Pw-almost surely

F (S∗n)
n

→ λ∗w.

We postpone the proof of Proposition 2.2 to Subsection 3.3. The following proposition holds under
H1*: Under Assumption H1*, µ has finite support and thus max{λ∗w : w ∈ Supp(µ)} exists and is
attained at some value w∗ ∈ Supp(µ); we set λ∗w∗ = max{λ∗w : w ∈ Supp(µ)}.

Proposition 2.3. Assume H1*. With pk as defined in Theorem 1.4, we have

(9) lim inf
k→∞

logk pk ≥ −
(

1 + λ

λ∗w∗

)
.

Proof. Suppose P (W = w∗) = κ (recall that under H1* µ is finitely supported). Then, by the
definition of pk, we have

pk = E

 λ

F (S∗k) + λ

k−1∏
j=0

F (S∗j )
F (S∗j ) + λ

 ≥ Ew∗

 λ

F (S∗k) + λ

k−1∏
j=0

F (S∗j )
F (S∗j ) + λ

κ.
Fix δ, ε′ > 0. By Proposition 2.2 (and Egorov’s theorem), there exists k0 = k0(ε, δ) such that for all
k ≥ k0

Pw∗
(∣∣∣∣F (S∗k)

k
− λ∗w∗

∣∣∣∣ < ε

)
> 1− δ.

Let G∗ε,δ be the associated event in the previous display. We may bound the product
∏k0−1
j=0

F (S∗j )
F (S∗j )+λ

below by a constant by applying (6). Moreover, for all k > k0, on G∗ε,δ, we have

λ

F (S∗k) + λ

k−1∏
`=k0

F (S∗` )
F (S∗` ) + λ

>
λ (k(λ∗w∗ − ε) + λ)
k(λ∗w∗ + ε) + λ

· 1
k(λ∗w∗ − ε) + λ

k−1∏
`=k0

`(λ∗w∗ − ε)
`(λ∗w∗ − ε) + λ

= k(λ∗w∗ − ε) + λ

k(λ∗w∗ + ε) + λ
· λ

λ∗w∗ − ε
·

Γ(k0 + λ
λ∗
w∗−ε

)
Γ(k0 − 1)

Γ(k)
Γ(k + 1 + λ

λ∗
w∗−ε

)
.

Therefore, by applying (7), we find that there exists a constant c = c(k0, δ, ε, κ) such that

logk pk ≥ logk c−
(

1 + λ

λ∗w∗ − ε

)
.

Equation (9) follows from taking limits as k →∞, and sending ε to 0.



DYNAMICAL MODELS FOR RANDOM SIMPLICIAL COMPLEXES 13

Further Discussion. Applying (6), it is easy to show that, whenever (8) holds,

lim inf
k→∞

logk pk ≥

−
(
1 + λ

(d−1)fmin

)
, in Model A;

−
(
1 + λ

(d−2)fmin

)
, in Model B,

and likewise,

lim sup
k→∞

logk pk ≤

−
(
1 + λ

(d−1)fmax

)
, in Model A;

−
(
1 + λ

(d−2)fmax

)
, in Model B.

Thus, when d > 1 in Model A and d > 2 in Model B, the degree distribution is bounded above and
below by a power law. This leads to the scale-free behaviour observed in [11] and [13].

In general, by counting the edges in the complex in two different ways, we find that
∑∞
k=0 kpk ≤ d,

so that pk cannot obey a power law with a fixed exponent less than 2 (otherwise the sum would
diverge). However, we cannot deduce from these methods that the degree distribution in each case
follows a power law with a fixed exponent.

3. Convergence of the empirical distribution. The aim of this section is to prove the follow-
ing almost sure limit theorem for the empirical distribution Πn.

Theorem 3.1. Assume H1 or H2. Then, there exists a deterministic, positive, finite measure π
on Cd−1, which does not depend on the choice of K0 such that, almost surely,

Πn

n
→ π

with respect to the weak topology.

Proposition 1.3 follows from the theorem above where λ =
∫
Cd−1

f(x) dπ(x). Likewise, Proposition
1.2 follows immediately where Y∞ has law π∞ defined by

π∞(A) =
∫
A f(x)dπ(x)∫
Cd−1

f(x)dπ(x) ,

for any measurable set A ⊆ Cd−1.

3.1. Hypothesis H1. To prove Theorem 3.1 assuming H1, we view the collection of faces as balls in
a generalised Pólya urn process. In this set-up, one considers an urn consisting of balls with a finite
number of possible colours. A ball of colour j is sampled at random from the urn with probability
proportional to its activity aj , and replaced with a number of different coloured balls according
to a (possibly random) replacement rule. In the common set-up, the configuration of the urn after
n replacements is represented as a composition vector Xn with entries labelled by colour, and the
activities of colours are encoded in an activity vector a. In this vector, the ith entry corresponds
to the number of balls with a colour i. Let (ξij) be the matrix whose ijth component denotes the
random number of balls of colour j added, if a ball of colour i is drawn. The following is a well
known result by Athreya and Karlin, implied by Proposition 2 in [6] and Theorem 5 of [5]. We state
a version implied by a result of Janson [30].
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Theorem 3.2 ([30]). Assume ξii ≥ −1, ξij ≥ 0 for i 6= j, and the matrix Aij := ajE [ξji] is
irreducible. Moreover, denote by λ1 the principal eigenvalue of A, and v1 the corresponding right-
eigenvector normalised so that aT v1 = 1. For any non-empty initial configuration of the urn, we
have

Xn

n
n→∞−−−→ λ1v1,

almost surely, and independently of the initial configuration of the urn.

Note that when µ is finitely supported (so that, for some integer M > 0, µ :=
∑M
i=1 µ(wi)δwi)

the number of possible face types in the complex is finite. We denote the (finite) set of possible
face types by Cfd−1 ⊆ Cd−1. Moreover, the empirical distribution of face types corresponds to the
distribution of balls in a generalised Pólya urn; where the colours correspond to the types of the
(d− 1)-faces, and the activities are the fitnesses. In each step, we draw a ball of type x in the urn
with probability proportional to its fitness f(x), choose a weight W independently according to µ,
and add d new balls of respective types xi←W , for i ∈ {0, . . . , d − 1}. In Model B we also remove
the ball we drew from the urn.

Let Xn = (Xx(n)), x ∈ Cfd−1 denote the vector whose coordinate Xx(n) counts the number of balls
of type x in the urn after n steps. For x ∈ Cfd−1 and k ∈ {1, . . . ,M}, let nx(k) be the number of
entries in x equal to wk. We call x 6= x′ neighbours if x′ can be obtained from x by changing exactly
one entry `1 = `1(x, x′) into `2 = `2(x, x′).

In Model A, this urn has the following replacement rule:

ξxx′ =


∑M
k=1 nx(k)1{wk}(W ) x = x′,

nx(`1)1{
w`2(x,x′)

}(W ) if x, x′ are neighbours,

0 otherwise;

whilst in Model B the replacement rule is

ξxx′ =


∑M
k=1 nx(k)1{wk}(W )− 1 x = x′,

nx(`1)1{
w`2(x,x′)

}(W ) if x, x′ are neighbours,

0 otherwise.

If we define the matrix Axx′ = f(x′)E [ξx′x], since f > 0 it is easy to see that A is irreducible. Thus
we may deduce Theorem 3.1 by applying Theorem 3.2.

3.2. Hypothesis H2. In order to prove Theorem 3.1 assuming H2, we show that Πn, n ≥ 0 is
a measure-valued Pólya process (MVPP), a concept recently introduced in [7] and [37]. We then
apply results from [38]. Let S be a locally compact Polish space and M(S) be the set of finite,
non-negative measures on S. Recall that M(S) is also Polish when equipped with the Prokhorov
metric (which metrises the weak topology when we viewM(S) as the dual of the space of bounded
continuous functions from S to R). For a given kernel P on S and µ ∈M(S), we define the measure

(µ⊗ P )(·) :=
∫
S
Px(·) dµ(x).
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Thanks to, e.g., [32, Section 4.1] (and because of the local compactness) a random function R with
values inM(S) is a random variable (that is, measurable) if and only if, for all Borel sets B ⊆ S,
R(B) is a real-valued random variable. We call a family Rx, x ∈ S of random variables with values
inM(S) a random kernel if, almost surely, x 7→ Rx is continuous. Note that, for a random kernel
Rx, x ∈ S, the annealed quantity R̄x(·) = E [Rx(·)] is a kernel on S (and the map x 7→ R̄x is
continuous). We call two random kernels Rx, R′x for x ∈ S independent if, for all x ∈ S, the random
measures Rx, R′x are independent.

Definition 3.3. Let (R(n)
x , x ∈ S)n≥1 be a sequence of i.i.d. random kernels. The measure-valued

Pólya process with m0 ∈ M(S) satisfying m0(S) > 0, replacement kernels (R(n)
x , x ∈ S)n≥1 and

non-negative weight kernel P is the sequence of random non-negative measures (mn)n≥0 defined
recursively as follows: given mn−1, n ≥ 1:

(i) Sample a random variable ξ from S according to the probability measure

(mn−1 ⊗ P )( · )
(mn−1 ⊗ P )(S) .

(ii) Set mn = mn−1 +R(n)
ξ .

The next lemma allows us to express the empirical distribution of the (d− 1)-faces in Model A as
an MVPP.

Lemma 3.4. For all n ≥ 1 and x ∈ Cd−1 let

R(n)
x =

d−1∑
i=0

δxi←Wn .

The sequence Πn, n ≥ 0 is the MVPP with initial composition Π0, replacement kernel (R(n)
x , x ∈

Cd−1)n≥1 and weight kernel Px = f(x)δx, x ∈ Cd−1.

Proof. Let σ be the face chosen and subdivided at step n and ξ be its type. By construction,

Πn = Πn−1 +
d−1∑
i=0

δξi←Wn = Πn−1 +R(n)
ξ ,

and, for all Borel sets B ⊆ Cd−1,

P (ξ ∈ B|Πn−1) =
∑
σ∈K(d−1)

n
f(σ)δω(σ)(B)∑

σ∈K(d−1)
n

f(σ) = (Πn−1 � P )(B)
(Πn−1 � P )(Cd−1) .

This concludes the proof.

We now state [38, Theorem 1]. We will apply this theorem to the MVPP Πn, n ≥ 0 to deduce
Theorem 3.1. We require the following definitions. For an i.i.d. sequence of random kernels (R(n)

x , x ∈
S)n≥1 and a weight kernel P , let R̄x(·) = E [R(1)

x (·)] and

Q(n)
x (·) := (R(n)

x � P )(·) =
∫
S
Py(·) dR(n)

x (y) and Q̄x(·) := (R̄x � P )(·) =
∫
S
Py(·) dR̄x(y).
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Theorem 3.5 (Mailler & Villemonais [38]). Let (mn)n≥0 be the MVPP on S with initial compo-
sition m0, replacement kernel (R(n)

x , x ∈ S)n≥1 and weight kernel P . Assume that:

A1 For all x ∈ S, Q̄x(S) ≤ 1, and there exists a probability distribution η 6= δ0 on [0,∞) such
that, for all x ∈ S, the law of Q(1)

x (S) stochastically dominates η.
A2 The space S is compact.
A3 Denote by (Xt)t≥0 the continuous-time Markov process defined on S ∪{∅} absorbed at ∅ with

infinitesimal generator given by Q̄x−δx+(1−Q̄x(S))δ∅. There exists a probability distribution
ν such that

Px(Xt ∈ ·|Xt 6= ∅)→ ν(·),

with respect to the total variation distance on Cd−1 uniformly over x ∈ Cd−1.
A4 For all bounded and continuous functions g : S → R, the functions x 7→

∫
S g(y)dR̄x(y) and

x 7→
∫
S g(y)dQ̄x(y) are continuous.

Then, almost surely as n→∞, mn/n converges to ν⊗R̄ with respect to the weak topology onM(S).

Proof of Theorem 3.1, assuming H2. The idea of the proof is to apply Theorem 3.5 to the
MVPP (Πn)n≥0 (see Lemma 3.4). In this set-up, we have, for all x ∈ Cd−1,

Q(n)
x (·) = (R(n)

x ⊗ P )(·) =
d−1∑
i=0

f(xi←Wn) δxi←Wn (·),

and

Q̄x(·) = (R̄x ⊗ P )(·) = E
[
d−1∑
i=0

f(xi←W ) δxi←W (·)
]
.

In order to satisfy the normalization requirements in Theorem 3.5, we consider a suitable rescaling.
We define

(10) M = d · E[f(10←W )],

and for all n ≥ 0, set Π′n = Πn/M . It is immediate (using Lemma 3.4) that (Π′n)n≥0 is a MVPP
with weight kernel P whose replacement kernel and associated Q-kernel are given by

R(n)
x = R(n)

x

M
, Q(n)

x = Q(n)
x

M
.

The corresponding annealed kernels are defined analogously by R̄x(·) = E [R(1)
x (·)] and Q̄x(·) =

E [Q(1)
x (·)]. Note that, by monotonicity of f in all its coordinates, and symmetry,

sup
x∈Cd−1

E
[
d−1∑
i=0

f(xi←W )
]
≤ d · E

[
f(10←W )

]
,

implying that, for all x ∈ Cd−1, Q̄x(Cd−1) ≤ 1. We also have that, for all x ∈ Cd−1, by monotonicity
of f

Q(1)
x (Cd−1) ≥ d · f(0)

M

(10)= d · f(0)
d · E[f(10←W )] ≥

f(0)
f(1) > 0,
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implying that Assumption A1 of Theorem 3.5 is satisfied with η = δf(0)/f(1). Assumption A2 is
immediately satisfied since Cd−1 is compact. Next, as

∫
Cd−1

g(y)dR̄x(y) =
∑d−1
i=0 E [g(xi←W )], conti-

nuity of x 7→
∫
Cd−1

g(y)dR̄x(y) for a bounded and continuous function g : Cd−1 → R is immediate.
Analogously, one can prove the statement for the Q-kernel and establish Assumption A4 as the
rescaling leaves continuity properties unaltered.

It thus remains to check that the rescaled Pólya process (Π′n)n≥0 satisfies Assumption A3. Let
(Xt)t≥0 be the jump-process with infinitesimal generator Q̄x−δx+(1−Q̄x(Cd−1))δ∅, for all x ∈ Cd−1.
By definition, when Xt sits at x, it jumps to ∅ at rate

1− 1
M

d−1∑
i=0

E[f(xi←W )],

and, at rate 1
M

∑d−1
i=0 E[f(xi←W )], it jumps to a random position chosen according to the probability

distribution ∑d−1
i=0 E[f(xi←W )δxi←W (·)]∑d−1

i=0 E[f(xi←W )]
.

Thus, in total, X jumps at rate 1 at all times. In particular, discrete skeleton and jump times of
the process are independent.

To prove A3, we apply [20, Theorem 3.5 and Lemma 3.6] (where we take t1 = t2 = 1 - note that,
although this is not clear in the current version of [20], t1 and t2 need to be positive) to the jump
process (Xt)t≥0. Since X is a pure jump process and satisfies the strong Markov property, condition
(F0) in [20, Theorem 3.5] is satisfied. It is therefore enough to prove that there exist a set L ⊆ Cd−1
and a probability measure % on L such that:

B1 There exist c1 > 0 such that, for all x ∈ L, Px(X1 ∈ ·) ≥ c1%(· ∩ L), where Px(·) denotes the
probability measure associated with the Markov process X initiated by x.

B2 There exist 0 < γ1 < γ2 such that

sup
x∈Cd−1

Ex[γ−τL∧τ∅1 ] < +∞, and γ−t2 Px(Xt ∈ L)→ +∞ when t→ +∞ (∀x ∈ L),

where τ∅ and τL stand for the respective hitting times of ∅ and L.
B3 There exists c2 > 0 such that

sup
t≥0

supy∈L Py(t < τ∅)
infy∈L Py(t < τ∅) ≤ c2.

In order to prove the above, we define the partial order ‘4’ on Cd−1 such that for x, y ∈ Cd−1, x 4 y
if and only if, for all i ∈ {0, . . . , d− 1}, xi ≤ yi (recall that the coordinates of x and y are ordered
in increasing order). We then define L = L(ε) = {x ∈ Cd−1 : x 4 (1− ε)1}.

Proof of B1: We denote by (σi)i≥1 the random jump-times of X. In order for these times to be
well-defined for all n ≥ 1, we let the process jump from ∅ to ∅ at rate one. Fix a Borel set B ⊆ Cd−1.
Then, by monotonicity and symmetry, we have

Px(Xσ1 ∈ B) = 1
M

d−1∑
i=0

E[f(xi←W )1B(xi←W )] ≥ f(0)
M

d−1∑
i=0

P(xi←W ∈ B).
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By the strong Markov property, we have

Px
(
Xσ2 ∈ B|Xσ1 = x′

)
= 1
M

d−1∑
i=0

E[f(x′i←W )1B(x′i←W )] ≥ f(0)
M

d−1∑
i=0

P
(
x′i←W ∈ B

)
,

so that,

∫
Cd−1

Px
(
Xσ2 ∈ B|Xσ1 = x′

)
Px(Xσ1 ∈ dx′) ≥

∫
Cd−1

f(0)
M

d−1∑
i=0

P
(
x′i←W ′ ∈ B

)
Px
(
Xσ1 ∈ dx′

)
≥
(
f(0)
M

)2 ∑
0≤i,j≤d−1

P ((xj←W )i←W ′ ∈ B)

for i.i.d copies W,W ′. Iterating this argument, we obtain

Px(Xσd ∈ B) ≥
(
f(0)
M

)d ∑
i0,...,id−1∈{0,...,d−1}d

P
(((

(xi0←W0)i1←W1

)
. . .
)
id−1←Wd−1

∈ B
)
,

where W0, . . . ,Wd−1 are i.i.d. random variables with law µ. Let W(0) ≤ W(1) ≤ . . . ≤ W(n) denote
the order statistics of W0, . . . ,Wd−1. Then, for an appropriate (random) choice of i0, . . . , id−1 we
have

((
(xi0←W0)i1←W1

)
. . .
)
id−1←Wd−1

= (W(0), . . . ,W(d−1)). Therefore

Px(Xσd ∈ B) ≥
(
f(0)
M

)d
E

 ∑
i0,...,id−1∈{0,...,d−1}d

1B
(((

(xi0←W0)i1←W1

)
. . .
)
id−1←Wd−1

)
≥
(
f(0)
M

)d
P
(
(W(0), . . . ,W(d−1)) ∈ B

)
.

As the probability that X jumps exactly d times before time 1 is positive and skeleton and jump
times are independent (since X always jumps with rate 1), B1 is satisfied with % being the proba-
bility distribution induced by µ⊗d restricted to L in the natural way.

Proof of B2: For x ∈ Cd−1, let nx(xi) denotes the number of co-ordinates of x equal to xi. X
jumps from a position x such that xi > 1− ε to a position xi←v for some v ≤ 1− ε at rate

nx(xi)E
[
f(xi←W )1W≤1−ε

]
M

≥ nx(xi)E[f(00←W )1W≤1−ε]
M

=: nx(xi)$ε,

for all i ∈ {0, . . . , d − 1} (where we have applied the symmetry and monotonicity of f). Similarly,
the walk jumps from a position x such that xi ≤ 1− ε to a position xi←v for some v > 1− ε at rate

nx(xi)E
[
f(xi←W )1W>1−ε

]
M

≤ nx(xi)E[f(10←W )1W>1−ε]
M

=: nx(xi)ϑε,

for all i ∈ {0, . . . , d − 1}. Let C (Xt) denote the number of coordinates of Xt that are larger than
1− ε, where we set C (∅) = 0. Consider a pure jump Markov process with rates given in Figure 3.
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(d− 1)ϑε
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(d− 2)ϑε 2ϑε

(d− 1)$ε

ϑε

d$ε

Figure 3: Jump rates of the associated Markov chain Nε.

If, for some t ≥ 0, this Markov chain has the same non-zero value as C (Xt), then it jumps upwards
(resp. downwards) at a faster (resp. lower) rate than C (Xt). This observation motivates the following
lemma whose proof is given in Appendix 5.1. Note that τL ∧ τ∅ is the first time t when C (Xt) = 0.

Lemma 3.6. For all sufficiently small ε > 0, there exists a coupling of the process X with a
realisation N ε of the Markov process with jump rates given in Figure 3 and N ε

0 = C (X0) such that,
C (Xt) ≤ N ε

t for all t ≤ τL ∧ τ∅.

(This lemma is where we use the assumption µ({1}) = 0.) By Lemma 3.6, we deduce that

(11) Px (τL ∧ τ∅ ≥ t) ≤ PC (x) (N ε
t 6= 0) .

Here, we use the notation P`, ` ∈ {0, . . . , d} to indicate that the Markov process N ε
t , t ≥ 0 is

initiated at position `. Note that, since µ does not contain an atom at 1, we have ϑε → 0 and
$ε → E[f(00←W )]/M =: $0 ∈ (0, 1] as ε→ 0. Therefore, as ε→ 0 the generator Lε of the Markov
chain N ε converges to the generator

L =



0 0 . . . 0
$0 −$0 0 . . . 0
0 2$0 −2$0 0 . . . 0

. . . . . .
. . . . . .

0 . . . 0 d$0 −d$0


whose eigenvalues are 0,−$0, . . . ,−d$0 (and thus whose spectral gap is $0), and whose stationary
distribution on {0, . . . , d} is given by δ0 as 0 is an absorbing state.

Since Lε converges entry-wise to L when ε→ 0, their respective characteristic polynomials converge,
and thus the eigenvalues of Lε converge to the eigenvalues of L. Since the eigenvalues of L are
all distinct it follows that for ε sufficiently small all eigenvalues of Lε are simple. Thus, Lε is
diagonalisable, and may be written as Lε = V −1

ε DεVε, where Dε is a diagonal matrix consisting of
the eigenvalues of Lε, and the rows of V −1

ε are the corresponding unit-norm (left) eigenvectors. This
condition allows us to apply [39, Theorem 3.1]. Since, for each ε > 0, the stationary distribution of
N ε is δ0, for all ` ∈ {0, . . . , d} and for all t ≥ 0,

(12) |P`(N ε
t = 0)− 1| ≤ C(ε)e−ρ(ε)t,

where ρ(ε) is the spectral gap of the generator of N ε, and C(ε) = ‖Vε‖∞‖V −1
ε ‖∞ (where ‖ · ‖∞

denotes the ∞-norm, i.e. maximum absolute row sum). Note that as ε→ 0, ρ(ε)→ $0. Moreover,
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using the basis of unit-norm (left) eigenvectors introduced above, we have C(ε) = ‖Vε‖∞‖V −1
ε ‖∞ →

C := ‖V ‖∞‖V −1‖∞, as ε → 0, where the rows of V −1 are a basis of unit-norm (left) eigenvectors
of L. Now, by Equation (11) and (12), we have

(13) Px(τL ∧ τ∅ ≥ t) ≤ PC (x)(N ε
t 6= 0) = 1− PC (x)(N ε

t = 0) ≤ C(ε) exp(−ρ(ε)t).

Therefore, for all γ1 < 1 and x ∈ Cd−1, using the fact that log γ1 < 0 in the second equality,

Ex[γ−τL∧τ∅1 ] = 1 +
∫ ∞

1
Px(γ−τL∧τ∅1 ≥ u)du = 1 +

∫ ∞
1

Px
(
τL ∧ τ∅ ≥

log u
log(1/γ1)

)
du

(13)
≤ 1 +

∫ ∞
1

C(ε)u−ρ(ε)/ log(1/γ1)du < +∞

as long as log(1/γ1) < ρ(ε). Also note that, for all x ∈ L,

Px(Xt ∈ L) ≥ Px(Xσi ∈ L for all 0 ≤ i ≤ N(t)),

where N(t) is the number of jumps of X by time t, and

Px(Xσ1 ∈ L) = 1
M

d−1∑
i=0

E[f(xi←W )1xi←W∈L] = 1
M

d−1∑
i=0

E[f(xi←W )1W≤1−ε]

(10)
≥ E[f(00←W )1W≤1−ε]

E[f(10←W )] =: χε.

Since the walk jumps at rate one, we have that the number of jumps before time t is Poisson
distributed with parameter t. As skeleton and jump times are independent, it follows that, for all
x ∈ L,

Px(Xt ∈ L) ≥ Px(Xσi ∈ L for all 0 ≤ i ≤ N(t)) ≥ E[χN(t)
ε ] = e−(1−χε)t.

If 1− χε < log(1/γ2), then γ−t2 Px(Xt ∈ L) → +∞ as required. In other words, B2 is satisfied if we
can choose γ1 < γ2 < 1 such that

1− χε < log(1/γ2) < log(1/γ1) < ρ(ε).

As ε → 0, we have χε → E[f(00←W )]/E[f(10←W )] = d$0 while ρ(ε) → $0 > 1 − d$0 by Equa-
tion (2). It is thus possible to choose ε small enough such that 1− χε < ρ(ε). For this value of ε, a
choice of γ1 and γ2 is possible, which concludes the proof of B2.

Proof of B3: We require the following coupling lemma, where we adopt the convention that ∅ 4 x
for all x ∈ Cd−1 and ∅ 4 ∅. We defer the proof of this lemma to Appendix 5.2

Lemma 3.7. Let x, y ∈ Cd−1 with x 4 y. There exist processes X(x), X(y) such that X(x) is dis-
tributed as X with respect to Px and X(y) is distributed as X with respect to Py satisfying that,
almost surely, X(x)

t 4 X
(y)
t for all t ≥ 0.

Thanks to Lemma 3.7, we have that, if x 4 y ∈ Cd−1, then

(14) Px(t < τ∅) ≤ Py(t < τ∅).
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In particular, this implies that

inf
y∈L

Py(t < τ∅) = P0(t < τ∅), and sup
y∈L

Py(t < τ∅) = P(1−ε)1(t < τ∅).

Also, since 1 ∈ Supp(µ), with positive probability, every coordinate of (Xt)t≥0 is at least 1− ε after
d jumps. If we denote this probability by κ1 = κ1(ε), we obtain

P0(t < τ∅) ≥ P0(σd < t < τ∅) ≥ κ1P0(σd < t < τ∅|(1− ε)1 4 Xσd),

where (1− ε)1 4 Xτd denotes the event that all coordinates of Xτd are at least 1− ε. Next, observe
that for all t ≤ 1,

P(1−ε)1 (t < τ∅)
P0 (t < τ∅) ≤ 1

e−1 = e,

since the probability the process has not jumped by time t is e−t. Now, by Equation (14) and the
strong Markov property, for Lebesgue almost all 0 ≤ u ≤ 1 < t,

P0 (t < τ∅|(1− ε)1 4 Xσd , σd = u) = E0
[
PXσd (t− u < τ∅) |(1− ε)1 4 Xσd , σd = u

]
≥ P(1−ε)1 (t− u < τ∅) ≥ P(1−ε)1 (t < τ∅) .

Thus, for t > 1, since jump times and skeleton are independent

P0(t < τ∅) ≥ κ1P0(σd ≤ 1 ≤ t < τ∅|(1− ε)1 4 Xσd)

≥ κ1

∫ 1

0
P0 (t < τ∅|(1− ε)1 4 Xσd , σd = u)P0 (σd ∈ du | (1− ε)1 4 Xσd)

= κ1

∫ 1

0
P0 (t < τ∅|(1− ε)1 4 Xσd , σd = u)P0 (σd ∈ du)

= κ1P0 (σd < 1)P(1−ε)1 (t− u < τ∅) ≥ κ1P0 (σd < 1)P(1−ε)1 (t− u < τ∅) .

Thus, if we set P0 (σd < 1) := κ2, taking c2 = max
{

1
κ1κ2

, e
}
completes the proof.

3.3. The Star Process. In the remainder of this section, we revisit the companion Markov process
(S∗n)n≥0 defined in Subsection 1.3. We wish to apply the same theory of Pólya processes to study
the distribution of (d− 1)-faces in (S∗n)n≥0. Note, however, that by definition, in this process every
face contains the central vertex of S∗0 . Therefore, if the central vertex has weight x, we may view
the empirical distribution of (d− 1)-faces as a measure on Cd−2, which represents the weights of the
other vertices in the (d− 1)-faces in S∗n.

Thus, we can interpret the evolving empirical measure as a homogeneous Markov process (Sn)n≥0
on C′ := [0,∞) ×M(Cd−2) (recall that M(Cd−2) is the space of non-negative, finite measures on
Cd−2).

Given Sn = (x, ν) ∈ C′ for some n ≥ 0:

(i) Set c∗ =
∫
Cd−2

f((x, y))dν(y) and sample z ∈ Cd−2 according to the distribution admitting
density f((x, y))/c∗ with respect to ν.
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(ii) Let W be a random variable with distribution µ which is independent of the past of the
process. Then, set

Sn+1 =
{

(x, ν +
∑d−2
i=0 δzi←W ), in Model A,

(x, ν +
∑d−2
i=0 δzi←W − δz), in Model B.

For a completely rigorous definition, we also set Sn+1 = Sn if the measure component of Sn is the zero
measure and step (i) cannot be executed. We write P∗(x,ν),E

∗
(x,ν) for probabilities and expectations,

respectively with respect to this process when the initial state S0 satisfies S0 = (x, ν). Note that
this implies that the first component of Sn remains equal to x for all n ≥ 0. Let us write Sn for the
measure component of Sn. Then, provided that S0 is a non-trivial sum of Dirac measures, we have

Sn(Cd−2) =
{

(d− 1)n+ S0(Cd−2), in Model A,
(d− 2)n+ S0(Cd−2), in Model B.

Upon identifying faces with their types, we may consider sti(Kn) as a C′-valued random variable by
separating the weight of vertex i from the remaining vertices. Let τ0 = i and, for n ≥ 1, let τn be
the n-th time, the randomly chosen face in the construction of (Km)m≥0 contains vertex i. Formally,
letting σn denote the face chosen and subdivided in step n, we have

τn := inf{m > τn−1 : i ∈ σm}, n ≥ 1.

It is easy to see that τn <∞ almost surely for all n ≥ 1. Indeed, under either Hypothesis H1 or H2,
we have Zn = F (Kn) ≤ fmax(n + |K(d−1)

0 |), and if τk−1 ≤ n < τk, F (sti(Kn)) ≥ fmin(d − 1)(k − 1).
Therefore, (analogous to proof of the Borel-Cantelli lemma) one can bound the probability

P (τk =∞|τk−1 = N) ≤
∞∏

j=N+1

(
1− fmin(d− 1)(k − 1)

fmax(j + |K(d−1)
0 |)

)
≤ e
−
∑∞

j=N+1
fmin(d−1)(k−1)

fmax(j+|K(d−1)
0 |) = 0;

and the result follows by induction on k.
Furthermore, the sequence of random variablesWi,

∑
σ∈sti(Kτn )

δω(σ)\{Wi}


n≥0

is equal in distribution to Sn, n ≥ 0 with respect to P∗(x,ν), when the configuration (x, ν) is chosen
with respect to the law of (Wi,

∑
σ∈sti(Ki) δω(σ)\{Wi}).

Let ϕ : [0,∞)× Cd−1 → C′ = [0,∞)×M(Cd−2) be the map

(15) ϕ(w, x) =
(
w,

d−1∑
i=0

δx̃i

)
,

where we recall that for all x ∈ Cd−1, x̃i ∈ Cd−2 is the vector x from which we have removed the
i-th coordinate. We also let ψ : [0,∞)× Cd−2 → Cd−1 be such that

(16) ψ(w, x) = w ∪ x,
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where we recall that w ∪ x is obtained by adding a coordinate equal to w to the vector x, and
reordering the coordinates of the obtained vector in non-decreasing order. For (w, ν) ∈ C′, we define
the fitness

(17) F (w, ν) =
∫
Cd−1

f dψ∗(δw ⊗ ν),

where ψ∗(δw⊗ν) is the pushforward of δw⊗ν under ψ (in other words, ψ∗(δw⊗ν) is the distribution
of ψ(w,X) where X ∈ Cd−2 is a ν-distributed random variable). Note that, when S0 is chosen
according to the law of (W,Y∞), we have (F (Sn))n≥0 = (F (S∗n))n≥0 in distribution. Moreover, for
any x ∈ Supp(µ), assuming H1* or H2*, Theorem 3.1 implies almost sure convergence of the
rescaled measure valued process ( 1

nSn)n>0 on Cd−2 to a positive limiting measure depending on x.
Thus, we get the following:

Theorem 3.8. Assume H1* or H2* and recall the definition of ψ in Equation (16), and that Sn
denotes the measure-valued component of the star process Sn ∈ C′. Then, for any x ∈ Supp(µ), there
exists a positive measure m∗x on Cd−1, such that, for any positive non-zero measure ν ∈ M(Cd−2),
we have

1
n
ψ∗(δx ⊗ Sn)→ m∗x, P∗(x,ν)-almost surely as n→∞,

with respect to the weak topology.

By continuity and boundedness of f , this implies that

F (Sn)
n

→ λ∗x :=
∫
Cd−1

f(y) dm∗x(y) > 0, P∗(x,ν)-almost surely when n→∞.

This yields Proposition 2.2 by setting the initial state to be S0 = ϕ(w, Y∞), where Y∞ is defined in
Proposition 1.2 and ϕ in Equation (15).

4. The degree profile. In this section, we determine the degree profile associated with the
sequence of simplicial complexes (Kn)n≥0. Throughout this section we assume that the conclusion
of Theorem 3.1 holds, and that f : [0, 1]d → (0,∞) is continuous and symmetric. Recall that
fmax = sup{f(x) : x ∈ Cd−1}.

Let π∗ be the distribution of the random variable ϕ(W,Y∞), where W and Y∞ are independent, W
is µ-distributed and Y∞ is as in Proposition 1.2. We prove the following equivalent of Theorem 1.4
(the only difference in the two statements comes from the fact that we now use the notation of the
previous section; in particular the process S with initial distribution π∗ is equal in distribution to
the process S∗ from Theorem 1.4):

Theorem 4.1. Denote by Nk(n) the (random) number of vertices of degree d + k in Kn. For all
k ≥ 0, we have, in probability,

lim
n→∞

1
n
Nk(n) = E∗π∗

[
λ

F (Sk) + λ

k−1∏
`=0

F (S`)
F (S`) + λ

]
= pk

with λ as in Proposition 1.3.
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Note that (pk)k≥0 is a probability distribution on the set of non-negative integers. Indeed, given
F (S0), F (S1), . . . consider a sequence of independent events, where, for i ≥ 0, the i-th event occurs
with probability λ/(F (Si)+λ). Then, the integrand is the probability that the k-th event is the first
to occur. (The fact that, almost surely, some event in the sequence occurs follows from boundedness
of f , which implies that F (S`) grows at most linearly.) The probability distribution (pk)k≥0 may
thus be regarded as a generalised geometric distribution.

The proof of Theorem 4.1 consists of two steps. First, we show convergence of the corresponding
mean, and then we study the variance of Nk(n) to show convergence in probability by an application
of Chebychev’s inequality.

To prove convergence of the mean, it is convenient to consider only vertices that arrive after a
certain time ηn where η > 0 is a small constant; this allows us to work in the asymptotic regime of
the sequence of simplicial complexes. Hence, let Nη

k (n) be the number of vertices of degree k+ d in
Kn which arrived after time ηn. Obviously,

Nη
k (n) ≤ Nk(n) ≤ ηn+Nη

k (n),

and therefore,
lim
η→0

lim sup
n→∞

1
n

∣∣E [Nk(n)]− E
[
Nη
k (n)

]∣∣ = 0.

Most of this section is thus devoted to proving that, for all k ≥ 0,

lim
η→0

lim
n→∞

1
n
E
[
Nη
k (n)

]
= pk.

Let d̂n(i) be the number of vertices which are neighbors of node i and arrived after node i. By
construction, we have that

(18) E
[
Nη
k (n)

]
=

∑
ηn<i≤n−k

P
(
d̂n(i) = k

)
.

Henceforth, we use the simplified notation Ik = {i1, . . . , ik} for a collection of natural numbers
i < i1 < . . . < ik ≤ n. Let Ei(Ik) denote the event that i ∼ ` for all ` ∈ Ik and i 6∼ ` for all ` /∈ Ik
with ` ∈ {i+ 1, . . . , n}. We have

(19) P
(
d̂n(i) = k

)
=

∑
Ik∈({i+1,...,n}

k )
P (Ei(Ik)) ,

where
({i+1,...,n}

k

)
denotes the set of all subsets of {i+1, . . . , n} of size k. (For k = 0, the sum consists

only of the term I0 = ∅.)

Proof Overview. The proof now consists of three steps. First, we provide sufficient upper and lower
bounds for P(d̂n(i) = k) using the fact that, for i ≥ ηn, with high probability, for all i ≤ j ≤ n, the
partition function Zj is concentrated around λj - see Proposition 1.3. On the event of concentra-
tion, we can estimate the probability that insertions in the star of vertex i or its complement occur.
Second, we use Proposition 1.2 to incorporate the stationary distribution of the Markov chain Yn
when passing to the limit as n→∞. Third, we apply a probabilistic argument to evaluate the sums
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in (18) and (19). In the following section, we state the necessary tools to work out the second and
third step. The corresponding proofs are deferred to the appendix in order not to disrupt the flow
of the main arguments.

The main part of the work involves exploiting the concentration of the partition function to derive
upper and lower bounds on (a variant of) P (Ei(Ik)) and are proved in Subsections 4.2 and 4.4,
respectively. Note that the proof of the upper bound in Subsection 4.2 is significantly less technical,
as we can ‘drop’ the event of concentration from probability computations. We recommend the
reader to study this case first. Second moment calculations which allow one to deduce stochastic
convergence from convergence of the mean in Theorem 4.1 are presented in Subsection 4.3 and follow
the arguments developed in Subsection 4.2 closely. The proof of the lower bound in Subsection 4.4
requires additional work, due, in part, to the ‘migration’ of faces into the complement on the event
of an insertion into the star of vertex i (see Figure 2). We deal with this technical challenge by
bounding the total number of ‘descendants’ of a small number of faces by the sum of geometrically
distributed random variables with sufficiently small success probability (Lemmas 4.15 and 4.16).
The rest of the proof then involves some lengthy computations to control error terms.

4.1. Technical Lemmas. This subsection is dedicated to the statements of some technical lemmas
that will be important in the sequel. We defer the proofs of these lemmas to the appendix.

4.1.1. A continuity statement for the star Markov chain. The following result concerns continuity
of the k-step transition kernel of the star Markov chain with respect to its starting point. Recall that
the function F is defined in Equation (3), and the process (Sn)n≥0 has been defined in Subsection 3.3.

Proposition 4.2. Let k ≥ 0, w ∈ [0,∞) and x, x1, x2, . . . ∈ Cd−1 with xn → x. Then, in the sense
of weak convergence on [0,∞)k+1, we have, as n→∞,

P∗ϕ(w,xn)((F (S0), F (S1), . . . , F (Sk)) ∈ ·)→ P∗ϕ(w,x)((F (S0), F (S1), . . . , F (Sk)) ∈ ·).

4.1.2. Evaluating sums. For all α0, . . . , αk ≥ 0, and 0 ≤ η < 1, let

Γn(α0, . . . , αk, η) := 1
n

∑
ηn<i0<···<ik≤n

k−1∏
`=0

((
i`
i`+1

)α`
· 1
i`+1 − 1

)(
ik
n

)αk
.

Lemma 4.3. Uniformly in α0, . . . , αk ≥ 0, 0 ≤ η ≤ 1/2, asymptotically in n we have

Γn(α0, . . . , αk, η) =
k∏
`=0

1
α` + 1 + θ(η) +O

(
1

n1/(k+2) +
∑k
j=0 αj logk+1(n)

n

)
.

Here, θ(η) is a term satisfying |θ(η)| ≤ Mη1/(k+2) for some universal constant M depending only
on k.

This lemma is proved in Section 5.4. An immediate corollary is the following:
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Corollary 4.4. For α0, . . . , αk, β0, . . . , βk−1 ≥ 0, 0 ≤ η ≤ 1/2, asymptotically in n we have

1
n

∑
ηn<i≤n

∑
Ik∈({i+1,...,n}

k )

k−1∏
`=0

((
i`
i`+1

)α`
· β`
i`+1 − 1

)(
ik
n

)αk

= 1
αk + 1

k−1∏
j=0

βj
αj + 1 + θ′(η) +O

( 1
n1/(k+2)

)
.

Here, θ′(η) is a term satisfying |θ′(η)| ≤M ′η1/(k+2) for some constant M ′ depending only on k and
β0, . . . , βk−1, and the constant in the big O-term may depend on α0, . . . , αk, β0, . . . , βk−1.

4.2. Convergence of the mean: bounds from above. The aim of this section is to prove that

(20) lim
η→0

lim sup
n→∞

E
[
Nη
k (n)

]
/n ≤ pk.

Recall that we write Πn =
∑
σ∈K(d−1)

n
δw(σ) for the empirical distribution of the weights of all (d−1)-

faces in the complex after the nth step. We also define the partition function associated with Kn
by Zn =

∫
Cd−1

f(x)dΠn(x). For ε > 0 and n ≥ 0 and natural numbers N1 ≤ N2, we let

(21) Gε(n) = {|Zn − λn| < ελn} and Gε(N1, N2) =
N2⋂

n=N1

Gε(n).

Moreover, for n ≥ 1, we denote by Gn the σ-field generated by (K`,W`), 1 ≤ ` ≤ n containing all
information about the process up to time n.

By Proposition 1.3 (and Egorov’s theorem), for any δ, ε > 0, there exists N ′ = N ′(δ, ε) such that,
for all n ≥ N ′, P(Gε(N ′, n)) ≥ 1− δ. Therefore, for all n ≥ N ′/η, we have

E
[
Nη
k (n)

]
≤ E

[
Nη
k (n)1Gε(N ′,n)

]
+ n(1− P(Gε(N ′, n)))

≤
∑

ηn<i≤n

∑
Ik∈({i+1,...,n}

k )
P(Ei(Ik) ∩ Gε(i, n)) + δn.(22)

Finally, for x > 0 and α ∈ R, we set α±x := α(1 ± x). The following proposition gives an upper
bound on the summands in the right-hand side of Equation (22). For simplicity, we subsequently
write

(23) sti(Kn) =
(
Wi,

∑
σ∈sti(Kn)

δω(σ)\{Wi}
)
∈ C′ = [0,∞)×M(Cd−2)

when considering the C′-valued random variable associated with the star around vertex i at step n.

Proposition 4.5. Let 0 < ε, η ≤ 1/2. As n → ∞, uniformly in ηn < i ≤ n − k, Ik ∈
({i+1,...,n}

k

)
and the choice of ε, we have

P (Ei(Ik) ∩ Gε(i, n))

≤
(

1 +O

( 1
n

))
E
[
E∗sti(Ki)

[(
ik
ik+1

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε F (S`)
λ−ε(i`+1 − 1)

]]
.
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Applying Corollary 4.4 to this, we will deduce the following upper bound.

Corollary 4.6. Let 0 < δ, ε, η ≤ 1/2. Then, there exists N = N(δ, ε, η) such that, for all n ≥ N ,

E
[
Nη
k (n)

]
n

≤ (1 + δ)
(1 + ε

1− ε

)k
E∗π∗

[
λ+ε

F (Sk) + λ+ε

k−1∏
`=0

F (S`)
F (S`) + λ+ε

]
+ Cη1/(k+2) + δ,

where the constant C may depend on k, f and µ but not on n and not on the choices of δ, ε, η. In
particular, Equation (20) is satisfied.

To prove Proposition 4.5, let 0 < ε, η ≤ 1/2. For ηn < i ≤ n and Ik ∈
({i+1,...,n}

k

)
, set i0 := i, ik+1 :=

n+ 1. Then, for j ∈ {i+ 1, . . . , n}, let

(24) Dj :=
{
{i ∼ j}, if j ∈ Ik,
{i 6∼ j}, otherwise,

and D̃j = Dj ∩ Gε(j),

where Gε(j) is defined as in Equation (21). For simplicity, we write Dj and D̃j for the indicator
random variables 1Dj and 1D̃j respectively. Note that Ei(Ik) ∩ Gε(i, n) =

⋂n
j=i D̃j . To estimate the

probability of this event, we shall decompose the indices j ∈ {i, . . . , n} into groups {i`, . . . , i`+1−1}
for ` ∈ {0, . . . , k}. More precisely, we define

(25) X` = E

 n∏
j=i`+1

D̃j

∣∣∣∣Gi`
 D̃i` , ` ∈ {0, . . . , k}.

To prove Proposition 4.5, we need to estimate E [X0] = P
(⋂n

j=i D̃j
)
.

From the tower property of conditional expectation, it follows that

(26) X` = E

i`+1−1∏
j=i`+1

D̃j X`+1

∣∣∣∣Gi`
 D̃i` , ` ∈ {0, . . . , k − 1},

which suggests a backwards recursive approach. We need more notation: for S ∈ C′ = [0,∞) ×
M(Cd−2) and ` ∈ {0, . . . , k}, we let

(27) h`(S) =
i`+1−1∏
j=i`+1

(
1− F (S)

λ+ε(j − 1)

)
,

where F is as defined in (17), and set

(28) fk = hk and f`(S) = F (S)
λ−ε(i`+1 − 1)h`(S), 0 ≤ ` ≤ k − 1.

For the sake of presentation, we do not indicate that the definitions of the D̃j , X`, h`, f` depend on
Ik and ε.

Lemma 4.7. For ` ∈ {0, . . . , k}, and h` as defined in Equation (27), we have

(29) E

i`+1−1∏
j=i`+1

D̃j

∣∣∣∣Gi`
 ≤ h`(sti(Ki`)).
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Recall that, by definition, sti(Ki`) ∈ C′ (see Equation (23)) and thus h`(sti(Ki`)) is well-defined.

Proof. First note that for all ` ∈ {1, . . . , k}, by the tower property,

E

i`+1−1∏
j=i`+1

D̃j

∣∣∣∣Gi`
 = E

E [D̃i`+1−1

∣∣∣∣Gi`+1−2

] i`+1−2∏
j=i`+1

D̃j

∣∣∣∣Gi`
 ≤ E

E [Di`+1−1

∣∣∣∣Gi`+1−2

] i`+1−2∏
j=i`+1

D̃j

∣∣∣∣Gi`
 ,

where we have used the fact that, by definition, D̃j = Dj ∩Gε(j) and thus D̃j ≤ Dj (recall that the
latter denote the indicators of the events D̃j and Dj respectively). If i`+1 − 1 /∈ Ik we have that

E
[
Di`+1−1

∣∣Gi`+1−2
]

= P(Di`+1−1
∣∣Gi`+1−2) = 1−

F (sti(Ki`+1−2))
Zi`+1−2

,

where we recall that F (sti(Ki`+1−2)) is the sum of the fitnesses of the faces in the complex that
contains node i at time i`+1 − 2 (see Equation (3)). Thus,

E

i`+1−1∏
j=i`+1

D̃j

∣∣∣∣Gi`
 ≤ E

(1−
F (sti(Ki`+1−2))

Zi`+1−2

) i`+1−2∏
j=i`+1

D̃j

∣∣∣∣Gi`


≤
(

1− F (sti(Ki`))
λ+ε(i`+1 − 2)

)
E

i`+1−2∏
j=i`+1

D̃j

∣∣∣∣Gi`
 ,

where we recall that, by definition, λ+ε = λ(1 + ε) and F (sti(Ki`+1−2)) = F (sti(Ki`)). In the last
inequality, we have used the fact that on the event D̃i`+1−2, we have Zi`+1−2 ≤ λ+ε(i`+1 − 2).
Iterating the argument shows the claim.

We now use the above lemma to derive an almost-sure upper bound for X`.

Proposition 4.8. For ` ∈ {0, . . . , k}, and f` as defined in Equation (28), we have

X` ≤ E∗sti(Ki` )

 k∏
j=`

fj(Sj−`)

 D̃i` .

In particular,

E [X0] ≤ E

E∗sti(Ki)
 k∏
j=0

fj(Sj)

 .
Proof. We proceed by backwards induction. For ` = k, the statement is identical to the one in
Lemma 4.7. Now, assume the claim holds for some 1 ≤ ` ≤ k. Using Equation (26) and the induction
hypothesis in the second inequality, we get

X`−1 = E

 i`−1∏
j=i`−1+1

D̃j X`

∣∣∣∣Gi`−1

 D̃i`−1

≤ E

E
E∗sti(Ki` )

 k∏
j=`

fj(Sj−`)

Di`

∣∣∣∣Gi`−1

 i`−1∏
j=i`−1+1

D̃j

∣∣∣∣Gi`−1

 D̃i`−1 .(30)
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The event Di` = {i` ∼ i} indicates that an insertion has been made into sti(Ki`−1). Therefore,
conditionally on Gi`−1, on the event Di` , the sequence (S0, . . . , Sk−`) initiated by sti(Ki`) is equal
in distribution to (S1, . . . , Sk−`+1) initiated by sti(Ki`−1). Thus,

E

E∗sti(Ki` )
 k∏
j=`

fj(Sj−`)

Di`

∣∣∣∣Gi`−1

 = P (Di` |Gi`−1)E∗sti(Ki`−1)

 k∏
j=`

fj(Sj−`+1)


= F (sti(Ki`−1))

Zi`−1
E∗sti(Ki`−1)

 k∏
j=`

fj(Sj−`+1)

 .(31)

On the other hand, on the events D̄j , j ∈ {i`−1 + 1, . . . , i` − 1}, we have sti(Ki`−1) = sti(Ki`−1),
and thus F (sti(Ki`−1)) = F (sti(Ki`−1)). Combining (30) and (31) and the fact that on D̃i`−1,
Zi`−1 ≥ λ−ε(i` − 1) in the first inequality, we obtain

X`−1 ≤ E∗sti(Ki`−1 )

 F (S0)
λ−ε(i` − 1)

k∏
j=`

fj(Sj−`+1)

E
 i`−1∏
j=i`−1+1

D̃j

∣∣∣∣Gi`−1

 D̃i`−1

(29)
≤ E∗sti(Ki`−1 )

 F (S0)
λ−ε(i` − 1)

k∏
j=`

fj(Sj−`+1)

h`−1(sti(Ki`−1))D̃i`−1

= E∗sti(Ki`−1 )

 k∏
j=`−1

fj(Sj−`+1)

 D̃i`−1 .

This concludes the induction argument, and thus the proof.

The following elementary lemma is an easy consequence of Stirling’s approximation (using Equa-
tion (7)), so we state it without proof.

Lemma 4.9. Let δ, C > 0. Then, as m→∞, uniformly over δm ≤ a ≤ b and 0 ≤ β ≤ C, we have
b−1∏

j=a+1

(
1− β

j − 1

)
=
(
a

b

)β (
1 +O

( 1
m

))
.

The statement of Proposition 4.5 follows immediately from Proposition 4.8 and Lemma 4.9.

Proof of Corollary 4.6. In view of the statement of Proposition 4.5, it remains to replace
sti(Ki) by its distributional limit ϕ(W,Y∞) and to evaluate the sum over the possible values of
i, i1, . . . , ik. We start with the first task and show that, for any 0 < δ, ε, η ≤ 1/2, there exists
N = N(δ, η) such that, for all ηn < i ≤ n− k, Ik ∈

({i+1,...,n}
k

)
and n ≥ N , we have

P (Ei(Ik) ∩ Gε(i, n))

≤ (1 + δ)E∗π∗
[(

ik
ik+1

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε F (S`)
λ−ε(i`+1 − 1)

]
.(32)

Note that the statement of the corollary immediately follows from this identity and Corollary 4.4. To
verify the last statement, let π∗n be the law of stn(Kn) considered as C′-valued random variable, that
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is, ϕ(Wn, Yn) (see Equation (15) for the definition of ϕ). Thanks to Proposition 4.5, it is sufficient
to prove that, uniformly in ηn < i < i1 < i2 < . . . < ik ≤ n and ε ∈ (0, 1/2], as n→∞

E∗π∗i

[(
ik
ik+1

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε

F (S`)
]

− E∗π∗
[(

ik
ik+1

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε

F (S`)
]
→ 0.(33)

To this end, we prove the following stronger statement: uniformly in η ≤ x0, . . . , xk ≤ 1 and the
choice of ε, as n→∞,

E∗π∗n

[
x
F (Sk)/λ+ε
k ·

k−1∏
`=0

x
F (S`)/λ+ε
` F (S`)

]
− E∗π∗

[
x
F (Sk)/λ+ε
k ·

k−1∏
`=0

x
F (S`)/λ+ε
` F (S`)

]
→ 0.

By continuity of ϕ, Propositions 1.2 and 4.2, we have P∗π∗n((F (S0), . . . , F (Sk)) ∈ ·) →
P∗π∗((F (S0), . . . , F (Sk)) ∈ ·) weakly. Note that, for all 0 ≤ ` ≤ k, F (S`) ≤ C, where C = (d +
1)(k+ 1)fmax (recall that fmax is the maximum of the fitness function f). For all η ≤ x0, . . . , xk ≤ 1
and 0 ≤ ε ≤ 1/2, the function J(y0, . . . , yk) = x

yk/λ+ε
k ·

∏k−1
`=0 x

y`/λ+ε
` y` defined on [0, C]k+1 satisfies

(34) ‖∇J‖ ≤ αη := Ck (1− log η/λ)

uniformly in x0, . . . , xk, ε. For any two probability distributions ν and ν ′ on [0, C]k+1, let

d(ν, ν ′) = sup
g∈F

∣∣∣∣∫ gdν −
∫
gdν ′

∣∣∣∣
where F := {g : [0, C]k+1 → R | ∀x, y ∈ [0, C]k+1 |g(x)− g(y)| ≤ αη‖x− y‖}.(35)

It is well-known that d(νn, ν)→ 0 if and only if νn → µ weakly (see for example, Example 19, page
74 [43]). This concludes the proof of (33) and of the corollary.

4.3. Stochastic convergence: second moment calculations. By counting the number of unordered
pairs of vertices with degree d + k, arguments similar to those applied in Subsection 4.2 allow us
to compute asymptotically the second moment of Nη

k (n) (recall this is the number of vertices of
degree k + d in Kn that arrived after time ηn). Note that

E
[
(Nη

k (n))2
]

=
∑

ηn<i,j≤n
P
(
d̂n(i) = k, d̂n(j) = k

)
.

We prove that

(36) lim
η→0

lim sup
n→∞

E
[
(Nη

k (n))2]
n2 ≤ p2

k.

This shows that limn→∞ E
[
(Nη

k (n))2] /n2 = p2
k which is sufficient to deduce the convergence in

probability stated in Theorem 4.1 from convergence of the mean by a standard application of
Chebychev’s inequality.
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Recall that we use the notation Ik = {i1, . . . , ik} for a collection of natural numbers i < i1 <
. . . < ik ≤ n. Similarly, we write Jk = {j1, . . . , jk} for a collection of natural numbers such that
j < j1 < . . . < jk ≤ n. As before, we let Ei(Ik) denote the event i ∼ ` for i < ` ≤ n if and only if
` ∈ Ik and define the event Ej(Jk) analogously for j, j1, . . . , jk.

With these definitions, we have

(37) E
[
(Nη

k (n))2
]

=
∑

ηn<i,j≤n

∑
Ik,Jk

P (Ei (Ik) ∩ Ej (Jk)) ,

where the inner sum is over all Ik ∈
({i+1,...,n}

k

)
and Jk ∈

({j+1,...,n}
k

)
. As in Subsection 4.2, we fix

0 ≤ δ, ε ≤ 1/2 and choose N ′ such that for all n ≥ N ′, P (Gε(N ′, n)) ≥ 1− δ.

Note that, on Ei(Ik) ∩ Ej(Jk), if Ik ∩ Jk 6= ∅ we either have i = j or i ∼ j. If i = j then Ik = Jk,
and the contribution of these terms to the right hand side of (37) is at most E

[
Nη
k (n)

]
≤ n. On

the event {d̂n(i) = k} we have F (sti(K`)) ≤ (k + 1)dfmax for all i + 1 ≤ ` ≤ n. Therefore, for
ηn < i < j ≤ n, we have

P
({
d̂n(i) = k

}
∩
{
d̂n(j) = k

}
∩ {j ∼ i} ∩ Gε(i, n)

)
≤ P

(
{j ∼ i} | Gε (i, j − 1) , d̂j−1(i) ≤ k

)
≤ (k + 1)dfmax

λ−εηn
.

It follows that, for all n sufficiently large (depending on δ, ε and η),

E
[
(Nη

k (n))2
]
≤ 2

∑
ηn<i<j≤n

∑
Ik∩Jk=∅

P (Ei (Ik) ∩ Ej (Jk) ∩ Gε(i, n)) + δn2 + Cn/η,

for a constant C ≥ 0 which is independent of n, δ, ε and η. The following proposition is the analogue
of Proposition 4.5.

Proposition 4.10. Let 0 < ε, η ≤ 1/2. As n → ∞, uniformly in ηn < i < j ≤ n − k, Ik ∈({i+1,...,n}
k

)
and Jk ∈

({j+1,...,n}
k

)
with Ik ∩ Jk = ∅ and the choice of ε, we have

P (Ei (Ik) ∩ Ej (Jk) ∩ Gε(i, n))

≤
(

1 +O

( 1
n

))
E
[
E∗sti(Ki)

[(
ik
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε F (S`)
λ−ε(i`+1 − 1)

]

E∗stj(Kj)

[(
jk
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
j`
j`+1

)F (S`)/λ+ε F (S`)
λ−ε(j`+1 − 1)

] ]
.

The proof of this proposition is completely analogous to the proof of Proposition 4.5 and relies on
a backward induction argument and an application of Lemma 4.9. We omit the details as no new
arguments are necessary at this point.

We move on to show the following analogue of (32): for any 0 < δ, ε, η ≤ 1/2, there exists N =
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N(δ, η) such that, for all n ≥ N , ηn < i < j ≤ n− k and disjoint sets Ik,Jk, we have

P (Ei (Ik) ∩ Ej (Jk) ∩ Gε(i, n))

≤ (1 + δ)
(
E∗π∗

[(
ik
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε F (S`)
λ−ε(i`+1 − 1)

]

E∗π∗
[(

jk
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
j`
j`+1

)F (S`)/λ+ε F (S`)
λ−ε(j`+1 − 1)

])
.(38)

The details are very similar to the approach in Subsection 4.2, and we only give the necessary
additional results entering the proof.

Proposition 4.11. As n,m→∞ with n 6= m, we have (Yn, Ym)→ (Y∞, Y ′∞), in distribution, for
independent random variables Y∞, Y ′∞ both distributed according to π∗.

Proof. This follows easily from Theorem 3.1. Let g1, g2 : Cd−1 → R be bounded and continuous
and Y∞, Y ′∞ be independent realisations of π∗. We have∣∣E [g1(Yn)g2(Ym)]− E

[
g1(Y∞)g2(Y ′∞)

]∣∣ ≤ ∣∣E [g1(Yn)g2(Ym)]− E [g1(Yn)]E
[
g2(Y ′∞)

]∣∣(39)
+
∣∣E [g1(Yn)]E

[
g2(Y ′∞)

]
− E

[
g1(Y∞)g2(Y ′∞)

]∣∣ .
Since Y∞, Y ′∞ are independent, the second term on the right hand side is equal to

(40) |E [g2(Y∞)] | · |E [g1(Yn)]− E [g1(Y∞)] |.

As n → ∞, (40) converges to zero by Theorem 3.1. For n < m, we have E [g1(Yn)g2(Ym)] =
E [g1(Yn)E [g2(Ym) | Gm−1]]. Hence, the first term on the right hand side of (39) is bounded from
above by

(41) ‖g1‖ · E [|E [g2(Ym) | Gm−1]− E [g2(Y∞)] |] .

Write νm for the law of Ym given Gm−1, that is, for all measurable A ⊆ Cd−1,

νm(A) =
∫
A f(x)dΠm−1(x)∫
Cd−1

f(x)dΠm−1(x) .

By Theorem 3.1, we have, almost surely, νm → π∗ weakly. Thus, E [g2(Ym) | Gm−1] → E [g2(Y∞)].
Hence, by the dominated convergence theorem, (41) converges to zero as m → ∞. This concludes
the proof for n,m→∞ with n < m and the case n > m can be treated analogously.

In the remainder, we write P∗∗x,x′ and E∗∗x,x′ with x, x′ ∈ C′ for probabilities and expectations, respec-
tively, involving a pair of independent copies of the star Markov chain (S0, S

′
0), (S1, S

′
1), . . ., where

S0 = x and S′0 = x′.

Proposition 4.12. Let k ≥ 0, w,w′ ≥ 0 and x, x′, x1, x
′
1, x2, x

′
2, . . . ∈ Cd−1 with xn → x and

x′n → x′. Then, in the sense of weak convergence on [0,∞)2k+2, we have, as n→∞,

P∗∗ϕ(w,xn),ϕ(w′,x′n)((F (S0), F (S′0), F (S1), F (S′1), . . . , F (Sk), F (S′k)) ∈ ·)
→ P∗∗ϕ(w,x),ϕ(w′,x′)((F (S0), F (S′0), F (S1), F (S′1), . . . , F (Sk), F (S′k)) ∈ ·).
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Proof. This follows from the independence of the two star processes involved and Proposition 4.2.

Using Propositions 4.11 and 4.12, the continuity of ϕ, and an argument analogous to the proof of
Corollary 4.6 (using a probability metric similar to (35)), Equation (38) follows upon verifying the
following: For any η ≤ x0, x

′
0, . . . , xk, x

′
k ≤ 1 and 0 ≤ ε ≤ 1/2, with the function

J ′(y0, y
′
0, . . . , yk, y

′
k) = x

yk/λ+ε
k ·

k−1∏
`=0

x
y`/λ+ε
` y` · (x′k)y

′
k/λ+ε ·

k−1∏
`=0

(x′`)y
′
`/λ+εy′`

defined on [0, C]2k+2, we have that ‖∇J ′‖ is bounded uniformly in x0, . . . , xk, x′0, . . . , x′k and ε. This
follows from that the fact that J ′ factorizes, ‖J ′‖ ≤ C2k, and Equation (34) (inside the proof of
Corollary 4.6).

Now, when evaluating the sum over ηn < i 6= j ≤ n and disjoint Ik ∈
({i+1,...,n}

k

)
,Jk ∈

({j+1,...,n}
k

)
in

(38), since the summands are non-negative, and we are looking for an upper bound, we may remove
the conditions i 6= j and Ik ∩ Jk = ∅. But Corollary 4.4 shows that, uniformly in ε and η,

∑
ηn<i,j≤n

∑
Ik,Jk

E∗π∗
[(

ik
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
i`
i`+1

)F (S`)/λ+ε F (S`)
λ−ε(i`+1 − 1)

]

× E∗π∗
[(

jk
n

)F (Sk)/λ+ε

·
k−1∏
`=0

(
j`
j`+1

)F (S`)/λ+ε F (S`)
λ−ε(j`+1 − 1)

]

≤
(1 + ε

1− ε

)2k
(
E∗π∗

[
λ+ε

F (Sk) + λ+ε

k−1∏
`=0

F (S`)
F (S`) + λ+ε

])2

+O
(
n−1/(k+2)

)
+ C ′η1/k+2,

for some universal constant C ′ > 0. From here, identity (36) follows easily as in Subsection 4.2.

4.4. Convergence of the mean: bounds from below. In this section, we prove that, for all k ≥ 0,

(42) lim
η→0

lim inf
n→∞

E
[
Nη
k (n)

]
n

≥ pk,

where we recall that Nη
k (n) is the number of vertices of degree k + d in Kn that arrived after

time ηn, and pk is defined in Theorem 4.1. To do this, we need further notation. First, let C be
the set of all finite d-dimensional simplicial complexes with integer vertices. To add weights, let
Cw = C × [0,∞)Z, where, for t = (c, x) ∈ Cw, xi, i ∈ Z keeps track of the weight assigned to the
vertex i. (If no such vertex exists, simply set xi = 0.) We then consider Kn as a Cw-valued random
variable incorporating vertex weights. For a simplicial complex K ∈ C, let K\i := {σ ∈ K : i /∈ σ} be
the sub-complex obtained from K, when we remove the faces which contain vertex i. (Set K\i := K
if i /∈ K.) When applied to the random dynamical process, we write Kn\i for (Kn)\i. Let

(43) Πn\i =
∑

σ∈K(d−1)
n\i

δω(σ), and Zn\i =
∫
Cd−1

f(x)dΠn\i(x)

be the empirical measure of the types of active faces in Kn\i and the corresponding partition
function, respectively. Note that K(d−1)

n = K(d−1)
n\i ∪ sti(Kn), where the union is disjoint and therefore

Zn = Zn\i + F (sti(Kn)).
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To prove a suitable lower bound on the probability that vertex i receives edges at certain times, we
need to control Zn\i throughout the process. It is reasonable to expect Zn\i to behave similarly to
Zn. To this end, for all ε > 0, n ≥ i ≥ 1 and m ≥ 1, we let

(44) G(i)
ε (n) =

{∣∣∣Zn\i − λn∣∣∣ < ελn
}

and Gε(n;m) = {|Zn − λm| < ελm} .

(Note the difference between the notation Gε(n;m) and the notation for concentration along an
interval Gε(N1, N2) defined in Subsection 4.2.)

For 1 ≤ i ≤ n, Ik ∈
({i+1,...,n}

k

)
and j = i, . . . , n, we let

(45) p(j) ∈ {0, . . . , k} be such that ip(j) ≤ j ≤ ip(j)+1 − 1.

(Recall that we use the conventions i0 = i and ik+1 = n+ 1).

As opposed to the arguments in Subsection 4.2, the inductive proof in this section requires us
to modify the value of ε in different intervals {i`, . . . , i`+1 − 1}, ` = 0, . . . , k. We thus need more
notation. First, for a fixed ε > 0, and ` ∈ {0, . . . , k} we set ε` := (1 + `)ε (we apply this notation
only to the symbol ε, to avoid confusion with subscripts). Next, for j ∈ {i+ 1, . . . , n}, recalling the
events Dj from (24), and G(i)

ε (j), Gε(i; i) from (44), we set

(46) D̄j(ε) = Dj ∩ G(i)
εp(j)

(j) and D̄i(ε) = Gε(i; i).

Similarly to before, we write Dj(ε) := 1Dj(ε) and D̄j(ε) := 1D̄j(ε). With this notation, we have

(47) E
[
Nη
k (n)

]
≥

∑
ηn<i≤n

∑
Ik∈({i+1,...,n}

k )
P
( n⋂
j=i
D̄j(ε)

)
.

We then have the following analogue of Proposition 4.5.

Proposition 4.13. Let 0 < δ, ε, η ≤ 1/2. There exists a constant C ′ > 0, N = N(δ, ε, η) and
0 ≤ % ≤ 1 such that, for all n ≥ N ,

E
[
Nη
k (n)

]
≥ −C ′δn

+ %(1− δ) ·
∑

ηn<i≤n

∑
Ik∈({i+1,...,n}

k )
E

E∗sti(Ki)
( ik

ik+1

)F (Sk)
λ−εk ·

k−1∏
`=0

(
i`
i`+1

)F (S`)
λ−ε` F (S`)

λ+ε`(i`+1 − 1)

 ,
(48)

where % depends only on ε, η and, for any fixed 0 < η ≤ 1/2, we have %→ 1 as ε→ 0.

Similar arguments leading from Proposition 4.5 to Corollary 4.6 then give the following result.

Corollary 4.14. Let 0 < δ, ε, η ≤ 1/2. Then, there exists N = N(δ, ε, η) and a universal constant
C > 0 not depending on any of these parameters, such that, for all n ≥ N ,

E
[
Nη
k (n)

]
n

≥ %(1− δ)
(1− εk

1 + εk

)k
· E∗π∗

[
λ−εk

F (Sk) + λ−εk

k−1∏
`=0

F (S`)
F (S`) + λ−ε`

]
− C(η1/(k+2) + 1/n1/(k+2))− δ,

where % is as in the Proposition 4.13. In particular, Equation (42) holds.
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We now define analogues of h` and f` from Equations (27) and (28) in Subsection 4.2 (here, however,
it is necessary to indicate the dependence of these functions on ε). For S ∈ C′ and ` ∈ {0, . . . , k},
let

(49) hε`(S) =
i`+1−1∏
j=i`+1

(
1− F (S)

λ−ε`(j − 1)

)

and, for ` ∈ {0, . . . , k − 1},

(50) fε`(S) = F (S)
F (S) + λ+ε`(i`+1 − 1)h

ε
`(S) while fεk = hεk.

We follow the arguments from the proof of the upper bound (see Subsection 4.2) and show ana-
logues of Lemma 4.7 and Proposition 4.8. To this end, we need to make use of the more general
framework introduced at the beginning of this subsection: we write Px(·),Ex(·) for probabilities
and expectations respectively, when the initial weighted configuration is equal to x = (c, z) with
c ∈ C, z ∈ [0,∞)Z. (Here, if m ∈ Z is the maximum vertex label occuring in c, then the vertex
inserted in step i of the process carries label m + i.) Then, for a real-valued function g depending
on the path of the process and u(x) = Ex[g((Kn)n≥0)], we use the slightly inaccurate but standard
notation EX [g((Kn)n≥0)] for u(X) and a random variable X which is typically defined in terms of
Kn, n ≥ 0. Probabilities P and expectations E appearing in the following without subscript are with
respect to the initial process with given K0.

Proving analogues of Lemma 4.7 and Proposition 4.8 becomes more intricate since we can no
longer drop the concentration conditions relying on the events Gε(j) as we did in Subsection 4.2.
Nevertheless, upon ignoring the dependency structure of the evolution of the process in the star of
vertex i and outside, we still expect (at least morally) to bound P

(⋂n
j=i D̄j

)
from below by a term

similar to

(51) E

EKi\i
 n−k∏
j=i+1

1Gεp(j) (j−i;j+p(j))

E∗sti(Ki)
 k∏
j=0

fεj(Sj)

 .
The two main hurdles to prove such a lower bound are the following: first, while the process outside
the star of vertex i follows the Markovian transition rule, there is a subtle dependence between the
star and its complement as the addition of faces to the star adds faces to its complement. More
formally, on Di` , we have Ki`\i 6= K(i`−1)\i. The reason is that when a face in sti(Ki`−1) is subdivided
during step i`, one of the faces that are created does not contain vertex i and therefore migrates into
Ki`\i (see Figure 2). Second, in order to exploit the concentration of the partition function Zj for
j ≥ i > ηn, an argument is needed to replace PKi\i by PKi . In order to overcome these difficulties,
we use the following two lemmas, whose proofs we delay to the end of the section.

Lemma 4.15. For any δ, ε > 0, 0 < η < 1, there exists N = N(δ, ε, η) such that, for all n ≥
N, ηn < i < n− k, we have

E

PKi\i
 n⋂
j=i+1

Gε(j − i; j)

 ≥ 1− δ.
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Lemma 4.16. For any ε1, ε2, ε3 > 0, 0 < η1 < 1 and C1, C2 > 0, there exists N depending on
these six quantities, such that the following is satisfied for all n ≥ N : for any weighted simplicial
complexes X ,Y ∈ Cw such that

(i) |X (d−1)4Y(d−1)| ≤ C1, where X (d−1)4Y(d−1) = (X (d−1) \ Y(d−1)) ∪ (Y(d−1) \ X (d−1));
(ii) any vertex contained in a face in X (d−1) ∩ Y(d−1) has the same weight in both complexes;
(iii) each face in X (d−1)4Y(d−1) has at most fitness C2 in the complex it belongs to;
(iv) F (X ) ≥ ε1u for some η1n ≤ u ≤ n (where we recall that F (X ) is the sum of fitnesses of faces

in X ),

we have, for any u < m ≤ n, that

PX

 m⋂
j=u+1

Gε2(j − u; j)

 ≥ PY

 m⋂
j=u+1

Gε2/2(j − u; j)

− ε3.

Intuitively, Lemma 4.15 states that, for the process initiated by Ki\i, the partition function remains
concentrated with high probability at each of the n−i steps after the arrival of vertex i. Lemma 4.16
states that any sufficiently large (linear in n) simplicial complexes X and Y, which differ by at most
a constant number of faces, have partition functions that evolve in a similar manner. This is due to
the fact that the contribution of the descendants of faces in X4Y may be bounded by the sum of
geometrically distributed random variables with small success parameter, and is thus negligible.

For brevity, for all ` ∈ {0, . . . , k} and ε > 0, recalling the definition of p(j) in (45), we define

(52) G`(ε) =
n−(k−`)⋂
j=i`+1

Gεp(j)(j − i`; j + p(j)− `) and α`(K, ε) = PK(G`(ε)), K ∈ Cw.

Thus, in α`(Ki`\i, ε) the term Gεp(j)(j−i`; j+p(j)−`) represents concentration of Zj−i` (initiated with
Ki`\i) around λ(j+p(j)−`). When p(j) increases, the values of εp(j) and j+p(j)−` change to account
for the additional ‘step’ that has occurred in the underlying process without a step occurring in the
process initiated with Ki`\i. Lemma 4.16 has the following corollary which justifies this notation,
showing that the migration of the additional face into Ki`\i at the step i` is insignificant.

Corollary 4.17. For any 0 < η, δ, ε′ < 1, there exists N = N(δ, ε′, η) such that the following
holds for all n ≥ N : for all 0 < ε < 1/(2k + 2), ` ∈ {1, . . . , k} and ηn < i < i1 < . . . < ik ≤ n, on
the event G(i)

ε` (i`), with α` as defined in (52), we have

(53) α`(Ki`\i, ε
′) ≥ α`(K(i`−1)\i, ε

′/4(k + 1))− δ.

Proof. For sufficiently large n (depending on ε′ and η), we clearly have that, for all K ∈ Cw

α`(K, ε′) ≥ PK

n−(k−`)⋂
j=i`+1

G3ε′
`
/4(j − i`; j)


and

(54) PK

n−(k−`)⋂
j=i`+1

G3ε′
`
/8(j − i`; j)

 ≥ α`(K, ε′/4(k + 1)).
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Note that, on G(i)
ε` (i`), we have Zi`\i ≥ λi`/2. Hence, Lemma 4.16 applied with ε1 = λ/2, ε2 =

3ε′`/4, ε3 = δ, u = i`, η1 = η,Y = K(i`−1)\i,X = Ki`\i, C1 = d + 1, C2 = fmax shows that, on the
event G(i)

ε` (i`),

(55) PKi`\i

n−(k−`)⋂
j=i`+1

G3ε′
`
/4(j − i`; j)

 ≥ PK(i`−1)\i

n−(k−`)⋂
j=i`+1

G3ε′
`
/8(j − i`; j)

− δ
for n sufficiently large (depending on δ, ε′, η). Equations (54) and (55) together imply Equation (53).

Once we have Corollary 4.17, the arguments to prove the lower bound are similar to the upper
bound, however, the details are more technical. The following lemma is the analogue of Lemma 4.7.

Lemma 4.18. For any 0, δ, η < 1 and 0 < ε < 1/(2k + 2) there exists N = N(δ, ε, η), such that,
for all n ≥ N and ηn < i < i1 < . . . < ik ≤ n, with hεj as defined in (49), we have

(56) P

 n⋂
j=ik+1

D̄j(ε)
∣∣∣∣Gik

 D̄ik(ε) ≥ (αk(K(ik−1)\i, ε/(4(k + 1)))− δ)hεk(sti(Kik))D̄ik(ε)

and, for all ` ∈ {1, . . . , k − 1},

E

i`+1−1∏
j=i`+1

D̄j(ε) α`+1(K(i`+1−1)\i, ε)
∣∣∣∣Gi`

 D̄i`(ε)

≥ (α`(K(i`−1)\i, (k + 1))− δ)hε`(sti(Ki`))D̄i`(ε), while,

E

 i1−1∏
j=i+1

D̄j(ε) α1(K(i1−1)\i, ε)
∣∣∣∣Gi
 D̄i(ε) ≥ α0(Ki\i, ε)hε0(sti(Ki))D̄i(ε).

Proof. We write D̄j for D̄j(ε) throughout the proof. We have

E

 n∏
j=ik+1

D̄j

∣∣∣∣Gik
 = E

E [D̄n

∣∣∣∣Gn−1

] n−1∏
j=ik+1

D̄j

∣∣∣∣Gik


= E

(1− F (sti(Kn−1))
Zn−1

)
PK(n−1)\i (Gεk(1;n))

n−1∏
j=ik+1

D̄j

∣∣∣∣Gik
 ,(57)

because, by definition (see (44)), Gεk(1;n) = {|Z1 − λn| < εkλn}. First note that, on the event⋂n−1
j=ik+1 D̄j , we have, for any j = ik + 1, . . . , n − 1, F (sti(Kj)) = F (sti(Kik)). On the event D̄j we

have

(58) 1− F (sti(Kn−1))
Zj

≥ 1− F (sti(Kik))
λ−εkj

.

Furthermore, by the tower property, we may substitute

E
[
PK(n−1)\i (Gεk(1;n)) D̄n−1

∣∣∣∣Gn−2

]
for PK(n−1)\i (Gεk(1;n)) D̄n−1
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inside the conditional expectation, and together with (57) and (58), this gives
(59)

E

 n∏
j=ik+1

D̄j

∣∣∣∣Gik
 ≥ (1− F (sti(Kik))

λ−εk(n− 1)

)
E

E [PK(n−1)\i (Gεk(1;n)) D̄n−1

∣∣∣∣Gn−2

] n−2∏
j=ik+1

D̄j

∣∣∣∣Gik
 .

We also have
(60)

E
[
PK(n−1)\i (Gεk(1;n)) D̄n−1

∣∣∣∣Gn−2

]
=
(

1− F (sti(Kn−2))
Zn−2

)
PK(n−2)\i (Gεk(1;n− 1) ∩ Gεk(2;n)) .

Thus, using Equations (59) and (60) in the first inequality, and (58) in the second,

E

 n∏
j=ik+1

D̄j

∣∣∣∣Gik


≥
(

1− F (sti(Kik))
λ−εk(n− 1)

)
E

(1− F (sti(Kn−2))
Zn−2

)
PK(n−2)\i (Gεk(1;n− 1) ∩ Gεk(2;n))

n−2∏
j=ik+1

D̄j

∣∣∣∣Gik


≥
(

1− F (sti(Kik))
λ−εk(n− 1)

)(
1− F (sti(Kik))

λ−εk(n− 2)

)
E

PK(n−2)\i (Gεk(1;n− 1) ∩ Gεk(2;n))
n−2∏

j=ik+1
D̄j

∣∣∣∣Gik
 .

Iterating this process leads to P
(⋂n

j=ik+1 D̄j(ε)
∣∣∣∣Gik) D̄ik(ε) ≥ αk(Kik\i, ε)h

ε
k(sti(Kik))D̄ik . Equa-

tion (53) from Corollary 4.17 concludes the proof of Equation (56) as D̄ik ⊆ G
(i)
εk (ik).

We use the same ideas to prove the general case, for ` ∈ {0, . . . , k − 1}. Here, we want to provide

a lower bound to E
[
α`+1(K(i`+1−1)\i, ε)

∏i`+1−1
j=i`+1 D̄j

∣∣∣∣Gi`]. First, for any j = i` + 1, . . . , i`+1 − 1, we

have F (sti(Kj)) = F (sti(Ki`). Thus, on the event D̄j , we have

(61) 1− F (sti(Kj))
Zj

≥ 1− F (sti(Ki`))
λ−ε`j

.

Second, using the tower property, we substitute

(62) E
[
α`+1(K(i`+1−1)\i, ε) D̄i`+1−1

∣∣∣∣Gi`+1−2

]
for α`+1(K(i`+1−1)\i, ε)D̄i`+1−1

inside the conditional expectation. Third,

E
[
α`+1(K(i`+1−1)\i, ε) D̄i`+1−1

∣∣∣∣Gi`+1−2

]
=
(

1−
F (sti(Ki`+1−2))

Zi`+1−2

)
×

PK(i`+1−2)\i

Gε`(1; i`+1 − 1) ∩
n−(k−`−1)⋂
j=i`+1+1

Gεp(j)(j − i`+1 + 1; j + p(j)− `− 1)

 .(63)
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So we write:

E

α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`


(62)= E

E [α`+1(K(i`+1−1)\i, ε) D̄i`+1−1

∣∣∣∣Gi`+1−2

] i`+1−2∏
j=i`+1

D̄j

∣∣∣∣Gi`


(63)= E
[(

1−
F (sti(Ki`+1−2))

Zi`+1−2

) i`+1−2∏
j=i`+1

D̄j×

PK(i`+1−2)\i

Gε`(1; i`+1 − 1) ∩
n−(k−`−1)⋂
j=i`+1+1

Gεp(j)(j − i`+1 + 1; j + p(j)− `− 1)

 ∣∣∣∣Gi`
]
.

Now, the lower bound of (61) yields:

E

α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`


≥
(

1− F (sti(Ki`))
λ−ε`(i`+1 − 2)

)
E

PK(i`+1−2)\i

 n−(k−`)⋂
j=i`+1−1

Gεp(j)(j − i`+1 + 2; j + p(j)− `)

 i`+1−2∏
j=i`+1

D̄j

∣∣∣∣Gi`
 .

By the tower property again, we substitute

E

PK(i`+1−2)\i

 n−(k−`)⋂
j=i`+1−1

Gεp(j)(j − i`+1 + 2; j + p(j)− `)

 D̄i`+1−2|Gi`+1−3


for PK(i`+1−2)\i

 n−(k−`)⋂
j=i`+1−1

Gεp(j)(j − i`+1 + 2; j + p(j)− `)

 D̄i`+1−2.(64)

Also,

E

PK(i`+1−2)\i

 n−(k−`)⋂
j=i`+1−1

Gεp(j)(j − i`+1 + 2; j + p(j)− `)

 D̄i`+1−2|Gi`+1−3

 =

(
1−

F (sti(Ki`+1−3))
Zi`+1−3

)
PK(i`+1−3)\i

 n−(k−`)⋂
j=i`+1−2

Gεp(j)(j − i`+1 + 3; j + p(j)− `)

 .(65)

Bounding the first factor as in (61), and combining Equations (64) and (65) give

E

α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`


≥
(

1− F (sti(Ki`))
λ−ε`(i`+1 − 2)

)(
1− F (sti(Ki`))

λ−ε`(i`+1 − 3)

)
×

E

PK(i`+1−3)\i

 n−(k−`)⋂
j=i`+1−2

Gεp(j)(j − i`+1 + 3; j + p(j)− `)

 i`+1−3∏
j=i`+1

D̄j

∣∣∣∣Gi`
 .
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Iterating the argument shows that the right hand side multiplied by D̄i` is bounded from below by
α`(Ki`\i, ε)h

ε
`(sti(Ki`))D̄i` . We conclude the proof by appying Equation (53) from Corollary 4.17.

Lemma 4.19. For any δ > 0, 0 < η < 1 and 0 < ε < 1/(2k + 2), there exists N = N(δ, ε, η) such
that, for all n ≥ N , ` ∈ {1, . . . , k} and ηn < i < i1 < . . . < ik ≤ n, with fεj as defined in (50) we
have

E

α`+1(K(i`+1−1)\i, ε) E∗sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

min(i`+1,n)∏
j=i`+1

D̄j(ε)
∣∣∣∣Gi`

 D̄i`(ε)

≥ (α`(K(i`−1)\i, ε/(4(k + 1)))− δ)E∗sti(Ki` )

 k∏
j=`

fεj(Sj−`)

 D̄i`(ε),(66)

where we use the convention αk+1(·) = 1, while

E

α1(K(i1−1)\i, ε) E∗sti(Ki1 )

 k∏
j=1

fεj(Sj−`−1)

 i1∏
j=i+1

D̄j(ε)
∣∣∣∣Gi
 D̄i(ε)

≥ α0(Ki\i, ε)E∗sti(Ki)

 k∏
j=0

fεj(Sj)

 D̄i(ε).

Proof. Equation (66) coincides with the statement of Lemma 4.18 for ` = k. Let 0 ≤ ` ≤ k − 1.
Note that, for all 1 ≤ i ≤ n, we have |Zn\i − Z(n−1)\i| ≤ (d + 1)fmax. Thus, for all n sufficiently
large (depending on ε and η), we have

(67) Di`+1 ∩ G
(i)
ε`

(i`+1 − 1) ⊆ G(i)
ε`+1(i`+1).

Using this observation in the second step, we deduce

E

α`+1(K(i`+1−1)\i, ε) E∗sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

 i`+1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i`

= E

E
D̄i`+1 E∗sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

 ∣∣∣∣Gi`+1−1

 α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i`

(67)
≥ E

E
Di`+1E

∗
sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

 ∣∣∣∣Gi`+1−1

 α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i` .

Recall that (analogous to in the Proof of Proposition 4.8), conditionally on Gi`+1−1, on the event
Di`+1, the random variable sti(Ki`+1) is distributed as S1 for the star Markov process starting at
sti(Ki`+1−1). This yields:

E

Di`+1E
∗
sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

 ∣∣∣∣Gi`+1−1

 = P
(
Di`+1 |Gi`+1−1

)
· E∗sti(Ki`+1−1)

 k∏
j=`+1

fεj(Sj−`)


=
F (sti(Ki`+1−1))

Zi`+1−1
· E∗sti(Ki`+1−1)

 k∏
j=`+1

fεj(Sj−`)

 .
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We deduce that

E

α`+1(K(i`+1−1)\i, ε) E∗sti(Ki`+1 )

 k∏
j=`+1

fεj(Sj−`−1)

 i`+1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i`

≥ E

F (sti(Ki`))
Zi`+1−1

E∗sti(Ki` )

 k∏
j=`+1

fεj(Sj−`)

α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i` .

But on the event associated with D̄i`+1 we have

F (sti(Ki`))
Zi`+1−1

≥ F (sti(Ki`))
F (sti(Ki`)) + λ+ε`(i`+1 − 1) .

So the previous inequality continues as follows:

F (sti(Ki`))
F (sti(Ki`)) + λ+ε`(i`+1 − 1)×

E∗sti(Ki` )

 k∏
j=`+1

fεj(Sj−`)

 · E
α`+1(K(i`+1−1)\i, ε)

i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i` .

We bound the last term from below using Lemma 4.18:

E

α`+1(K(i`+1−1)\i, ε)
i`+1−1∏
j=i`+1

D̄j

∣∣∣∣Gi`
 D̄i` ≥ (α`(K(i`−1)\i, ε/(4(k + 1)))− δ)hε`(sti(Ki`))D̄i` .

By (50), we have

F (sti(Ki`))
F (sti(Ki`)) + λ+ε`(i`+1 + 1)h

ε
`(sti(Ki`))E

∗
sti(Ki` )

 k∏
j=`+1

fεj(Sj−`)

 = E∗sti(Ki` )

 k∏
j=`

fεj(Sj−`)

 ,
so the claim follows.

The lemma allows us to bound P
(⋂n

j=i+1 D̄j
)
from below by a term similar to (51) using a backward

induction argument which is of the same nature as the proof of Proposition 4.8. This result needs
to be prepared with the following definition. For 0 < ε < 1/(2k + 2), 0 < η < 1 and C > 0, set

(68) γ(ε, η, C) = γk(ε, η, C)k(k+1)/2, γ`(ε, η, C) = (1− ε`) η2Cε`/λ, ` = 1, . . . , k.

Note that these terms decrease as ε or C increase.

Lemma 4.20. For 0 < ε < 1/(2k+ 2), 0 < η < 1 and C > 0 there exists N = N(ε, η, C) such that,
for all n ≥ N , ηn < i < i1 < . . . < ik ≤ n and 0 < ε′ ≤ ε

fε`(S) ≥ γ`(ε, η, C)fε′` (S) for all S ∈ C′ with F (S) ≤ C.
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Proof. Recalling that λ+ε` = λ(1 + ε`) we deduce that

F (S)
F (S) + λ+ε`(i`+1 − 1) >

F (S)
(1 + ε`)(F (S) + λ(i`+1 − 1)) > (1− ε`)

F (S)
F (S) + λ(i`+1 − 1) .

(This statement requires no bounds on F (S) or i`.) Hence, it is sufficient to prove that hε`(S) ≥
η2Cε`/λhε

′
` (S) for sufficiently large n. By Lemma 4.9, we have

hε`(S) =
(
i`
i`+1

)F (S)/λ−ε`
(

1 +O

( 1
n

))
,

where the O-term can be chosen uniformly in ε, i`, i`+1 and S for given η and C. Note that hε`(S)
increases as ε decreases. Therefore, it is enough to prove that for each ` ∈ {0, . . . , k + 1}(

i`
i`+1

)F (S)/λ−ε`
> η2Cε`/λ

(
i`
i`+1

)F (S)/λ

for all S with F (S) ≤ C. This follows easily from the bound on F , the fact that ε < 1/(2k + 2) (so
that for each ` 1/(1− ε`) ≤ 2) and each ratio satisfies η ≤ i`

i`+1
< 1.

Proposition 4.21. For δ > 0, 0 < η < 1 and 0 < ε < 1/(2k + 2), there exists N = N(δ, ε, η) > 0
such that, for all n ≥ N and ηn < i ≤ i1 < . . . < ik ≤ n, with γk = γk(ε, η, (d+ 1)(k + 1)fmax) and
γ = γ(ε, η, (d+ 1)(k + 1)fmax), we have,

P

 n⋂
j=i+1

D̄j(ε)

 ≥γE
α0

(
Ki\i, ε/(4(k + 1))k+1

)
E∗sti(Ki)

 k∏
j=0

fεj(Sj)

 D̄i(ε/(4(k + 1))k+1)


− δ

k∑
`=1

E

 i∏̀
j=i+1

D̄j(ε)E∗sti(Ki` )

∏̀
j=0

f
ε/(4(k+1))k
k+j−` (Sj)

 D̄i(ε)

 .(69)

Proof. By Lemma 4.18, we have

P
(

n⋂
j=i+1

D̄j(ε)
)

= E

P
 n⋂
j=ik+1

D̄j(ε)
∣∣∣∣Gik

 ik∏
j=i+1

D̄j(ε)


(56)
≥ E

αk(K(ik−1)\i, ε/(4(k + 1)))E∗sti(Kik )[f
ε
k(S0)]

ik∏
j=i+1

D̄j(ε)

− δE
E∗sti(Kik )[f

ε
k(S0)]

ik∏
j=i+1

D̄j(ε)

 .
In order to apply Lemma 4.19 again in the first term, we may replace D̄j(ε) by D̄j(ε/(4(k + 1))).
Moreover, by Lemma 4.20 and as F (S`) ≤ (d + 1)(k + 1)fmax for ` ∈ {0, . . . , k}, we may replace
fεk(S0) by γkf

ε/(4(k+1))
k (S0) for sufficiently large n. Hence, applying Lemma 4.19 again after this step,

we deduce that the first term in the last display is bounded from below by

γkE

αk−1(K(ik−1−1)\i, ε/16)E∗sti(Kik−1 )

[
f
ε/(4(k+1))
k−1 (S0)fε/(4(k+1))

k (S1)
] ik−1∏
j=i+1

D̄j(ε/(4(k + 1)))


− δγkE

E∗sti(Kik−1 )

[
f
ε/(4(k+1))
k−1 (S0)fε/(4(k+1))

k (S1)
] ik−1∏
j=i+1

D̄j(ε/(4(k + 1)))

 .
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We now iterate these steps until the main term contains α0. In particular, with the leading term,
at the (`+ 1)th step we get an expression of the form

E

αk−`(K(ik−`−1)\i, ε/(4(k + 1))`+1)E∗sti(Kik−` )

∏̀
j=0

f
ε/(4(k+1))`
k+j−` (Sj)

 ik−`∏
j=i+1

D̄j

(
ε/(4(k + 1))`

)
≥

∏̀
j=0

γk−j

E
[
αk−(`+1)(K(ik−(`+1)−1)\i, ε/(4(k + 1))`+2)

×E∗sti(Kik−(`+1) )

`+1∏
j=0

f
ε/(4(k+1))`+1

k+j−(`+1) (Sj)

 ik−(`+1)∏
j=i+1

D̄j(ε/(4(k + 1))`+1)


− δ

∏̀
j=0

γk−j

E

E∗sti(Kik−(`+1) )

`+1∏
j=0

f
ε/(4(k+1))`+1

k+j−(`+1) (Sj)

 ik−(`+1)∏
j=i+1

D̄j(ε/(4(k + 1))`+1)

 .
Now, thanks to monotonicity, when we iterate this expression, we may do the following replacements
in the procedure. First, for the term not involving δ, any factors of type γ`(ε′, η, (d+ 1)(k+ 1)fmax)
with 0 < ε′ < ε may be bounded from below by γk. Thus, at the (` + 1)th step, we multiply a
product of γ`+1

k to the co-efficient of the main term, leading to the co-efficient γ as defined in (68).
Moreover, in the final product

∏k
j=0 f

ε/(4(k+1))k
j (Sj), we may replace ε/(4(k + 1))k by ε to get a

lower bound. This leads to the first term in the statement of the proposition. Next, in the error
term involving δ, we bound each γ` from above by 1, and bound each of the factors of the form
f
ε/(4(k+1))`
k+j−` from above by f

ε/(4(k+1))k+1

k+j−` . This gives us the error term as stated in Equation (69).

We are finally ready to prove Proposition 4.13. Recalling (47), we bound E
[
Nη
k (n)

]
from below by

summing the lower bound stated in Proposition 4.21 over ηn < i < i1 < . . . < ik ≤ n. We start
with the error term. Upon dropping the indicator variables D̄j(ε) and bounding fεj from above by fj
defined in Equation (28) (in Subsection 4.2), the absolute value of the error term is bounded from
above by

(70) δ
∑

ηn<i<n

∑
Ik∈({i+1,...,n}

k )
E

E∗sti(Ki)
 k∏
j=0

fj(Sj)

 .
From the proof of Corollary 4.6 in Subsection 4.2, we know that the double sum converges after
rescaling by n. Hence, there exist C1 > 0 and a natural number N both depending on ε, η, such
that, for all n ≥ N , (70) is bounded from above by C1δn.

To treat the main term, assume for now that there exists a constant C2 = C2(ε, η) > 0 such that,
for all ηn < i ≤ n, we have

(71)
∑

Ik∈({i+1,...,n}
k )

E∗sti(Ki)

 k∏
j=0

fεj(Sj)

 ≤ C2.

We shall use the following inequality: for a non-negative random variable X satisfying X ≤ C, for
some C > 0, and indicator random variables I1, I2 we have

E [X] ≤ E [XI1I2] + C(E [1− I1] + E [1− I2]).
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Thanks to this inequality, the main term in the lower bound from Proposition 4.21 summed over
i < i1 < . . . < ik ≤ n (for fixed ηn < i ≤ n) can be bounded from below by
(72)

γ
∑

Ik∈({i+1,...,n}
k )

E

E∗sti(Ki)
 k∏
j=0

fεj(Sj)

− C2γ

(
1− E

[
α0

(
Ki\i,

ε

4k+1

)]
+ 1− E

[
D̄i

(
ε

4k+1

)])
.

Let δ′ > 0. Thanks to Lemma 4.15 and the fact that P
(
G(i)
ε/(4(k+1))k+1(i)

)
→ 1 as n→∞ uniformly

in ηn < i ≤ n, there exists a natural number N = N(δ′, ε, η) > 0 such that, for all n ≥ N , the
absolute value of the second term in (72) is bounded from above by C2γδ

′ ≤ C2δ
′. Collecting all

bounds and using Lemma 4.9 concludes the proof of Equation (48) upon setting % = γ. (Note that
we may remove the additional F (Sj) in the denominator of fε`(Sj) in the final statement as F (Sj)
is bounded by (k + 1)(d+ 1)fmax.)
Therefore, it remains to establish the existence of C2 satisfying (71). To this end, we shall bound
fεj from above by fj (as defined in Equation (28)). Note that if i ≥ 2, then 1

i−1 ≤
2
ηn . Thus, by

applying Stirling’s formula and recalling that F (S`) ≤ (d+ 1)(k + 1)fmax for all ` ∈ {0, . . . , k}, we
have

∑
Ik∈({i+1,...,n}

k )

k∏
j=0

fj(Sj) ≤
(

1 +O

( 1
n

)) ∑
i<i1<...<ik≤n

k−1∏
`=0

( i`
i`+1

)F (S`)
λ+ε · F (S`)

λ−ε(i`+1 − 1)

( ik
n

)F (Sk)
λ+ε

≤
2
∏k−1
`=0 F (S`)
λ−εη

(
1 +O

( 1
n

))
×

1
n

∑
ηn<i0<...<ik−1≤n

k−2∏
`=0

( i`
i`+1

)F (S`+1)
λ+ε · 1

λ−ε(i`+1 − 1)

( ik−1
n

)F (Sk)
λ+ε

,

where the O-term depends only on η. From Corollary 4.4 (applied with k−1 instead of k) it follows
that the right hand side is uniformly bounded for any ε and η.

We conclude the section with the proofs of Lemmas 4.15 and 4.16.

Proof of Lemma 4.15. Let i ∈ N and X ∈ Cw contain a vertex with label i and at most d active
faces containing i, where each (d − 1)-face containing i has fitness at most fmax. In the random
dynamical process Kj , j ≥ 0 initiated with complex X , at time j ≥ 1, to each face σ ∈ K(d−1)

j , we
can associate a unique ancestral (d−1)-dimensional face in X . (Formally, the ancestral face of a face
in X is the face itself. The ancestral face of any other face σ is defined recursively as the ancestral
face of the face which was subdivided when σ was formed.) Let Kj 6↓i ⊆ Kj be the subcomplex of
faces of Kj whose ancestral face does not lie in sti(X ). Note that Kj 6↓i ⊆ Kj\i and that this inclusion
is typically strict due to migration of faces to the outside of the star at times of insertion in the star.
For j ≥ 1, let ςj be j-th time the face chosen in the construction of the simplicial complex has its
ancestral face in X\i. Set ς0 = 0. Note that ςj ≥ j and that ςj − j is non-decreasing in j. The crucial
observation is that the sequence Kςj 6↓i, j ≥ 0 under PX is distributed as the sequence Kj , j ≥ 0
under PX\i (upon disregarding vertex labels which are irrelevant here). Formally, this follows from
Kς0 6↓i = X\i under PX and the fact that Kςj 6↓i, j ≥ 0 is Markovian with the same transition rule as
Kj , j ≥ 0. For an integer K > 0, on the event ς` ≤ ` + K and for any initial configuration X as
described at the beginning of the proof, we have |F (K`) − F (Kς` 6↓i)| ≤ (2d + 1)Kfmax. Hence, for
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all n sufficiently large (depending on ε, η and K),

E

PKi\i
 n⋂
j=i+1

Gε(j − i; j)}

 ≥ E

PKi
 n⋂
j=i+1

{|F (Kςj−i 6↓i)− λj| < ελj}

 · 1|ςn−i−(n−i)|≤K


≥ E

PKi
 n+K⋂
j=i+1

Gε/2(j − i; j)

− E [PKi(|ςn−i − (n− i)| > K)]

≥ E

PKi
 ∞⋂
j=i+1

Gε/2(j)

− E [PKi(|ςn−i − (n− i)| > K)] .

By Proposition 1.3, for all n sufficiently large, the first term in the last display is at least 1 − δ/2
for all ηn < i ≤ n. Further, we can choose K large enough, such that the absolute value of the
second term is bounded from above by δ/2 for all ηn < i ≤ n and all n sufficiently large. To see
this, note that Px(|ςn − n| ≥ K) is the probability that the number of faces with ancestral face in
sti(x) chosen to be subdivided up to time n exceeds K. Let 1 ≤ τ1 < τ2 < . . . be the instances,
when such faces are chosen. Then, the sought after quantity equals Px(τK ≤ n). Note that τK can
be bounded from below stochastically by X1 + · · · + XK for independent summands, where X`

follows the geometric distribution with success parameter min((d+ 1)`fmax/F (x), 1), which implies
that E [X1 + · · ·+XK ] ≥ F (x) logK

(d+1)fmax
. Thus, if F (x) ≥ ληn/2, then, for a given ε′ > 0, for

any K large enough (depending on η), and all n sufficiently large (depending on ε′, η and K) we
have Px(τK ≤ n) ≤ ε′ for all n ≥ 1. This follows from a straightforward application of Chebychev’s
inequality, whose details we omit. The fact that F (Ki) ≥ ληn/2 (since i ≥ ηn) with high probability
for sufficiently large n (depending on η) concludes the proof of the lemma.

Proof of Lemma 4.16. The proof is very similar to the previous. Let Kj↓X be the sub-complex
of Kj of faces whose ancestral face lies in X . For j ≥ 1, let ςXj be the jth time a face with ancestral
face in X is subdivided. Set ςX0 = 0. As before, we have ςXj ≥ j and ςXj − j is non-decreasing.
Define Kj↓Y and ςYj analogously. Thanks to (ii), under PX , the sequence KςYj ↓Y , j ≥ 0 is distributed
as KςXj ↓X , j ≥ 0 under PY . Thus, it is enough to show that, under the conditions (i) - (iv), for
sufficiently large n, we have

PY

 m⋂
j=u+1

Gε2(j − u, j)

− ε3/2 ≤ PY

 m⋂
j=u+1

{|F (KςXj−u↓X )− λj| < 3ε2j/2}


and

PX

 m⋂
j=u+1

{|F (KςYj−u↓Y)− λj| < 3ε2j/2}

 ≤ PX

 m⋂
j=u+1

G2ε2(j − u, j)

+ ε3/2.

We only show the second statement, as the first can be proved by similar arguments. Note that, for
any natural number K, we have

PX

 m⋂
j=u+1

{|F (KςYj−u↓Y)− λj| < 3ε2λj/2}


≤

K∑
p=0

PX

 m⋂
j=u+1

{|F (KςYj−u↓Y)− λj| < 3ε2λj/2, ςYn−u = n− u+ p}

+ PX (|ςYn−u − (n− u)| ≥ K).
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On ςYn−u = n− u+ p, 0 ≤ p ≤ K, we have, using (i) and (iii),

|F (KςYj−u↓Y)− F (Kj−u)| ≤ K(d+ 1)fmax + F
(
X (d−1)4Y(d−1)

)
≤ K(d+ 1)fmax + C1C2.

(Here, F
(
X (d−1)4Y(d−1)

)
denotes the sum of all fitneses of faces in X (d−1)4Y(d−1).) Thus, for all

n sufficiently large (depending on η, ε2 and K), we can bound the right hand side of the last display
from above by

K∑
p=0

PX

 m+p⋂
j=u+1

G2ε2(j − u, j) ∩ {ςYn−u = n− u+ p}

+ PX (|ςYn−u − (n− i)| ≥ K)

≤ PX

 m⋂
j=u+1

G2ε2(j − u, j)

+ PX (|ςYn−u − (n− u)| ≥ K).

Now, the same arguments relying on a stochastic bound involving sums of independent geometric
random variables used in the previous proof show that the second summand can be made smaller
than ε3/2 for sufficiently large (but fixed) K and all n sufficiently large (depending on η, ε1, ε3, C1
and C2). Here, one uses (iv) and the fact that F (X (d−1)4Y(d−1)) ≤ C1C2 to bound the success
probabilities of the geometric random variables suitably.

5. Appendix.

5.1. Proof of Lemma 3.6. For brevity, we omit the superscript ε when referring to the process N ε,
and in the notation of other parameters depending on ε.

Let ε > 0 be small enough such that $ > ϑ (this is possible because µ does not contain an atom
at 1). Then, i$ + (d − i)ϑ ≤ 1 for i ∈ {1, . . . , d}. Let θi = 1 − i$ − (d − i)ϑ, i ∈ {0, . . . , d}. The
Markov chain N has the following dynamics: jump times are exponentially distributed with unit
mean while the skeleton process performs a random walk on {0, . . . , d} according to the following
rules: the process is absorbed at 0 and, given that its current state is i ∈ {1, . . . , d}, it moves to i+1
with probability (d− i)ϑ and to i− 1 with probability i$, while it remains at i with probability θi.

We construct the process N from a realisation of X. First, we use the jump times σn, n ≥ 1 of
the X-process for the jump times of N . We define Nσn by induction, starting with Nσ0 = C (Xσ0),
where σ0 := 0. Let n ≥ 1 and suppose Xσn−1 = x and C (Xσn−1) = j (recalling that C (∅) = 0).
If 0 ≤ j < Nσn−1 , then choose Nσn arbitrarily obeying the dynamics of the random walk (for
example by using additional external randomness). If Nσn−1 = 0, set Nσn = 0. Finally, assume
that Nσn−1 = j > 0. Let

s↑ =
d−1−j∑
i=0

E [f(xi←W )1W>1−ε]
M

≤ (d− j)ϑ, s↓ =
d−1∑
i=d−j

E [f(xi←W )1W≤1−ε]
M

≥ j$.

Let A be an event that has probability j$/s↓ ∈ [0, 1] which is independent of the past of the process
given Xσn−1 .3 Let

E = {Xσn = ∅} ∪ ({C (Xσn) = C (Xσn−1)− 1} ∩Ac) ∪ {C (Xσn) = C (Xσn−1)}.
3For example A = {U ∈ [0, j$/s↓]} for an independent uniformly distributed random variable U .
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We first define N(σn) on Ec as follows: we set

Nσn =
{
Nσn−1 + 1 on {C (Xσn) = C (Xσn−1) + 1},
Nσn−1 − 1 on {C (Xσn) = C (Xσn−1)− 1} ∩ {Xσn 6= ∅} ∩A.

Provided that Nσn ∈ {Nσn−1 , Nσn−1 + 1} on E, this guarantees that C (Xσn) ≤ Nσn . Finally, we
ensure that the coupling respects the dynamics of the process N by using additional randomness
where required. For example, we can proceed as follows: let B be an event that has probability
((d− j)ϑ− s↑)/(1− s↑− j$) which is independent of the past of the process given Xσn−1 (note that
the denominator in the last expression is the probability of the event E given Xσn−1 = x). Then,
set Nσn = Nσn−1 + 1 on B ∩E and Nσn = Nσn−1 on Bc ∩E. By construction, we have C (Xt) ≤ Nt

for all t ≤ τL ∧ τ∅.

5.2. Proof of Lemma 3.7. First note that since both X(x) and X(y) jump at rate one, we can couple
them so that they jump at the same times, which we denote by (σi)i∈N. At the first jump, for any
measurable set A ⊆ Cd−1 we should have

P(X(x)
σ1 ∈ A) = 1

M

d−1∑
i=0

E
[
f(xi←W )1A(xi←W )

]
; P(X(y)

σ1 ∈ A) = 1
M

d−1∑
i=0

E
[
f(yi←W )1A(yi←W )

]
,

and both processes jump to {∅} with probability equal to the remaining mass. We can interpret
these measures as sums of d+ 1 measures given by

(
1
ME

[
f(xi←W )δxi←W (·)

])
0≤i≤d−1

and c(x)δ∅(·),

where c(x) := 1−
∑d−1
i=0 E

[
f(xi←W )

]
/M , for X(x); similarly for X(y). On Figure 4, we draw the unit

interval vertically and divide it in sub-intervals of respective lengths E
[
f(yi←W )

]
/M . On each of

these intervals, we draw, from bottom to top as i increases from 0 to d− 1,

F (x)
i : u 7→ bi +

∫
[0,u]

f(xi←v)dµ(v)/M
(

resp. F (y)
i : u 7→ bi +

∫
[0,u]

f(yi←v)dµ(v)/M
)

in orange (resp. purple), where for i ∈ {0, . . . , d − 1}, bi =
∑i−1
j=0 E

[
f(yj←W )

]
/M. Note that, by

monotonicity of f , both F (x)
i and F (y)

i are non-decreasing, and since x 4 y, F (x)
i ≤ F

(y)
i pointwise.

Now, consider a uniformly distributed random variable U on [0, 1]. If U lands in the top-most
interval (that is, if U ≥

∑d−1
i=0 E [f(yi←W )]), then we set X(x)

σ1 = X(y)
σ1 = ∅. If U lands in the i-th

interval (numbered from the bottom of the picture), we consider two cases:

• If U lands into the orange part of the i-th interval (see left-hand-side of Figure 4), we set
X(x)
σ1 = x

i←(F (x)
i )−1(U) and X(y)

σ1 = y
i←(F (x)

i )−1(U) (if F (x)
i is not strictly increasing, we choose

the left-continuous version of the inverse (F (x)
i )−1(w) := inf{y ∈ [0, 1] : F (x)

i (y) ≥ w}).
• If U lands in the rest of the i-th interval (right-hand-side example on Figure 4), we set
X(x)
σ1 = ∅. Set Gi = F (y)

i − F (x)
i and note that this function is non-negative on [0, 1] and

non-decreasing. Indeed, for all u < v, we have

Gi(v)−Gi(u) =
∫

(u,v]

(
f(yi←w)− f(xi←w)

)
dµ(w)/M ≥ 0.

We can thus define the left-continuous inverse G−1
i (w) := inf{y ∈ [0, 1] : G(x)

i (y) ≥ w}, and set
X(y)
σ1 = y

i←G−1
i (U−F (x)

i (1)).
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0

1

Ef(y0←W )
M

Ef(y1←W )
M

Ef(y2←W )
M

c(y)

1

U

0

1

1

U

b1

b2

b1

b2

Figure 4: Visual aid for the proof of Lemma 3.7. For the sake of presentation, we have chosen d = 3.

Let us prove that, with these definition, X(x)
σ1 and X(y)

σ1 have the correct distributions and that
X

(x)
σ1 4 X

(y)
σ1 . First note that, if X(y)

σ1 = ∅, then U fell into the topmost interval and thus X(x)
σ1 = ∅,

hence X(x)
σ1 4 X

(y)
σ1 . If X(x)

σ1 6= ∅, then U fell in the orange part of an interval and thus X(x)
σ1 =

xi←V 4 yi←V = X(y)
σ1 (where V = (F (x)

i )−1(U)), since x 4 y.
Let us now check that X(x)

σ1 defined in the coupling above has the right distribution. It is equal to
∅ if and only if U landed in the topmost interval, or it did not land in an orange sub-interval, and
thus

P(X(x)
σ1 = ∅) = c(y) +

d−1∑
i=0

(
F (y)
i (1)− F (x)

i (1)
)

= 1− 1
M

d−1∑
i=0

E[f(yi←W )] + 1
M

d−1∑
i=0

∫
[0,1]

f(yi←v)dµ(v)− 1
M

d−1∑
i=0

∫
[0,1]

f(xi←v)dµ(v)

= 1− 1
M

d−1∑
i=0

E[f(xi←W )] = c(x).
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For all Borel sets A ⊆ Cd−1, we have

P(X(x)
σ1 ∈ A) =

d−1∑
i=0

P(X(x)
σ1 ∈ A and F (x)

i (0) ≤ U ≤ F (x)
i (1))

=
d−1∑
i=0

∫ F
(x)
i (1)

F
(x)
i (0)

1A
(
x
i←(F (x)

i )−1(u)

)
du

=
d−1∑
i=0

∫
[0,1]

1A(xi←v)f(xi←v)dµ(v)/M,

by definition of F (x)
i and by the change of variable u = F (x)

i (v). This proves the claim.

Let us now check that X(y)
σ1 also has the right distribution under the coupling. First note that

P(X(y)
σ1 = ∅) is equal to the probability that U lands in the topmost interval, which is of length

c(y), and thus P(X(y)
σ1 = ∅) = c(y).

For all Borel sets A ⊆ Cd−1, we have

P(X(y)
σ1 ∈ A) =

d−1∑
i=0

P(X(y)
σ1 ∈ A and F (x)

i (0) ≤ U ≤ F (x)
i (1))

+
d−1∑
i=0

P(X(y)
σ1 ∈ A and F (x)

i (1) < U ≤ F (y)
i (1)).

The first sum is similar to the calculation above when checking the distribution of X(x)
σ1 :

d−1∑
i=0

P(X(y)
σ1 ∈ A and F (x)

i (0) ≤ U ≤ F (x)
i (1)) = 1

M

d−1∑
i=0

E[f(xi←W )1A(yi←W )].

For the second sum, we have
d−1∑
i=0

P(X(y)
σ1 ∈ A and F (x)

i (1) < U ≤ F (y)
i (1))

=
d−1∑
i=0

P(y
i←G−1

i (U−F (x)
i (1)) ∈ A and F (x)

i (1) < U ≤ F (y)
i (1))

=
d−1∑
i=0

∫ F
(y)
i (1)

F
(x)
i (1)

1A
(
y
i←G−1

i (u−F (x)
i (1))

)
du

=
d−1∑
i=0

∫
[0,1]

1A (yi←v) (f(yi←v)− f(xi←v))dµ(v)/M,

by definition of Gi and by the change of variable u = Gi(v) + F (x)
i (1). We thus conclude that, in

total,

P(X(y)
σ1 ∈ A) = 1

M

d−1∑
i=0

E[f(yi←W )1A(yi←W )],

as claimed. We can now iterate this coupling at each jump-time until X(x) becomes absorbed. After
X(x) reaches ∅, we let X(y) evolve independently according to its dynamics. This concludes the
proof.
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5.3. Proof of Proposition 4.2. Let C′f ⊆ C′ be the set of elements of the form (z,
∑m
i=1 δyi) for

z ≥ 0,m ≥ 1 and y1, y2, . . . , ym ∈ Cd−2. Here, we view M(Cd−2) as a metric space under the
Prokhorov metric, and view C′ = [0,∞)×M(Cd−2) as a product metric space with∞ product metric
(where the distance is the maximum co-ordinate wise distance). First of all, we prove that there exists
a function h : C′f× [0, 1]× [0,∞)→ C′f such that, for independent and identically distributed random
variables (U1,W1), (W2, U2) . . ., where Ui,Wi are independent, Ui has the uniform distribution on
[0, 1] and Wi follows the distribution µ (as before), we obtain a realisation of the Markov chain
starting at x′ ∈ C′f by setting S0 = x′ and, recursively, Sn+1 = h(Sn, Un+1,Wn+1) for n ≥ 0.
We then couple the two Markov chains started at ϕ(w, xn) and ϕ(w, x) using the same sequence
(U1,W1), (U2,W2), . . ., and write S(n)

0 , S
(n)
1 , . . . and S0, S1, . . . for these chains. The construction of

h is straightforward. Let x′ = (z, ν) ∈ C′f with ν =
∑m
i=1 δyi ∈ C′f and u ∈ [0, 1], w′ ≥ 0. Order

y1, . . . , ym lexicographically and define

(73) s0 = 0 and si =
i∑

j=1
f(yj ∪ z), 1 ≤ i ≤ m.

Then, let 1 ≤ p ≤ m be such that sp−1 < usm ≤ sp. We now set

h((z, ν), u, w′) =
{

(z, ν +
∑d−2
i=0 δ(yp)i←w′ ), in Model A,

(z, ν +
∑d−2
i=0 δ(yp)i←w′ − δyp), in Model B.

It follows immediately from the dynamics of the Markov chain, that the function h has the desired
properties. Next, we show that, for the coupled Markov chains:

(74) for any k ≥ 0, we have S(n)
k → Sk almost surely.

By continuity of f , this implies that F (S(n)
k )→ F (Sk) almost surely, which concludes the proof. To

prove (74), we proceed by induction. The case k = 0 is trivial as the function ϕ is continuous. Assume
that we have already proved the statement for all j ∈ {0, . . . , k−1}. Recall that Sk = h(Sk−1, Uk,Wk)
and S(n)

k = h(S(n)
k−1, Uk,Wk). Conditioning on Sk−1, S

(0)
k−1, S

(1)
k−1, . . . shows that

P
(
S

(n)
k 9 Sk

)
≤ E[Leb({u ∈ [0, 1] : there exist v1, v2, . . . ∈ C′f and w′ ≥ 0

such that lim
`→∞

v` = Sk−1 but h(v`, u, z) 9 h(Sk−1, u, z)})]

We conclude the proof by showing that, almost surely, the set u ∈ [0, 1] for which v`, ` ≥ 1 and
w′ ≥ 0 exist satisfying v` → Sk−1 as `→∞ and h(v`, u, w′) 9 h(Sk−1, u, w

′) is a Lebesgue null set.
To this end, we prove the following stronger statement: for x′ = (z,

∑m
i=1 δyi) ∈ C′f , we have that, for

all u /∈ {s1/sm, . . . , 1}, where s1, . . . , sm are as in (73) for this particular x′, it holds that, for any
sequence x′` → x′ and w′ ≥ 0, we have h(x′`, u, w′)→ h(x′, u, w′). To see this, let x′` = (z`,

∑m`
i=1 δy(`)

i

)

be a sequence with x′` → x′. This implies that mn = m for all sufficiently large n and that y(`)
i → yi

for all 1 ≤ i ≤ m as ` → ∞. By continuity of f , for the values s(`)
i defined in (73) for x′`, we have

s
(`)
i → si for all 1 ≤ i ≤ m. Hence, if u /∈ {s1/sm, . . . , 1}, again using continuity, we have that
p(`) = p for all ` sufficiently large and the desired result follows.
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5.4. Proof of Lemma 4.3. To prepare the proof of the lemma, we rewrite the relevant sums using
probabilistic language. Let U0, . . . , Uk be k+ 1 independent random variables uniformly distributed
on [0, 1]. We write U(0) ≤ . . . ≤ U(k) for their order statistics. Let Ij = dU(j)ne, j ∈ {0, . . . , k}. Then,
In = (I0, . . . , Ik) is the vector of order statistics of k+1 independent random variables with uniform
distribution on {1, . . . , n}. Let An be the event that these random variables are distinct. Then, for
α0, . . . , αk ≥ 0, 0 < η ≤ 1/2, we have

Γn(α0, . . . , αk, η) = 1
(k + 1)! · E

k−1∏
j=0

((
Ij
Ij+1

)αj
· n

Ij+1 − 1

)(
Ik
n

)αk
1An1I0>ηn

 .
Note that, given U(i), U(i+1), . . . , U(k), the random variables U(0), . . . , U(i−1) are distributed like the
order statistics of i independent random variables with the uniform distribution on [0, U(i)]. Further,
U(k) is distributed like U1/(k+1), where U follows the uniform distribution on [0, 1]. Thus, setting Vi =
U

1/(i+1)
i U

1/(i+2)
i+1 · · ·U1/(k+1)

k , for i ∈ {0, . . . , k}, the random vectors (U(0), . . . , U(k)) and (V0, . . . , Vk)
are equal in distribution. Therefore, by applying the dominated convergence theorem, for η = 0 we
have

lim
n→∞

Γn(α0, . . . , αk, 0) = 1
(k + 1)! · E

k−1∏
j=0

((
U(j)
U(j+1)

)αj
· 1
U(j+1)

)
Uαk(k)

 .
The last term is equal to

1
(k + 1)! · E

k−1∏
j=0

(
Vj
Vj+1

)αj
· V αk

k

k−1∏
j=0

1
Vj+1

 = 1
(k + 1)! · E

 k∏
j=0

U
αj/(j+1)
j

k∏
j=0

U
−j/(j+1)
j


=

k∏
j=0

1
αj + 1 .

Proof of Lemma 4.3. We start with the term involving η. Note that
∏k−1
j=0

n
Ij+1−11An ≤ 2

∏k−1
j=0 U

−1
(j+1),

since on the event An, we have I1 ≥ 2. Thus,

E

k−1∏
j=0

((
Ij
Ij+1

)αj
· n

Ij+1 − 1

)(
Ik
n

)αk
1An1I0≤ηn


≤ 2E

k−1∏
j=0

U−1
(j+1)1I0≤ηn

 ≤ 2E

k−1∏
j=0

U
−(k+2)/(k+1)
(j+1)

(k+1)/(k+2)

P (I0 ≤ ηn)1/(k+2)

≤ 2 (k + 1)(1+k(k+1))/(k+2) η1/(k+2).

Here, in the last step, we have used P (I0 ≤ ηn) ≤ P
(
U(0) ≤ η

)
= 1− (1− η)k+1 ≤ (k + 1)η. Next,

let ∆j+1 = n
Ij+1−1 −

1
U(j+1)

. In the computation of

E

k−1∏
j=0

((
Ij
Ij+1

)αj
· n

Ij+1 − 1

)(
Ik
n

)αk
1An

 ,
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we can now successively replace n
Ij+1−1 by 1

U(j+1)
+ ∆j+1 for j ∈ {0, . . . , k− 1}. As ∆j+1 → 0 almost

surely, it follows from the dominated convergence theorem, that

E

k−1∏
j=0

((
Ij
Ij+1

)αj
·
(

1
U(j+1)

+ ∆j+1

))(
Ik
n

)αk
1An


= E

k−1∏
j=0

((
Ij
Ij+1

)αj
·
(

1
U(j+1)

))(
Ik
n

)αk
1An

+ o(1).

As E
[
|∆j+1|1U(0)>1/n

]
= O(logn/n), it follows easily that the convergence rate in the last display

is O(logn/n). Next, let ∆′j = Ij
Ij+1
− U(j)

U(j+1)
. Note that, for any positive real numbers x, y, we have

−y
(x+ 1)x ≤

dye
dxe
− y

x
≤ 1
x
,

and thus, on An
∆′j ∈ [−(nU(j+1))−1, (nU(j+1))−1].

Hence, by the mean value theorem, if α ≥ 1, for j ∈ {0, . . . , k − 1},
∣∣∣( Ij
Ij+1

)α
−
(

U(j)
U(j+1)

)α∣∣∣ ≤
α/(nU(j+1)). In the case that α < 1, observe that

min
(

Ij
Ij+1

,
U(j)
U(j+1)

)
≥

nU(j)
nU(j+1) + 1 ≥

U(j)
2U(j+1)

,

since I1 > 1, and thus,

max

( Ij
Ij+1

)α−1

,

(
U(j)
U(j+1)

)α−1
 ≤ ( U(j)

2U(j+1)

)α−1

≤
2U(j+1)
U(j)

.

Thus, by a similar application of the mean value theorem, if 0 ≤ α ≤ 1, then,∣∣∣∣∣
(

Ij
Ij+1

)α
−
(

U(j)
U(j+1)

)α∣∣∣∣∣ ≤ 2α/(nU(j)).

Now, for j ∈ {0, . . . , k}, we have

E
[
U−1

(j)

k−1∏
i=0

U−1
(i+1)1An1I0>1

]
≤ E

[
k∏
i=0

U−1
i 1Ui>n−i

]
= O(logk+1(n)).

Note that we only need I0 > 1 when α < 1, in order to ensure that U(0) > 1/n.

Thus, successively replacing Ij
Ij+1

by U(j)
U(j+1)

+ ∆′j shows

E

k−1∏
j=0

((
Ij
Ij+1

)αj
·
(

1
U(j+1)

))(
Ik
n

)αk
1An1I0>1


= E

k−1∏
j=0

(
U(j)
U(j+1)

)αj
·
k−1∏
j=0

1
U(j+1)

(
Ik
n

)αk
1An1I0>1

+O

(∑k−1
j=0 αj logk+1(n)

n

)
.
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Replacing Ik/n by U(k) gives rise to an error term of order at most αk logk+1(n)/n. As P (Acn) =
O(1/n) and P (I0 = 1) = O(1/n), an application of Hölder’s inequality shows that we may drop the
indicators 1An and 1I0>1 at the cost of an error term of order n−1/(k+2).
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